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SUMMARY

The genome of a cancer cell carries somatic muta-
tions that are the cumulative consequences of the
DNA damage and repair processes operative during
the cellular lineage between the fertilized egg and the
cancer cell. Remarkably, thesemutational processes
are poorly characterized. Global sequencing initia-
tives are yielding catalogs of somatic mutations
from thousands of cancers, thus providing the
unique opportunity to decipher the signatures of
mutational processes operative in human cancer.
However, until now there have been no theoretical
models describing the signatures of mutational pro-
cesses operative in cancer genomes and no system-
atic computational approaches are available to deci-
pher these mutational signatures. Here, by modeling
mutational processes as a blind source separation
problem, we introduce a computational framework
that effectively addresses these questions. Our
approach provides a basis for characterizing muta-
tional signatures from cancer-derived somatic muta-
tional catalogs, paving the way to insights into the
pathogenetic mechanism underlying all cancers.

INTRODUCTION

All cancer genomes carry somatic mutations. A small minority

are ‘‘drivers’’ of oncogenesis that confer selective clonal growth

advantage. The remainder are ‘‘passengers’’ that have not been

positively selected during the evolution of the neoplasm (Stratton

et al., 2009). Global sequencing projects are generating catalogs

of somatic mutations from tens of thousands of cancers (Hudson

et al., 2010). The mutations within these catalogs are the cumu-

lative result of all the somatic mutational mechanisms, including

DNA damage and repair processes, that have been operative

during the cellular lineage starting from the fertilized egg

from which the cancer patient developed to the cancer cell

(Stratton, 2011). Because the large majority of mutations in

cancer genomes are believed to be passengers, their patterns

are largely unmodified by selection (Rubin and Green, 2009).

Thus, the mutational catalog from a cancer cell may be treated
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as a representative archaeological record bearing the combined

imprints or signatures of the mutational processes that have

been operative.

Several mutational processes are already known to leave

characteristic mutational signatures in the mutational catalogs

of cancer cells. For example, analyses of mutated cancer genes

in tumors of the lung and skin have shown that the classes

of mutations found match those induced experimentally by

tobacco carcinogens and ultraviolet light respectively, the major

known exogenous carcinogenic influences in these cancer types

(Hainaut and Pfeifer, 2001; Pfeifer et al., 2002, 2005). Notably,

C:G > A:T transversions predominate in smoking-associated

lung cancer, whereas C:G > T:A transitions occurring mainly at

dipyrimidines and CC:GG > TT:AA double nucleotide substitu-

tions are common in UV light-associated skin cancers. Thus,

strong exposures to exogenous mutagens are known to leave

their imprints as mutational patterns in cancer genomes.

In principle, other biological processes may influence the

patterns of somatic mutations found in human cancers. There

may be additional exogenous mutagenic exposures. For ex-

ample, many widely used chemotherapeutic cancer treatments

are mutagens and some have already been shown to leave

a distinctive mutational signature in the genomes of cancers

recurring after therapy (Hunter et al., 2006). Moreover, there

may be exogenous mutagenic exposures instrumental in the

primary etiology of cancer that we are currently unaware of.

Endogenous sources of mutagens may also contribute to muta-

tions in cancer. For example, intrinsic cellular processes such as

energy metabolism and lipid peroxidation are sources for reac-

tive chemicals (e.g., reactive oxygen species) that cause DNA

damage (Pluskota-Karwatka, 2008). These endogenous muta-

gens are known to generate certain subclasses of mutation

and, thus, also might shape mutational catalogs within cancer

genomes (Ames and Gold, 1991).

The cell employs repair mechanisms that protect the integrity

of the genetic code by alleviating and correcting the effects of

exogenous and endogenous mutagens (Berwick and Vineis,

2000). For example, the base excision and nucleotide excision

repair pathways act on DNA damage respectively caused by

cellular metabolites and a wide variety of helix-distorting DNA

lesions (Fuss and Cooper, 2006). These repair processes, in

turn, influence the mutational signatures left by DNA damaging

agents in the final catalog of mutations. This pertains when

the repair processes are fully operative, for example the
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transcriptional strand bias observed in somemutational catalogs

that is conferred by the transcription-coupled component of

nucleotide excision repair (van Zeeland et al., 2005). It may

also apply when they are malfunctioning, for example in the

mutational signatures left by defective DNA mismatch repair

(Greenman et al., 2007).

