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S| Materials and Methods

Plasmid Constructs and Antibodies. Human cDNA encoding wild-
type H-RAS (Gene ID: 3265, residues 1-171), or the oncogenic
mutants G12V/Q61L/G13D were cloned into pET15b (Novagen/
EMD Biosciences) for bacterial expression with an N-terminal poly-
histidine (His) tag. The GAP-334 region from human p120GAP
(Gene ID: 5921, residues 715-1047) and the SOS®™ domain from
human SOS1 (Gene ID: 6654, residues 564-1049) were also
subcloned and expressed in pET15b. A construct expressing the
BRAF RAS binding domain (RBD) (Gene ID: 673, residues 150—
233) with N-terminal GST tag was subcloned from human cDNA
into pGEX-4T2 (Amersham Pharmacia Biotech). BRAF“PP
mutations A184K and P170R were generated and expressed in the
pGEX-4T2 vector. For mammalian expression of wild-type and
GDP-binding BRAF RBDs, cDNA were subcloned into the
pEGFP-C1 (Clontech) backbone, with N-terminal dsRed tag fused
in place of EGFP. For expression of full-length p120GAP and SOS1
for NMR analysis, cDNAs were cloned and expressed from the
pcDNAS/FRT/TO plasmid as part of the Flp-In T-Rex system (In-
vitrogen) for generating stable, Tet-inducible expression lines. SOS1
mutants, including the HF (E108K), DH (E268A/M269A/D271A),
PH-Rem linker (R552G), allosteric (W729E), and Noonan Syn-
drome (NS) (T37A, K170E, 1252T, Y337C, G434R, C441Y, S548R,
L550P, P655L, Y702H, 1733F, P894R, Q977R) were generated in
pcDNAS/FRT/TO. All constructs were sequence-verified.

The anti-Flag M2 and anti-tubulin MAbs was purchased from
Sigma. Rabbit polyclonal anti-ERK and anti-RAS antibodies were
from Millipore, anti-RFP from Chemicon International, anti-
pERK from Cell Signaling Technology, anti-NF1, anti-GAPDH,
and anti-p120GAP from Santa Cruz.

Purification of Recombinant Proteins. GST or His-tagged proteins
were expressed in Escherichia coli BL21 cells grown in minimal M9
or LB media by induction with isopropyl-b-p-thiogalactopyranoside
at 15 °C overnight. Generally, cells were lysed and sonicated in
20 mM Tris (pH 7.5), 150 mM NaCl, 10% (vol/vol) glycerol,
0.4% Nonidet P-40, protease inhibitors (Roche), 1 mM phenyl-
methylsulfonyl fluoride (PMSF), 10 ng/mL~" DNase, and either
1 mM DTT or 10 mM p-mercaptoethanol. Lysate was cleared by
centrifugation and incubated with glutathione (Amersham Pharma-
cia Biotech) or Ni-NTA (Qiagen) resin at 4 °C for 2 h. Bound proteins
were eluted directly with thrombin cleavage or with 250 mM imid-
azole (Bioshop) followed by thrombin. Concentrated proteins were
purified to homogeneity by size exclusion chromatography using ei-
ther an S75 or S200 column (GE Healthcare). Recombinant wild-
type RAS is purified from E. coli predominantly in the GDP-bound
form; oncogenic variants are regularly bound to GTP. These proteins
were preloaded with GMPPNP, GTP, GDP, or GTPyS (Sigma)
when required. For NMR-based GAP assays, aliquots of RAS-GTP
could be flash-frozen at a precise time point in the hydrolysis reaction
and stored at —80 °C with no perceptible change in activity.

Cell Culture, RBD Pull Downs, and Western Blotting. Human HEK
293 and CRL-2884, rat CRL-2769 cells were maintained in DMEM
containing 10% (vol/vol) FCS and antibiotics. CRL-2769 and CRL-
2884 were purchased from ATCC. For exogenous expression, cells
were transiently transfected with PEI. Full-length p120GAP stable
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cell lines were derived using the Flp-In T-Rex protocol (Invi-
trogen). Tet-induction was done with 2 pg/mL over 48 h. EGF
(PeproTech) or media containing 10% (vol/vol) serum were added
after culturing overnight in the absence of serum at indicated times
and concentrations. Phase images were taken on a Leica DMIRE2
inverted microscope (Quorum Technologies).

