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Meaning of Power Laws. Power laws are ubiquitous in nature.
They have been shown to describe the similarity of the part and
the whole of many objects in nature, ranging from coastlines,
clouds, or mountain ranges (1) to natural or artificial networks
like rivers (2) and up to complex social interactions (3–5). In
general, a homogeneous power function [e.g., f(x) = Cxa with
C, a constants] is intrinsically self-similar: If x is rescaled
(multiplied by a constant), then f(x) is still proportional to xa,
albeit with a different constant of proportionality. Such func-
tions reproduce themselves on rescaling, and therefore lack
natural scales, do not harbor a characteristic unit, and are said
to be scale-free or true on all scales. Power-law probability
distributions of size may imply an infinite mean, unless a finite
range of sizes is assumed. In such a case and depending on the
value of the scaling exponent, the mean, variance, and pro-
gressive moments of the distributions diverge in the infinite
range. To be finite, they must depend on a finite interval of
sizes sampled; thus, the mean makes no sense as a property of
a population (6). This analog to the syndrome of infinite var-
iance (1) (i.e., the progressive divergence of the variance of
a self-similar or self-affine signal as the sample size is en-
larged) is widely held as the typical signature of scale in-
variance.

Finite-Size Scaling Distributions. A general account of finite-size
scaling (7) in ecology is provided by Banavar et al. (8). General
properties of finite-size scaling distributions (as in Eq. 1) are
detailed in a study by Banaver et al. (9) and its supplementary
information. A brief account of the derivation of the most rel-
evant results, adapted to the case at hand, is given in the fol-
lowing sections.

Normalization. Here, we study the normalization conditions for
size distributions of the form:
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where ϕ > 0 and, for dimensional reasons:
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where m0 is the minimum mass of an organism or a cutoff in
the system. From this point onward, we will measure all masses
in units of m0; thus, F and F̂ coincide and hmik

m0
→ hmik is arbi-

trarily large.
In order for the distribution in Eq. S1 to be normalized

(i.e.,
R
dm pkðmÞ= 1), one needs to make the following as-

sumptions:

F(x) approaches a constant when x � 1.
F(x) goes to zero sufficiently fast when x � 1.

With these conditions, one has:
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where a and b are constants. Now, except for corrections to the

scaling [From Eq. S3: pkðmÞ=m−ΔF
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, which adds an addi-

tional term to Eq. S1.], everything is consistent if a = 1, (1 − Δ)
ϕ < 0, and Δ > 1 (ϕ > 0) or if Δ = 1, in which case one has:
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and two possibilities arise: (i)
R∞
0 dx FðxÞ

x = 1, with F(x) → 0 suffi-
ciently fast for x → 0 (which is consistent with our data), and (ii) F
(x) ∼ x∼0 (−ln x)−α, such that

R∞
hmik dx

1
x FðxÞ∼ ðlnhmikÞmaxð0;1−αÞ. If

α > 1, one is back to case i, whereas if α < 1, one has logarithmic
corrections to the scaling. In fact, if α < 1, one finds pkðmÞ=
1
mðlnhmikÞ1−αF

�
m

hmiϕk

�
, (i.e., a logarithmic correction to the scaling).

Successive Moments Ratios. A test for the validity of a scaling size

distribution of the form pkðmÞ= 1
mF
�

m
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�
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of successive moments ratios 〈mj〉k/〈m
j−1〉k (j > 1) to the first

moment 〈m〉k. In fact, if pkðmÞ= 1
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where x= m
hmik and j > 1. In Fig. S1, we plot successive moments

ratios calculated from our data [cultures in standard conditions
(data are shown in Fig. 2; see also Materials and Methods)] and
linear regressions on these data. The slopes of the linear re-
gressions are compatible with the value of 1 (linear regressions
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on log-transformed data). Coefficient of determination R2 values
for the regressions are R2

hm2i=hmi = 0:999, R2
hm3i=hm2i = 0:996, and

R2
hm4i=hm3i = 0:988. The same is shown for the data of Chilomonas

sp., Euglena gracilis, and Euplotes aediculatus in different envi-
ronmental conditions in Fig. S2 (data are shown in Fig. 3; see
also Materials and Methods). The slopes of the linear regressions
are compatible with the value of 1 (linear regressions on log-
transformed data). Coefficient of determination R2 values for
the regressions are R2

hm2i=hmi = 0:998, R2
hm3i=hm2i = 0:987, and

R2
hm4i=hm3i = 0:962.