In most human cancer types, the mutational signatures im-

printed by DNA damage and repair processes have been subject

to very limited characterization. In consequence, our under-

standing of the underlying mutational processes is poor. Previ-

ously, we reported an initial outline of a way to extract mutational

signatures from the substitutions found in 21 breast cancer

genomes (Nik-Zainal et al., 2012a). In this article, we provide

a detailed description of our theoretical model that bridges the

gap between mutational catalogs derived from cancer genomes

and the mutational signatures contained in these catalogs.

Further, we provide a systematic computational framework

that can be used for accurately deciphering signatures of muta-

tional processes from mutational catalogs of cancer genomes.

We extensively evaluate our framework with simulated and real

data, demonstrating that it allows incorporation of a wide variety

of different mutation types (e.g., substitutions, indels, strand

bias, kataegis, etc.). Our framework is freely available (see

Experimental Procedures for details) and robust to a large range

of different parameters that define its domain of applicability.

Importantly, we demonstrate the applicability of the approach

to genome and exome sequences and its potential to identify

surprising biological insights.

RESULTS

Modeling Mutational Processes Operative in Cancer
Genomes
Somatic mutations are conventionally grouped into four classes;

base substitutions, small indels, rearrangements, and copy

number changes. These can be further subclassified into biolog-

ically meaningful subgroups. For example, base substitutions

are often classified into six subtypes; C:G > A:T, C:G > G:C,

C:G > T:A, T:A > A:T, T:A > C:G, and T:A > G:C. Classification

of substitutionsmay be further refined by including the sequence

context of each mutated base, either 50 or 30 or both. For

example, a C:G > T:Amutation can be characterized as TpCpG>

TpTpG (mutated base underlined and presented as the pyrimi-

dine partner of the mutated base pair) generating 96 possible

mutation types (6 types of substitution * 4 types of 50 base * 4

types of 30 base). This can be further elaborated by considering

the transcriptional strand on which a substitution resides. In

principle, similar approaches could be taken for the other major

classes of mutation (i.e., indels, rearrangements, and copy

number changes) and all classes and subclasses of mutation

could be incorporated into one analysis.

For the purpose of mathematical modeling, a limited number

of features of a mutational signature need to be selected. The

choice of features may be influenced by prior biological knowl-

edge and is constrained by statistical considerations and the

available data. In this study, a signature of a mutational process

is represented as a discrete probability density function with

a domain of preselected mutation features. Mathematically,
C

mutation features can be expressed as a finite alphabet X with

K letters (each letter corresponds to a mutation feature) and,

by definition, a mutational signature P1 is a lexicographically

ordered K-tuple; P1 = ½p1
1;p

2
1;.pK

1 �T , where pi
1 is the probability

of process P1 to cause the mutation feature corresponding to

the i-th letter of the alphabet X, and because pi are probabilities:

XK
k = 1

pk
1 = 1 and pk

1R0; k = 1.K: (Equation 1)

Different cancer genomes can be exposed to a particular

mutational process at different intensities. For example, a muta-

tional process could cause 1,000 mutations in one cancer

genome while causing 20,000 in another. Hence, a mutational

process with signature P1 has an exposure (i.e., number of

mutations caused), e1g, in a cancer genome g. Note that the

subscript of a signature P1 matches the superscript of the expo-

sure e1g thus denoting that the exposure e1g associates with

signature P1.

The mutational catalog of a cancer genome, defined over an

alphabet of mutation types X, can be mathematically expressed

as,mg, a mapping from a genome g and finite alphabet of muta-

tion types X to a specific nonnegative K-tuple. Further, a cancer

somatic mutation catalog can be examined as a linear superpo-

sition of the signatures and intensities of exposure of mutational

processes active at some point in the lineage of cells leading

to the cancer cell, plus added noise due to nonsystematic

sequencing or analysis errors. Systematic sequencing and

analysis errors will be considered as ‘‘synthetic mutational

processes’’ with specific profiles present in some (or all)

genomes.