For cell-based SOS1 assays and characterization of Schwann
control and malignant peripheral nerve sheath tumor-derived lines,
cellswere lysed in TXNP buffer [20 mM Tris (pH 7.5), 150 mM NaCl,
10% (vol/vol) glycerol, 1% Triton X-100, 1% Nonidet P-40, 1 mM
DTT, 5 mM MgCl,, 1 mM sodium vanadate, 1 mM PMSF, and
protease inhibitors] and lysates cleared by centrifugation. A fraction
of each lysate were separated by SDS/PAGE and transferred to
a nitrocellulose membrane (Schleicher and Schuell Bioscience).
Remaining lysates were used for determining RAS-GTP levels,
performed immediately with glutathione beads carrying recombi-
nant GST-BRAF RBD. Equal amounts of beads were added to
SOS1 lysates and incubated for 15 min at 4 °C, followed by washing
five times with TXNP buffer, separation by SDS/PAGE and transfer
to a nitrocellulose membrane. For the BRAF wild-type/GDP mu-
tant binding experiment, His-tagged RAS proteins bound to nickel
beads were preloaded with GDP or GMPPNP and incubated with
lysates containing recombinant RFP-BRAF RBD domains for 15
min at 4 °C in TXNP buffer (plus 10 mM p-mercaptoethanol and 30
mM imidazole). Bound proteins were washed five times with TXNP
buffer, separated by SDS/PAGE, and transferred to a nitrocellulose
membrane. All membranes were blocked in TBST containing 5%
(wt/vol) skim milk and immunoblotted. Primary antibodies were
detected with anti-mouse Ig or anti-rabbit Ig antibodies conjugated
to horseradish peroxidase followed by treatment with ECL (Pierce).

NMR Spectroscopy. All NMR data were recorded at 25 °C on an 800
MHz Bruker AVANCE II spectrometer equipped with a 5 mm
TCI CryoProbe, or a 600 MHz Bruker UltraShield spectrometer
with 1.7 mm CryoProbe. Two-dimensional "H/**N heteronuclear
single quantum coherence (HSQC) (1) spectra as well as triple
resonance HNCACB, CBCACONH, and HNCA spectra were
collected for the backbone chemical-shift assignments. All NMR
samples were prepared in buffer containing 20 mM Tris (pH 7.5),
100 mM NaCl, 1 mM DTT, 5 mM MgCl,, and 10% (vol/vol) D,O.
Spectra were processed with NMRPipe (2) and resonance as-
signments made with NMRView (3).

Membrane Fractionation. Transfected cells were resuspended in
homogenization buffer [0.25 M sucrose, 78 mM KCl, 4 mM MgCl,,
8.4 mM CaCl,, 10 mM EGTA, protease inhibitors, 50 mM Hepes-
NaOH (pH 7.0)] and homogenized using repeated passage
through a 27-G syringe. The homogenate was cleared by centri-
fugation at 1,000 X g for 10 min, and supernatant fractionated by
centrifugation at 100,000 x g for 30 min in an Airfuge (Beckman).
Supernatant (cytosol) and pellet (membrane) were separated by
SDS/PAGE and analyzed by immunoblotting.

Statistical Analysis. One-way ANOVA tests (P < 0.0001) were used
to analyze groups of densitometry or NMR data, followed by
Bonferroni’s Multiple Comparison Test. For direct comparison of
two datasets, two-tailed unpaired ¢ tests (P < 0.05) were used.