Modeling Cell Growth and Division. To model growth and cell di-
vision, we studied the scaling properties of a simple model for
these two processes (10), focusing our attention on unicellular
organisms of an unspecified single species. Here, we show that
the model produces stationary size distributions as in Eq. 1.
Let N(m, t) be the number of organisms of mass m at time t: A

cell’s mass grows exponentially in time with rate μ (i.e., _m= μm)
and cell division occurs in time at a rate b(m). Therefore, the
fission rate depends on the mass of the cell [a mechanism known
as sloppy size control (11)], and b(m)dt is the probability that
a cell of mass m divides in a time dt. We introduce a maximum
possible size M for a cell [i.e., N(m, t) = 0 ∀m > M], which re-
quires (10):

ZM
0

dm bðmÞ=∞: [S6]

Considering the balance of growth and division in an in-
finitesimal time interval dt and in the size interval [m1, m2], ex-
panding at first order in dt, one has:
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�
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[S7]

The equation governing the balance of growth and cell division
is then:

∂N
∂t

ðm; tÞ+ ∂½μmNðm; tÞ�
∂m

+ bðmÞNðm; tÞ−
−4bð2mÞNð2m; tÞ= 0:

[S8]

Let us assume that N(m, t) = λ(m)ekt at stationarity, where
λ(m) is proportional to the stationary cell size distribution. In-
troducing N(m, t) = λ(m)ekt in Eq. S8, one finds for λ(m):

μ
d½mλðmÞ�

dm
= − ½k+ bðmÞ�λðmÞ+ 4bð2mÞλð2mÞ: [S9]

Integrating Eq. S9 in [0, M], one then has the following:
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Eq. S10 imposes
RM
0 dmbðmÞλðmÞ<∞; therefore, in Eq. S6,

one has limm↑Mλ(m) = 0, which implies
RM
0 dmd½mλðmÞ�

dm = 0, and as
a result:

k=
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ZM
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: [S11]

The scale invariance of λ(m) can be deduced directly from Eq.
S9 as follows. The value of λ depends on m and M [i.e., λ =
λ(m, M)]. We assume that the total mass present at t = 0 is equal
to 1 (Eq. S9 is linear in λ; therefore, if λ is a solution, so is Cλ
with C as an arbitrary constant). Because M is the only scale in
the problem, we assume that bðm;MÞ= b̂

�
m
M

�
and rewrite Eq. S9

with x = m/M as follows:

μ
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dx
= −

h
k+ b̂ðxÞ

i
λðMx;MÞ+ 4b̂ð2xÞλð2Mx;MÞ;

[S12]

where x ∈ [0, 1]. Therefore, one has the solution λðMx;MÞ=
λ̂ðxÞ=M [i.e., λðm;MÞ= 1

Mλ̂
�
m
M

�
], which satisfies:

μ
d
h
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i
dx

= −
h
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i
λ̂ðxÞ+ 4b̂ð2xÞλ̂ð2xÞ [S13]

in x ∈ [0, 1], with
R 1
0 dx λ̂ðxÞ= 1 and λ̂ðxÞ= 0  ∀x> 1. In particular,

the size distribution p(m) can be written as:

pðmÞ= 1
m

m
M

λ̂
�m
M

�
=
1
m
G
�m
M

�
: [S14]

Computing the average mass 〈m〉, one finds that it is pro-
portional to M:

hmi=
ZM
0

dm m pðmÞ=M
Z1
0

dy GðyÞ= cM; [S15]

such that the stationary size distribution is of the form:

pðmÞ= 1
m
F
�

m
hmi

�
; [S16]

which is precisely the scaling ansatz proposed and observed in
the data.
The solution to Eq. S13 can be written as λ(x) = λn(x) with

2−n ≤ x ≤ 2−n+1 for n = 1, 2, . . . and

λnðxÞ= e
−
Rx
2−n

dy hðyÞ
2
4Cn +

4
μ

Z2x
2−n+1

dy
b̂ðyÞ
y

λn−1ðyÞ
3
5; [S17]

where λ0(y) = 1, x ∈ [2−n, 2−n+1], hðyÞ= ½k+ b̂ðyÞ+ μ�=y, and C0

depends on the normalization condition [i.e.,
R 1
0 dyλ̂ðyÞ= 1]. The

Cns (n ≥ 1) are determined recursively imposing the continuity
λ̂nð2−n+1Þ= λ̂n−1ð2−n+1Þ for n ≥ 2. For instance, if n = 2:

