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Area Moment of Inertia for a Cylinder
The definition of the area moment of inertia for a symmetrical
cross-section is (1)

I = Ix = Iy =
Z
A

y2dA: [S1]

This can be rewritten in polar coordinates (dA= rdrdθ, y= r sin θ)
and solved for the case of a cylindrical shell as

I =
Z2π
0

sin2θdθ
ZD=2
d=2

r3dr=
π
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�
; [S2]

where D and d are the outer and inner diameters of the cylinder,
respectively.

Maxwell Model
We model the worm as a system with a purely viscous damper
(damping coefficient c) connected in series with a purely elastic
spring (spring constant kw), as shown in Fig. 2C in the main text.
In this system, both of the components will be affected by the
same force, but will deflect in different ways. According to theory,
one then gets the differential equation (Eq. 2 in the main text)

_y=
F
c
+

_F
kw

; [S3]

where y is the bending of the worm, and the dot indicates a time
derivative. The force applied to the system can, in our case, be
written as F = kpx, where kp and x are the stiffness and the de-
flection of the pipette, respectively. Furthermore, the pipette
deflection can be written as x = xu − y, where xu = vut is the
motion of the U-shaped pipette, moving at a constant speed vu.
This gives us F = kp(vut − y) and

y= vut−
F
kp

[S4]

as well as

_y= vu −
_F
kp

: [S5]

By plugging Eq. S5 into S3, we get
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;

and after reordering
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where A and B are constants (B = Acvu). This linear nonhomoge-
neous ordinary differential equation can be analytically solved (2) as

FðtÞ=B
A

�
1+C1e−At

�
;

where C1 is a constant of integration. With the initial condition
F(t = 0) = 0, we get C1 = −1 and

FðtÞ= vuc
h
1− e−kpkw=ðcðkp+kwÞÞt

i
: [S6]

A combination of Eqs. S4 and S6 results in

yðtÞ= vu
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i	
; [S7]

giving us an expression for how the bending of the worm varies
as a function of time (this is the same as Eq. 3 in the main text).
To get an expression for the bending as a function of the force,

Eq. S6 is solved for t, giving
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c
�
kp + kw

�
kpkw
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�
1−

F
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; [S8]

resulting in
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�
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�
; [S9]

when plugging Eq. S8 into Eq. S7. This is the exact deformation–
force solution for the Maxwell model. The initial slope of Eq. S9
can be calculated as

lim
F→0

dy
dF

=
1
kw

;

and corresponds to that expected in the EBT.
To get the force–deformation expression, we need to rewrite

Eq. S9 as F(y). This equation is not, however, analytically solv-
able for F, and the natural logarithm in Eq. S9 thus needs to be
Taylor expanded (to the second order), giving
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:

Reordering and solving the quadratic equation of F as a function
of y finally gives (Eq. 4 in the main text)

FðyÞ= kpvuc
kp + kw
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This approximate force–deformation solution was shown to give
very similar values for kw and c as the exact deformation-force so-
lution in Eq. S9, and is thus valid to use when describing the data.

Kelvin–Voigt Model
The differential equation characterizing a spring and a dashpot
connected in parallel can be written as

F = kwy+ c_y: [S11]
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This equation is solved in the same way as described above, result-
ing in an expression for the bending as a function of time

yðtÞ= kpvuc�
kp + kw

�2
�
kp + kw

c
t− 1+ e−

kp+kw
c t
�
: [S12]

This is the functional form used for the Kelvin–Voigt fit in Fig. 2
in the main text.

Reproducibility of Experimental Results
Varying Bending Speeds. Results from bending measurements
performed with different speeds on different worms are shown in
Fig. S1.
The difference in the constant stiffness values is due to different

diameters of the studied worms. The damping coefficient is in-
versely proportional to bending speed.

Along the Body Measurements. Results from micropipette deflec-
tion experiments performed along the body of three different
young adults are shown in Fig. S2. The stiffness has been nor-
malized by the stiffness at the vulva to make it easier to compare
results between different worms. The head is stiffer than the tail in
all cases, and the dashed lines act to guide the eye.

Viscous Relaxation of the Worm
In Fig. S3 all the force–deformation data from a bending ex-
periment on a young adult worm are shown.
Before contact between the support and the worm, there is no

deflection of the pipette and the negative bending values are thus
an artifact from the definition of y = xu − x (defined as 0 at the
contact point). After the bending was performed, the support
was stopped and the worm was left to relax. The force decreased
as a function of time (0.5 s between each data point), which is
a strong implication of a viscous relaxation.
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Fig. S1. (Upper) Stiffness and (Lower) damping coefficient as function of bending speed for three different young adult worms.
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Fig. S2. The effective Young’s modulus as a function of position along the body of three different young adult worms. The modulus has been normalized by
the value measured at the vulva for each worm.
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Fig. S3. Entire force–deformation from a bending experiment of a young adult worm. Bending starts at the contact point between the worm and the support
and the material clearly relaxes after the motion of the support has been seized (after “stop”).
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