3. Johnson BA (2004) Using NMRView to visualize and analyze the NMR spectra of
macromolecules. Methods Mol Biol 278:313-352.
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Fig. S1. Assignment of H-RAS backbone and discrepancies in HSQC spectra dependent on nucleotide-bound state. (A) Backbone amide resonances were
assigned for RAS (residues 1-171) bound to GDP or GMPPNP. (Left) Two-dimensional "H/">N HSQC of RAS in the GDP-bound state; 99.4% of backbone amide
resonances were assigned using standard triple resonance experiments (HNCACB, CBCACONH) on SN/13C protein. (Right) Next, 73.2% of backbone resonances
were assigned after exchange with GMPPNP. Missing resonances are mostly confined to the P-loop and Switch regions (listed at the bottom). (B) HSQC overlays
of wild-type or oncogenic mutants of RAS show deviations generated by differential nucleotide binding. Here, wild-type RAS (Left) is bound to GDP (black) or
GMPPNP (red) as above. The RAS mutants G12V (Center) and Q61L (Right) are bound to GDP (black) or unmodified GTP (red).
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Fig. S2. NMR-derived hydrolysis and exchange activities. (A) Hydrolysis of the GTPyS analog by wild-type RAS. The rate of GTPyS hydrolysis is extremely slow
and does not affect calculated exchange rates. Addition of GAP-334 is not capable of stimulating GTPyS hydrolysis. (B) Capacity of GAP-334 to stimulate GTPase
activity can be measured through sequential dilution (i.e., lowering the ratio of GAP-334-to-RAS). (C) SOS"* stimulation of RAS nucleotide exchange can also be
monitored with lower ratios of SO5“*-to-RAS, here in the presence of 10-fold molar excess GTPyS. (D) Properties of the RAS oncogenic mutant G12V. Slow
intrinsic exchange is stimulated 55-fold by 1:1,000 SOS®, GAP-334 had no capacity to stimulate hydrolysis. (E) Equimolar concentration of GAP-334 is still
unable to stimulate GTP hydrolysis of the RAS oncogenic mutant G12V. ">N-RAS®'? was preloaded with GTP and hydrolysis monitored by NMR. Addition of
1:100, 1:10, or 1:1 molar ratios of GAP-334 did not stimulate the slow intrinsic GTP hydrolysis rate. (F) Hydrolysis and exchange of the RAS oncogenic mutant
Q61L. Fast intrinsic exchange is increased 5-fold by 1:5,000 SOS, addition of 1:2,500 GAP-334 does not affect GTP hydrolysis. GAP-334 at 1:1 does stimulate
Q61L GTP hydrolysis (148x). (G) Properties of RAS oncogenic mutant G13D. 1:2,500 GAP-334 did not stimulate hydrolysis, but equimolar concentrations of GAP-
334 increased the hydrolysis rate 9 fold. Extremely rapid intrinsic exchange precluded measurements of GEF-mediated activation. (H) Summary of the intrinsic
biochemical properties of wild-type RAS and the oncogenic mutants G12V, Q61L, and G13D. Hydrolysis (left axis) and exchange (right axis) rates are shown
relative to wild-type RAS.
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Fig. S3. Cell-based assays and NMR-derived data reveal the effect of mutations on regulation and activity of full-length SOS1. (A) Addition of activated RAS
stimulates full-length SOS1 activity, restoring an exponential fit. Unlabeled, wild-type RAS exchanged with GTPyS or RAS®'?Y exchanged with GTP were mixed
with '°N-RAS-GDP at indicated concentrations before addition of wild-type SOS1 lysates. (B) Increasing RAS concentration by addition of excess RAS-GDP does
not stimulate SOS1 activity, and retains a sigmoidal fit (compare with plot in A). Unlabeled, wild-type RAS bound to GDP was mixed with '>N-RAS-GDP and 10-
fold molar excess GTPyS at indicated concentrations before addition of lysate containing wild-type SOS1. (C) SOS1 mutants activate the RAS/RAF/MAPK
pathway when expressed in cells. Full-length wild-type and mutant (see Fig. S4) SOS1 proteins were Flag-tagged and expressed in HEK 293T cells. Membrane-
targeted SOS1-AC-CaaX was included as a positive control. Western blots showing expressed SOS1 levels (anti-Flag), activated ERK (anti-pERK), loaded ERK
(anti-ERK), loaded RAS (anti-RAS), and activated RAS (GST-BRAF RBD pull-down, anti-RAS) are shown for EGF-stimulated cells. Analogous blots for starved cells
are presented in Fig. 4B. Results are representative of multiple repeated experiments. (D) Quantitation of ERK activation in cells expressing wild-type or mutant
SOS after stimulation with EGF for 5 min. Data are derived from densitometry analysis of Western blots from three separate experiments. One-way ANOVA
detects no significant difference in mean pERK levels. (E) Quantitation of Flag-SOS1 expression as determined from densitometry analysis of Western blots (as
presented at top, with lanes corresponding to labels of bar graph). Error bars are derived from six repeats of the same experiment. One-way ANOVA detects no
significant difference in mean SOS1 expression. (F) NMR-derived exchange curves from cell extracts. Lysates normalized for SOS1 expression were assayed for
GDP-to-GTPyS exchange activity on ">N-RAS.
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Fig. S4. Structural analysis of SOS1 mutations. (A) Crystal structures of autoinhibited SOS"PP¢ (PDB ID 3KSY) and activated SOS* (with RAS bound to the