An example of three mutational processes with signatures

Pj = ½p1
j ;p

2
j ;.p6

j �T , where j = 1.3, composing the muta-

tional catalog of a single cancer genome, g = 1, i.e.,

mg = ½m1
1;m

2
1;.m6

1�T , is shown in Figure 1A. Each of the signa-

tures has a specific distribution over the six base substitutions.

The first signature has a substantial proportion of C:G > T:A

mutations and contributes, in total, 1,000 mutations to the

cancer genome. The second process has a high proportion of

C:G > A:T mutations while contributing 1,500 mutations. The

third process generates substantial numbers of T:A > C:G muta-

tions and contributes 750 mutations (Figure 1A). The mutational

catalog of the cancer genome formed by these three processes,

however, does not have any notable or specific features and

does not obviously resemble any of the mutational signatures

that generated it. It contains, in total, 3,315 mutations, 3,250

(�98%) contributed by the three mutational processes and the

remaining 65 (�2%) by white noise corresponding to minor

processes or experimental errors in generating the mutation

catalog of the genome.

Mathematically, we can express mutational signatures as

a matrix (Experimental Procedures), and thus the i-th mutation

type mi
g of the catalog of a cancer genome g can be approxi-

mately expressed as the sum of the i-th mutation type of all oper-

ative processes and their exposures (ignoring the noise term):

mi
gz

XN
n= 1

pi
ne

n
g: (Equation 2)
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Figure 1. Modeling Signatures of Mutational Processes Operative in Cancer Genomes

(A) Simulated example of three mutational processes operative in a single cancer genome. The mutational catalog of the cancer genome is modeled as a linear

superposition of the signatures of the three processes and the respective number of mutations contributed by each signature, plus added nonsystematic noise.

(B) Simulated example illustratingmutational processes operative in a set ofG cancer genomes. Themutational catalogs of theseG cancer genomes can be used

to decipher the signatures ofNmutational processes as well as the number of mutations caused by each of the processes in each of the genomes. The extracted

signatures and contributions do not allow an exact reconstruction of the original set, thus resulting in genome-specific reconstruction error.
We can generalize Equation 2 for all K mutation types and

G genomes by expressing exposures to mutational pro-

cesses and mutational catalogs as matrices (Experimental

Procedures):
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or this equation can be simplified in a matrix form as:

MzP3E: (Equation 3)

Deciphering the Signatures of Mutational Processes
from Somatic Mutational Catalogs of Cancer Genomes
The signatures of N different mutational processes and their

respective exposures need to be extracted from a set of muta-

tional catalogs M that contain G cancer genomes (Figure 1B).

This is equivalent to finding P and E in Equation 3 while only

knowing M. The problem can be considered as a specific case

of the classic ‘‘cocktail party’’ problem, where multiple people

attending a party are speaking simultaneously while several



microphones placed at different locations are recording the

conversations. Each microphone captures a mixture of all

sounds and the problem is how to decipher the individual

conversations from the recordings. This becomes possible

because each microphone captures each conversation with

a different intensity depending on the distance between the

microphone and the conversation. Analogously, provision of

a catalog of somatic mutations from a cancer genome provides

only the final mixture of the signatures of all mutational

processes operative in a cancer sample, and the goal is to deci-

pher these signatures froma set of availablemixtures (Figure 1B).

Thus, the mutational processes and their signatures are the

‘‘conversations,’’ the exposure to a process is the ‘‘loudness of

the conversation,’’ the cancers themselves are the ‘‘micro-

phones,’’ and the final mutational catalogs are the ‘‘recordings.’’

The cocktail party problem is a type of blind source separa-

tion (BSS) problem that involves unscrambling latent (not

observed) signals from a set of mixtures of these signals,

without knowing anything about the mixing. A number of

approaches have been previously developed for solving BSS

problems (Comon, 2010) by making specific assumptions about

the original sources. The intrinsic nonnegative nature of our BSS

cancer genomics problem (see Equation 3) requires a method

that assumes (at the very least) nonnegativity of the original

sources. One such established approach that has previously

been shown to extract biologically meaningful components

from complex biological data is nonnegative matrix factorization

(NMF) (Lee and Seung, 1999). In this study, we use NMF to solve

our BSS cancer genomics problem and decipher signatures

of mutational processes from mutational catalogs of cancer

genomes.