λ̂1ðxÞ=C0e
−
Rx
1=2

dyhðyÞ
⇒λ̂1

�
1
2

�
=C0 [S18]

(note that λ̂1ð1Þ= 0 due to the singularity in Eq. S6):
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λ̂2ðxÞ= e
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C1 + +

4
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1=2

dy
b̂ðyÞ
y

e
−
Ry
1=2

dz hðzÞ#
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and λ̂2ð1=2Þ= λ̂1ð1=2Þ=C0 allows one to compute C1/C0.
Iterating, one can compute Cn/C0 ∀n ≥ 1.

Analytical Form of the Universal Size Distribution. A fitting pro-
cedure suggests the viability of an analytical log-normal form for
the universal size distribution; that is,

pðmÞ= 1

m
ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e−
ln m
hmi− μ

� �2

2σ2 ; [S20]

where σ2 and μ are constants, 〈m〉 depends on the species, and ln
is the natural logarithm (i.e., the logarithm to the base e). In
order for the distribution in Eq. S20 to have the scaling form
p(m) = 1/mF(m/〈m〉), one has to impose that hmi= R∞0 dm mpðmÞ,
which implies μ = −σ2/2 (i.e., μ and σ are not independent). We
thus propose the following analytical form for the universal size
distribution, which depends on only one parameter, σ2:

pðmÞ= 1

m
ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e−
ln m
hmi+

σ2
2

� �2
2σ2 : [S21]

The scaling function F(x) is therefore of the form:

FðxÞ= 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e−
lnx+ σ2

2

� �2
2σ2 ; [S22]

as suggested by the fact that a parabola fits the log-transformed
data mp(m) vs. m/〈m〉 (least-squares fit on log-transformed data)
well. To have a good estimate of the mean of F, we performed
the fit to Eq. S22 in the common support of at least half of the
protist species, with only one parameter, σ2. The best estimate
for the parameter is σ2 = 0.222(3), and the coefficient of de-
termination is R2 = 0.92. The fit of the scaling function is shown
in Fig. S3A, superimposed on the measured single-species size
distributions. Fig. S3B compares the fit of a log-normal scaling
function with the ensemble average of the experimental size
distributions, showing a remarkable overlap.
We now turn to an illustration of how the postulated universal

scaling form for p(m) might arise from general dynamical
considerations (9, 12, 13). Consider ecosystem dynamics over
ecological time scales. Ecological processes governing the
abundances and niche occupancy of species are expected to
change their characteristic size. One would expect, however, that
offspring would have a mass proportional to the mass of the
parent organism (13). Thus, fluctuations in size within same
species ought to be measured on the order of percent variations,
and the natural variable is x= logðm=mÞ (12, 13), with m being
the characteristic mass of the reference species k (e.g., pro-
portional to the mean m= αhmi) (9, 14). In this framework, the
results of ecological processes can be represented by a random
walk in the variable x, because a fixed percent increase (de-
crease) of the mass corresponds to a shift to the right (left) of the
variable x by a constant amount. In the simplest model, the re-
sults of ecological processes could be represented by an Orn-
stein–Uhlenbeck process (15, 16). This process is a modification
of a Wiener process, where the walk tends to move toward
a central location, which, in the context of phenotypic evolution
(12), has been identified as the optimum in the adaptive zone for
the phenotype. A phenotypic character like body size, therefore,

is expected to be distributed around a fitness optimum in this
framework. The physical analogy of this process is a noisy re-
laxation process (e.g., a spring fluctuating around its rest length
in the presence of disturbances). The fraction of organisms q(x, t)
with a (log-)body mass x at time x is governed by the dynamical
equation:

∂qðx; tÞ
∂t

=D
∂2qðx; tÞ
∂x2

+
∂½kxqðx; tÞ�

∂x
; [S23]

where k is a constant, k > 0. The stationary solution is obtained
by setting the rate of change of q(x, t) to zero, and it is known to
be Gaussian (15, 16):

qðxÞ=
ffiffiffiffiffiffiffi
k
πD

r
e
−kx

2
2D : [S24]

For the mass distribution, one then obtains p(m):

pðmÞ= qðxÞ dx
dm

=
1
m

ffiffiffiffiffiffiffiffiffi
k

2πD

r
e
− k
2D ln m

hmi− lnα

� �2

[S25]