active and allosteric sites, PDB ID 1XD2). Outlines of SOS1 modular arrangement are colored by corresponding domain in the depicted structures. Close-ups
presented in B-E are boxed and labeled. RAS proteins are shown as surface representations. (B) SOS1 DH domain mutations E286A/M269A/D271A weaken the
autoinhibitory regulation provided by DH domain occlusion of the Rem domain allosteric site. Presumably an activating mutant. (C) SOS1 linker (SOS1-Link)
mutation R552G dislodges the histone fold domain autoinhibitory interaction with the PH-Rem linker. Presumably an activating mutant. (D) SOS1 histone fold-
domain mutant E108K is thought to increase affinity for lipid membranes. The E108 residue is surface-exposed (Upper) and is surrounded by positively charged
residues (Lower, electrostatic surface representation). Presumably an activating mutant. (E) SOS1 allosteric (SOS-Allo) mutant W729E weakens affinity of
distal RAS for the Rem domain allosteric site. W729 is at the DH domain interface in the autoinhibited structure (Upper) and interacts directly with distal RAS in
the activated structure (Lower). Presumably a deactivating mutant.
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Fig. S5. Structural analysis of NS mutants and their ability to stimulate ERK activation in serum-activated cells. (A) Crystal structure of autoinhibited SOS1"PP¢
(PDB ID 3KSY) is presented in ribbons, colored by corresponding domains in the SOS1 modular outline (Top, Center). Positions of the 13 NS mutations are
marked on the outline, and associated residues highlighted in the ribbons representation. (B) Comparable analysis of the five NS mutations located in the SOS1
catalytic region, using the crystal structure of activated SOS®®* (PDB ID 1XD2). NS mutations are highlighted in the ribbons representation. RAS proteins are
shown as surface representations. (C) Chart describes position of the 13 NS mutations, including their localization or proximity to individual SOS1 modular
domains and associated hydrogen bonding. (D) NS mutants activate the RAS/RAF/MAPK pathway when expressed in cells. SOS1 proteins were Flag-tagged and
expressed in HEK 293T cells. Vector alone, SOS-WT and SOS1-DH/Link were included as controls. Western blots showing expressed SOS1 levels (anti-Flag),
activated ERK (anti-pERK), and loaded ERK (anti-ERK) are shown for cells that were starved for 24 h and subsequently serum-stimulated for 1 h before lysis.
Analogous blots for starved cells are presented in Fig. 5B. Results are representative of multiple repeated experiments. () Quantitation of ERK activation in
cells expressing wild-type or NS mutant SOS1 proteins after stimulation with serum for 1 h. Data are derived from densitometry analysis of Western blots from
three separate experiments. One-way ANOVA indicates significant differences in mean pERK levels (P < 0.05). (F) Membrane fractionation of SOS1 variants in
starved cells. Inmunoblotting with anti-RAS (M, membrane) and anti-GAPDH (C, cytosolic) confirmed fractionation (Upper). 7.5-fold membrane fractions were
loaded compared with cytosolic. Quantification of SOS1 fractions was performed by densitometry after repeated experiments (Lower).
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Fig. S6. An effector domain able to bind RAS-GDP inhibits activation. (A) Activity of full-length p120GAP is inhibited by BRAF RBD. Tet-induced p120GAP
expression stimulates GTP hydrolysis (red line) compared with control lysates (black line), but is completely inhibited by the presence of 2-fold BRAF RBD (box).
(B) Wild-type BRAF RBD does not significantly inhibit SOS®*-mediated exchange in 10-fold molar excess GTPyS. In the presence of 2-fold molar excess RBD
(square), 1:5,000 SOS* showed an exchange rate comparable to 1:5,000 SOS" alone (circle). (C) Two amino acid substitutions in the BRAF RBD increase its
affinity for inactive (GDP-bound) RAS. Alignment of BRAF RBD with c-RAF1 highlighting mutations first identified by Filchtinski et al. (1) (boxed). (D) RAS-GDP
interacts with BRAFSP? from cells. His-tagged RAS loaded with GMPPNP or GDP was used to pull down RFP-tagged BRAF RBD (wild-type or GDP-binding
mutant) expressed in HEK 293T cells. RFP alone was used as control. Expressed proteins are at top (WCL: anti-RFP). RBDs interacting with RAS are shown above
RAS loading. (E) NMR analysis of BRAFPP. HSQC overlay of select amide resonances from '>N-RAS-GDP alone (black) or in the presence of 2-fold molar excess
BRAF RBD (red). Wild-type BRAF shows no significant chemical-shift perturbations (Upper), but BRAFSPP demonstrates clear binding (Lower). (F) SOS* ex-
change activity on wild-type RAS is inhibited by BRAFSPP. 2-fold molar excess BRAFSPP reduced the typical exchange rate of 1:5,000 SOS® to near-intrinsic
levels. (G) BRAFCPP also inhibits oncogenic RAS activation. RAS®'?" was assayed for exchange in 10-fold GTPyS, SOS®, and 2-fold BRAFSP?. The mutant RBD
obstructed SOS®* exchange activity on G12V to near-intrinsic levels.