ExtractingMutational Signatures fromCancer Genomes
An example of applying our theoretical approach to a set of 100

simulated cancer genome mutational catalogs is shown in Fig-

ure 2. Similar to many human cancer genomes (Greenman

et al., 2007; Nik-Zainal et al., 2012a; Stratton, 2011; Wood

et al., 2007), every simulated genome contains between 500

and 50,000 substitutions. The simulated mutations were gener-

ated using ten mutational processes with distinct signatures

each with 96 mutation types (equivalent to the six substitu-

tion types and their immediate 50 and 30 sequence context).

Poisson noise was added to all simulated data (Experimental

Procedures).

Identifying the number, N, of mutational processes operative

in a set of cancer genomes is required prior to deciphering their

signatures. Our model selection approach identifies N by

applying the method for different values of N (Experimental

Procedures). For every N, we then evaluate the similarity

between the extracted processes (i.e., process reproducibility)

from stochastically initialized iterations. Further, for every N,

our model selection approach assesses the average Frobenius

reconstruction error of the averaged deciphered signatures P

and their strengths E, i.e., kM� P3Ek2F . Low reconstruction

error is indicative of an accurate description of the original

cancer genome catalogs. We select the value of N for which

the extracted processes are reproducible and the reconstruction

error is low. Overfitting is avoided by bootstrapping the data
C

(in each iteration) before applying NMF to it (for details see

Experimental Procedures).

For the 100 simulated cancer genomes, we are able to identify

reproducible solutions for N between two and ten (Figure 2A).

Increasing the number of signatures from two to ten substantially

reduces the reconstruction error, but increasing beyond ten

does not further reduce it (Figure 2A). This indicates that our

approach can ‘‘optimally’’ distinguish the signatures of tenmuta-

tional processes, precisely the number originally used to simu-

late the mutational catalogs of the 100 cancer genomes. The

ten deciphered signatures are very reproducible (average silhou-

ette width >0.96, Experimental Procedures) as well as extremely

similar (average cosine similarity >0.98, see below) to the ones

used to generate the 100 mutational catalogs (Figure 2B).

Further, our approach was able to accurately identify the number

of mutations contributed by each of the ten processes in each of

the genomes. Comparison between original and deciphered

contributions of one of the signatures in all genomes is shown

in Figure 2C whereas a comparison of the contributions of all

10 signatures in a single genome is shown in Figure 2D. A typical

comparison between an original and deciphered signature is

shown in Figure 2E, whereas a typical comparison between an

original and reconstructed mutational catalog of a genome is

depicted in Figure 2F.

Identification of Factors that Influence Extraction
of Mutational Signatures
To identify factors that affect the ability to extract mutational

signatures, we simulated mutational processes under a number

of scenarios and compared the deciphered signatures to those

used to simulate the data (Experimental Procedures).

To evaluate how the degree of similarity between mutational

signatures affects their extraction, we simulated sets of four

randomly generated signatures; two were very different from

any of the other signatures, whereas the similarity of the remain-

ing two to each other was varied (Figure S1A). A cosine correla-

tion similarity was used as a measure of closeness. This ranges

between zero and one, where a similarity of one represents iden-

tical signatures and a similarity of zero completely different

mutational signatures (Experimental Procedures). Our simula-

tions indicate that 50 or more cancer genomes allow accurate

deciphering of signatures that are extremely similar (Figure 3A).

Interestingly, however, as few as 20 genomes are adequate to

effectively extract signatures that have reasonable similarities

between them (Figure 3B).