(i.e., a log-normal distribution of mass). Imposing Eq. S25 to have
mean 〈m〉, one finds α = exp[−D/(2k)], and the distribution of
size is therefore:

pðmÞ= qðxÞ dx
dm

=
1
m

ffiffiffiffiffiffiffiffiffi
k

2πD

r
e
− k
2D ln m

hmi+
D
2k

� �2

; [S26]

(i.e., a log-normal distribution of mass with mean 〈m〉 as in Eq.
S21). Therefore, the scaling function F in Fig. 2 and Fig. S3 is

FðxÞ=
ffiffiffiffiffiffiffi
k

2πD

q
exp
	
− k
2D

�
ln x+D

2k

�2

.

One might wonder whether the size distribution obtained in
Eq. S26 is in agreement with our model of cellular growth and
division. The cellular growth and division model, as treated in
the previous section, assumes the existence of a maximum mass
M and allows one to study the scaling properties of the stationary
size distribution. It is possible, however, to relax this hypothesis,
allowing the cells to assume all masses in the range [0, ∞] and to
obtain an implicit relation for the stationary size distribution
p(m) (17), which allows one to compute the asymptotic behavior
of the distribution for large mass (i.e., m → ∞). In the notation
of the previous section, the size distribution for large m satisfies
the relation:

pðmÞ→ 1
m
exp

 
−
Zm=hmi

α

dy
k+ dðyÞ

μy

!
; [S27]

which behaves as a log-normal distribution if we further as-
sume a division rate d(y) increasing logarithmically with size
[i.e., d(y) ∝ ln y].

On the Goodness of Data Collapses. Data collapse is a tool widely
used in statistical physics to establish scaling laws and extract
information on their exponents (18). Traditionally, the pro-
cedure to produce a data collapse is to rely on the direct vi-
sualization of it and on “eyeballing” the exponent that gives
the best collapse. A less subjective method has been proposed
(19), which introduces a measure (error functional E; Figs. 2
and 3, Insets) to quantify the goodness of a collapse. Let Δ be
the exponent that we tune to find the best collapse: E(Δ) is the
cumulative area enclosed between all pairs of curves that we
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try to collapse, within their common support, for the value Δ
of the exponent. The value Δ* of the exponent, which mini-
mizes E(Δ), is taken as the best estimate for the exponent (i.e.,
the smaller the area, the better is the collapse). Errors are
associated with the determination of Δ* and are obtained from
the width of the minimum. Further details can be found in the
study by Bhattacharjee and Seno (19).

Community Size Spectra. In this section, we show how a power law
community-size spectrum arises as a sum of single-species size
distributions of finite-size scaling form (14). Assume that the size
distribution of species k is of the form:

pkðmÞ= 1
m
F
�

m
hmik

�
: [S28]

Let Nk be the stationary abundance of species k in an eco-
system [i.e., Nk = Nk(t → ∞)] and S be the total number of
species. The community size spectrum is defined as:

f ðmÞ=
XS
k= 1

NkpkðmÞ
.XS

k= 1

Nk: [S29]

We assume, supported by a number of observations (20), that
the population abundance of the kth species scales as:

Nk ∝ hmiαk ; [S30]

where α < 0 implies that the total number of organisms de-
creases with increasing typical size. From Eqs. S28 and S30,
one has that:

f ðmÞ∝
XS
k= 1

Nk pkðmÞ∝
XS
k= 1

hmiαkm−1F
�

m
hmik

�
: [S31]

Let gðmÞ be the fraction of species of typical size m. The above
equation can be rewritten, treating 〈m〉k as a continuous variable
for easiness of computation, as:

f ðmÞ∝ 1
m

Z
dmg

�
m
�
mαF

�
m
m

�
∝
Z

dx gðxmÞ xαmαF
�
1
x

�
: [S32]

Theoretical predictions from a scaling macroecological frame-
work (9, 14) and considerations on the total number of species on
Earth (21, 22) suggest a pure power-law behavior for gðmÞ:

g
�
m
�
∝

1
mβ; [S33]

which, because of normalization, is assumed to hold between an
upper cutoff and a lower cutoff. One then has for the size spec-
trum f(m):

f ðmÞ∝mα−β
Z

dx xα−βF
�
1
x

�
∝mα−β; [S34]

which has the form of a power law. Note, however, that the result
still holds for log-normal species abundance distributions (22). In
the case of a limited range of sizes, one might argue that the
number of species S within the range of sizes investigated could
be assumed as constant to first order. This, of course, is the
particular case for which β = 0.
Overall, it is clear that to obtain a scaling community size

spectrum (Eq. S29), a necessary condition is adaptive fine-tuning of
the specific abundances. This is epitomized by the relation in Eq.
S30, which, in turn, implies the thinning relations that are re-
current in the literature of macroecological empirical laws (9, 23).