1. Filchtinski D, et al. (2010) What makes Ras an efficient molecular switch: A computational, biophysical, and structural study of Ras-GDP interactions with mutants of Raf. J Mol Biol
399(3):422-435.

Smith et al. www.pnas.org/cgi/content/short/1218173110 7 of 11


www.pnas.org/cgi/content/short/1218173110

L T

z

1\

BN AS  DNAS P

CMENLGEDE 2™ sos 1
Wildtype SOS1 Activation

Membrane

Allosteric
Autoinhibited Activated
Allosteric Site Occluded, Compact Allosteric/Catalytic Sites Bind
and Interconnected Conformation Membrane-Tethered RAS

B NS Mutants 1252T%/Y337C%*/L550P%

Membrane

PIP,/PA

[w]

lytic

‘Autoinhibited’ ‘Activated’
DH Domain Uncoupled from Elongated Conformation, RAS
PH/Link, Allosteric Site Exposed Interaction Sites Further from Membrane

Fig. S7. Model of the mechanism limiting RAS/ERK output in cells from the highly active SOS1 NS mutants 1252T, Y337C, and L550P. (A) Wild-type SOS1 is
autoinhibited by a compact regulatory region consisting of its HF-DH-PH-Linker modules. The DH domain occludes an allosteric RAS binding site in the Rem
domain, although interaction between the isolated DH and Rem modules is relatively weak (1). Accordingly, autoinhibition is likely stabilized by an interdomain
association network linking the DH domain with the Linker/HF and PH domains. This result is evidenced by data showing a DH-SOS®* construct completely lacks
autoinhibition (1). Upon stimulation, lipid modifications result in HF and PH domain membrane binding, whereby SOS1 is placed in close proximity to membrane-
tethered RAS. Membrane interactions may also result in a conformational rearrangement in SOS1 that displaces the DH domain and relieves occlusion of the Rem
domain allosteric site. These properties activate SOS1 by promoting the RAS-Rem interaction, and subsequently stimulating Cdc25-mediated guanine nucleotide
exchange factors (GEF) activity. The maximal distance between RAS and the membrane surface is ~50 A; thus, the SOS1 allosteric and catalytic sites must be
oriented in such a manner that interactions with RAS are sterically achievable within this space. (B) The NS mutants 1252T, Y337C, and L550P display exceptionally
greater exchange activity than wild-type SOS1 (as measured by NMR), but their capacity to induce RAS/ERK signaling in cells is only marginally increased. The
membrane binding interfaces and C-terminal Grb2-interaction regions of these mutants remain intact, and they associate with cell membrane and soluble
fractions at identical ratios to wild-type (Fig. S5F). The NMR assay is dependent on soluble RAS, present in high concentrations and able to orient in any manner
required to associate with both the SOS1 allosteric and catalytic sites. The high activity shown by these mutants, and the fit of exchange data to an exponential
model, confirm increased RAS access to the allosteric site and demonstrate a loss of membrane-dependent activation. The position of these residues in auto-
inhibited SOS1 (far removed from both the allosteric and catalytic RAS binding sites) suggests they would uncouple DH domain interactions with the PH domain
(Y3370), Linker/HF module (L550P) or destabilize the DH domain itself (I252T). We postulate that loss of the interaction network stabilizing DH domain occlusion
of the allosteric site would untether the DH domain and extend the entire N-terminal regulatory region. When bound to membrane this would place the al-
losteric (and potentially catalytic) site further from the surface, and by extension, from membrane-tethered RAS. Thus, although these NS mutants possess up to
8-fold higher activity than wild-type RAS in solution, the membrane-dependent nature of SOS1-RAS activation in cells moderates this increase, and demonstrates
how multilayered SOS1 regulation is able to reduce the impact of three strong gain-of-function mutants.