The number of available genomes mathematically limits the

number of signatures that can be extracted. For example, accu-

rately deconvoluting signatures of 15 mutational processes

from the mutational catalogs of only ten cancer genomes is in-

effective. Simulations with different numbers of genomes and

mutational signatures demonstrate that the number of cancer

catalogs required for accurately deciphering the signatures

operative in them increases exponentially with the number of

signatures (Figures 3C and S1B). Thus, although mutational

catalogs from 100 cancer genomes are needed to extract the

signatures of 15 mutational processes, at least 200 cancer

genome catalogs are required for deconvoluting 20 signatures

(Figure 3C). Nevertheless, it is possible to decipher at least
ell Reports 3, 246–259, January 31, 2013 ª2013 The Authors 249



Figure 2. Deciphering Signatures of Mutational Processes from a Set of Simulated Mutational Catalogs from 100 Cancer Genomes

(A) Identifying the number of processes operative in a set of 100 simulated cancer genomes based on reproducibility of their signatures and low error for re-

constructing the original catalogs.

(B) Comparison between the ten deciphered signatures and the ten signatures used to simulate the catalogs. Signature recognition, measured using cosine

similarity, and signature reproducibility, measured using average silhouette width, is given for each mutational signature. The error bars represent the SD of the

corresponding characteristics for the extracted signature(s).

(C) Comparison between deciphered and simulated contributions of one of the ten mutational processes in all cancer genomes.

(D) Comparison between deciphered and simulated contributions of all signatures in a typical cancer genome. The error bars represent the SD of the corre-

sponding characteristics for the extracted signature(s).

(E) Comparison between the profiles of typical deciphered and simulated signature. The error bars represent the SD of the corresponding characteristics for the

extracted signature(s).

(F) Comparison between themutational catalogs of a typical deciphered (red line) and simulated (dark blue line) cancer genome. The separately bootstrapped per

iteration mutational catalogs (Experimental Procedures), which are used to decipher the mutational signatures and their contributions, are shown in light blue.
some of the 20 mutational signatures from a set of 100 or fewer

mutational catalogs (Figure S1C).

The number of mutations in each cancer catalog affects the

ability to decipher signatures of mutational processes. Simu-

lating the mutational catalogs of 50 cancer genomes with

different average numbers of mutations indicates that two or
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three signatures can be effectively extracted from catalogs

with very few mutations, whereas extracting seven or more

signatures requires an average of at least 1,000 mutations per

catalog (Figure 3D). Interestingly, at least 500 mutational cata-

logs with an average of 96 mutations per catalog (a total of

�50,000 mutations) are needed to decipher five mutational



processes (Figure 3E), but these five mutational processes can

be more easily deciphered from 50 cancer genomes containing

an average of 480 mutations (a total of �25,000 mutations, Fig-

ure 3D). This result indicates that it is more effective to decipher

mutational signatures from a few catalogs containing many

mutations than from many catalogs containing few mutations

(most likely due to the high relative Poisson variance for small

number of mutations).

The strength of exposure of a mutational process in a set

of genomes also influences the ability to decipher its signature.

Simulations of seven signatures operating with different

strengths in 50 mutational catalogs (i.e., exposure to Signature

I is fixed whereas the remaining six signatures account for the

rest of the mutations) reveal that signatures contributing <5%

of all mutations can be difficult to distinguish (Figure 3F). Simi-

larly, deciphering members of a set of mutational signatures

that have similar exposures with respect to each other over

a set of cancer genomes is also challenging (Figure 3F). To over-

come this problem, it may be advantageous to combine sets of

mutational catalogs in which mutational processes are more

likely to be active in different proportions (e.g., from different

cancer types). However, combining sets of mutational catalogs

in this way should be considered with caution as the number of

cancer genomes required for extraction of signatures increases

exponentially with the number of operative signatures and

more cancer types may well entail more signatures (Figures 3C

and S1B).

In addition to decipheringmutational signatures, our approach

extracts the number of mutations contributed by each signature

to each cancer genome. Evaluating the average deciphering

error for identifying contributions reveals that accurately deci-

phered mutational signatures (i.e., cosine similarity between

simulated and extracted signatures >0.95) are associated with

low error for their respective signature contributions (Figures

3F and S1D). Further, the contributions of signatures generating

large numbers of mutations (>200) are generally associated with

lower error rates (Figure S1E).