Equal Biomass in Each Size Class. The case of f(m) ∝ m−2, which is
routinely found in the literature (14, 24), is of special interest
because it agrees with the assumption of constant biomass in each
size class (25). In this case, the total mass in a range (m, m + Δm)
with Δm/m ’ 1 is:

Zm+Δm

m

dx x f ðxÞ∝ log
	
1+

Δm
m



’ 1; [S35]

such that the total biomass in a range between m and m + Δm,
where Δm is the typical variance at scale m, is independent of m.

Bodo saltans Size Distribution. In Fig. 2, the size distribution of Bodo
saltans (BOD)might seem not to collapse as well as that of the other
species. This is due to an instrumentation limit and is not inherent to
the BOD size distribution. BOD, in fact, has a mean volume of 17
μm3 and a mean equivalent diameter of 3.1 μm3. These values lie on
the leftmost side of the size spectrum, where the debris peak is
dominant and the instrument hardly resolves the peak of the protist
culture (Fig. S4, Inset). As an effect of this, it is hard to separate the
protist peak from the debris; consequently, the left side of the BOD
size distribution is overestimated, causing a deviation from the other
collapsing curves in Fig. 2. To show that this is indeed the case, we
measured the size distribution of Chlorogonium euchlorum (CHO)
with the 150-μm capillary of the Cell Counter and Analyzer System
(CASY)model TTC (RocheApplied Science), whereas we used the
60-μm CASY capillary to obtain the data reported in the main text.
Using the larger capillary, the protist and the debris peaks appear
closer to each other (with there being fewer size channels in the [0,
20]-μm interval; Fig. S5, Inset), and as a result, the size of the CHO
size distribution on the left is overestimated. If we plot the corre-
sponding rescaled distribution, together with the other data of Fig. 2,
we observe the same kind of deviation observed for BOD (Fig. S5).
We argue, therefore, that if the instrumentation could resolve better
the small-sized region of the BOD size distribution, it would collapse
even better than it does in Fig. 2.
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Fig. S1. Ratios of successive moments of m are proportional to 〈m〉. Moments were calculated from size distributions in standard conditions (i.e., calculated
from the size distributions shown in Fig. 2 and Materials and Methods).

Fig. S2. Ratios of successive moments of m are proportional to 〈m〉. Moments were calculated from size distributions in nonstandard conditions (i.e., calculated
from the size distributions shown in Fig. 3 and Materials and Methods).
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Fig. S3. (A) Same collapse of rescaled size distributions as in Fig. 2, with the best log-normal fit superimposed (dashed blue line). The scaling function F is
a parabola in a log-log plot; thus, the universal size distribution p(m) is log-normal. Colors are as in Figs. 1 and 2. (B) Average of all curves in A (red curve) shows
a remarkable resemblance of the best log-normal fit (dashed blue line). The orange region is the 99.7% confidence interval around the average.

Fig. S4. Size distribution of BOD as a function of the equivalent diameter. (Inset) Output of the CASY instrument for a BOD culture. The protist peak is close to
the debris peak on the leftmost side of the spectrum.

Fig. S5. Collapse of rescaled size distributions (as in Fig. 2), where the curve of CHO was measured with a large capillary (150 μm, black dashed line). The size of
the distribution on the left is overestimated and causes the collapse to fail. Colors are as in Figs. 1 and 2. (Inset) CHO size distributions measured with the 60-μm
capillary (red curve) and with the 150-μm capillary (black dashed line). The 60-μm capillary correctly resolves the whole spectrum, whereas the 150-μm capillary
overestimates the left side of the distribution.
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Fig. S6. Output of a measurement for Chilomonas sp. (CHI) culture. The superimposed exponential decay is the exponential fit of the debris in the region
adjacent to the protist peak. (Inset) Decay of the debris to the left of the protist peak is exponential (straight line in a log-linear plot).

Fig. S7. Size distribution of Chilomonas sp. (CHI) as a function of the equivalent diameter. (Inset) Transformed volume size distribution of CHI.
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