1. Sacco E, et al. (2012) Regulation of hSos1 activity is a system-level property generated by its multi-domain structure. Biotechnol Adv 30(1):154-168.
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Table S2. Nucleotide binding characteristics of H-RAS and oncogenic mutants of H-RAS as compiled from previous literature

RAS protein nucleotide Affinity Dissociation Association Method Conditions
Wild-type (1) GDP — 0.79 x 10% (min~") — [8-*HIGDP 37 °C, 10 mM MgCl,
G12V (1) GDP — 0.23 x 102 (min~") — [8-*HIGDP

Wild-type (1) GDP — 0.07 x 10% (min~") — [8-*HIGDP 21 °C, 10 mM MgCl,
G12V (1) GDP — 0.03 x 10% (min~") — [8-*HIGDP

Wild-type (1) GDP — 35 x 10% (min~") — [8-*HIGDP 21 °C, 0.1 mM MgCl,
G12V (1) GDP — 9 x 102 (min~") — [8-*HIGDP

Wild-type (1) GTP — 2.3 x 102 (min™") — [y-32P]GTP 37 °C, 10 mM MgCl,
G12V (1) GTP — 0.47 x 10% (min~") — [y-32PIGTP

Wild-type (1) GTP — 17 x 102 (min™") — [y-32PIGTP 21 °C, 0.1 mM MgCl,
G12V (1) GTP — 13 x 102 (min™") — [y-32P]GTP

Wild-type (2) GDP — 7.9 x 10 (min™") — [y-HIGDP 37 °C

G12V (2) GDP — 2.3 x 10 (min™") — [y-3HlGDP

Wild-type (2) GTP 1.9% — — Relative to GDP, measured

Wild-type (2) GTPyS 0.72x — — with [8-H]GDP

Wild-type (2) GMPPNP 0.09%x — —

G12V (2) GTP 0.67x — —

G12V (2) GTPyS 0.37x — —

G12V (2) GMPPNP 0.035x — —

Wild-type (3) GTP 94x10° M)  85x107° (") 8.0x 107¢ (M 's7") — 0 °C, 10 mM MgCl,
Wild-type (3) GTPyS 2.9 x 10" (M) 1.5 x 107 (s7) 4.4 x10% (M 's7") —

Wild-type (4) GDP — — — [y->2P1GDP —

Q61L (4) GDP — ~5x Higher — [y-32P1GDP —

1. John J, Frech M, Wittinghofer A (1988) Biochemical properties of Ha-ras encoded p21 mutants and mechanism of the autophosphorylation reaction. J Biol Chem 263(24):11792-11799.
2. John J, Schlichting I, Schiltz E, Résch P, Wittinghofer A (1989) C-terminal truncation of p21H preserves crucial kinetic and structural properties. J Biol Chem 264(22):13086-13092.
3. Feuerstein J, Goody RS, Webb MR (1989) The mechanism of guanosine nucleotide hydrolysis by p21 c-Ha-ras. The stereochemical course of the GTPase reaction. J Biol Chem 264(11):

6188-6190.

4. Feig LA, Cooper GM (1988) Relationship among guanine nucleotide exchange, GTP hydrolysis, and transforming potential of mutated ras proteins. Mo/ Cell Biol 8(6):2472-2478.
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