Supporting Information

Wei et al. 10.1073/pnas.1217931110

SI Text

Near-Field Distribution for Different Incident Polarization. When the laser is polarized along the nanowire (NW), only H_0 and H_2 modes are excited, and plasmon beating along the NW shows the quasiperiodic pattern (Fig. S2*Ai*). As the polarization is rotated away from the parallel direction, besides H_0 and H_2 modes, H_1 mode is excited, which shifts the near-field intensity pattern as can be seen from Fig. S2 *Aii* and *Aiv*. If the laser is polarized perpendicular to the NW, H_1 mode is mainly excited and the near-field intensity is aligned at the sides of the NW (Fig. S2*Aiii*). For the NW in Fig. S2*B*, as the laser polarization is close to the perpendicular direction, the near-field pattern becomes more complex. When the laser is polarized perpendicular to the NW, the near-field intensity is distributed on the two sides of the NW (Fig. S2*Biv*). The higher-order modes can also be excited because this wire is thicker. The shorter-period near-field modulation

pattern in Fig. S2*Biv* could be caused by the interference of H_1 mode and the higher-order mode.

Propagation Constants for NWs of Different Radius. With the increase of the coating thickness, the Re($\Delta k_{//}$) decreases and approaches a minimum as shown in Fig. S5*A*. However, because the refractive index of the coating layer, i.e., Al₂O₃, is larger than that of the substrate, further increasing the coating thickness (T > 94 nm) introduces new asymmetry in the dielectric environment. Re ($\Delta k_{//}$) increases a bit and eventually saturates to a value corresponding to the case of a NW at the glass–Al₂O₃ interface. If the refractive index of the coating layer is the same as the substrate, the Re($\Delta k_{//}$) decreases monotonically with the increase of the coating thickness and becomes saturated for very thick coating (Fig. S5*B*).

Fig. S1. Near-field distribution changes when additional Al_2O_3 is deposited on top of the quantum dots. (*i*) The SEM image for a NW of 167-nm radius with Al_2O_3 coating of 30-nm thickness. (Scale bar, 5 μ m.) (*ii–iv*) The near-field distribution measured in air (*ii*), and then after depositing 5 nm of Al_2O_3 (*iii*), and finally with an additional 5 nm of Al_2O_3 (*iv*). The white dashed lines are visual guides to show the shift of the plasmon near-field pattern.

Fig. 52. The near-field distribution for different incident polarization for NWs coated by Al_2O_3 layer of thickness T = 50 nm (A) and T = 80 nm (B). The radiuses of the NWs in A and B are 150 and 180 nm, respectively. (Scale bar in A for A and B, 5 μ m.)

Fig. S4. SEM (Upper/Left) and near-field distribution (Lower/Right) images for thick NWs. The radiuses of the NWs are 217 nm in A, 222 nm in B, and 232 nm in C. The Al₂O₃ thickness is 30 nm. (Scale bars, 5 µm.)

Fig. S5. (A) Extended plot of Fig. 3D, showing the real part of the propagation constant of the H_0 and H_2 mode for larger Al_2O_3 coating thickness. The difference of the propagation constants is also included. (B) The same as A except the refractive index of the coating layer is set to 1.5, equal to that of the substrate.

Fig. S6. FDTD calculated beat period for NWs in a uniform medium of air as a function of Ag NW radius. The NWs are coated by Al₂O₃ layer of 10-nm thickness. Cylindrical cross-sections are used in these calculations.

Fig. S7. Near-field distribution for NWs of different radius. The Al_2O_3 coating thickness is 10 nm. The quantum dot emission images are measured in air (*Middle*) and oil (*Bottom*). The radiuses of the NWs in A–D are 51, 72, 134, and 162 nm, respectively. (Scale bars, 5 μ m.) The top panels are SEM images of the NWs. By comparing the bottom panels from A to D, it can be seen that the beat period increases monotonically with NW radius when the NWs are in a homogenous environment.