Deciphering the Signatures of Mutational Processes
Operative in the Genomes of Breast Cancers
We recently described five mutational signatures derived from

the 96 possible mutated trinucleotides within the mutational

catalogs of 21 whole breast cancer genomes, named Signatures

A–E (Nik-Zainal et al., 2012a). Signature A is likely due to deam-

ination of 5-methylcytosine, a relatively well-characterizedmuta-

tional process. The processes underlying the other signatures

are not known, but we have suggested that members of the

APOBEC family of DNA/RNA editing enzymes may be respon-

sible for some. Other mutational signatures were detected by

visual inspection, including double nucleotide substitutions,

a localized base substitution hypermutation phenomenon

dubbed kataegis and different patterns of indels occurring either

at short tandem repeats or with overlapping microhomologies at

breakpoints.

We applied our framework (Experimental Procedures) to the

21 mutational catalogs. This extracted four reproducible muta-

tional Signatures 1–4 (Figure 4A), similar respectively to the

previously reported Signatures A, B, D, and E (Nik-Zainal et al.,
C

2012a). However, our new model selection approach and boot-

strapping render 21 genomes inadequate to identify the fifth

signature with sufficient accuracy. The previously reported

mutational Signature C, which is missing from this analysis is

quite similar to Signature D, and appears predominantly to

have been incorporated here into Signature 3 (Figure 4A). This

illustrates the overall reproducibility of the results together with

some vulnerability to underlying methodological changes, par-

ticularly when the number of genomes is limited and mutational

processes are similar to each other.

In principle, our framework can be applied to awider repertoire

of mutation types than the 96 mutated trinucleotides. To demon-

strate the potential of this approach, we extended the range

of mutation features to include kataegis and double nucleotide

substitutions as well as indels at microhomologies and at

mono/polynucleotide repeats. Thus, four additional mutational

subclasses were incorporated in this model.

Applying this model selection approach revealed five muta-

tional signatures. The substitution patterns of Signatures 1–4

were largely unmodified (Figures 4A and S2). The fifth signature

was characterized primarily by kataegis, indicating that kataegis

is mostly independent from the other four mutational signatures

(Figure 4B). Indels did not have a strong association with Signa-

tures 2 and 5; Signatures 3 and 4 were predominantly associ-

ated with indels at microhomologies, whereas Signature 1

associated with nucleotide repeat-based indels (Figure 4C).

Double nucleotide substitutions associated mainly with Signa-

ture 3 and weakly with the other four signatures. These analyses

illustrate the possibility of incorporating additional mutation

types and reveal some preliminary associations (and nonassoci-

ations) with the previously defined Signatures. However, the

numbers of dinucleotides and indels is relatively small and it is

therefore unclear if these two mutation classes will keep their

current Signature associations or segregate into independent

mutational signatures when many more cancer genomes are

analyzed.

Our previous analyses showed a transcriptional strand bias for

all C:G > A:T mutations across the 21 breast cancer mutational

catalogs (Nik-Zainal et al., 2012a). This bias resulted in C > A

mutations being more common on the transcribed than the

untranscribed strands of genes (and vice versa for G > T). We

do not know the cause of this strand bias, but it could be due

to past activity of transcription-coupled nucleotide excision

repair. We investigated whether a particular mutational signature

was associated with the transcriptional strand bias by including

information on whether a substitution mutation was on the tran-

scribed or nontranscribed strand, thus increasing the 96 trinucle-

otide substitutions to 192. Our model selection approach again

revealed the signature of four reproducible mutational processes

(Figure 5A). The C > A strand bias was not observed in Signa-

tures 2 and 4, but associated with Signature 1 and, to a lesser

extent, Signature 3.

Our previous assessment of the impact of sequence context

on classification of mutational processes was limited to the

bases immediately 50 and 30 to each mutated base. However,

other sequence motifs close to or distant from the mutant

base could be important in defining a mutational process.

Here, we have extended the sequence context to include the
ell Reports 3, 246–259, January 31, 2013 ª2013 The Authors 251
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two bases 50 and 30 to each mutated base, which results in

1,536 possible mutated pentanucleotides. For example, one

of the 256 subclasses of C:G > T:A mutation would be

.ApTpCpGpC. > .ApTpTpGpC. (mutated base under-

lined). Our model selection approach is able to find three repro-

ducible mutational processes with these 1,536 mutation types.

Analyzing more mutation types leads to fewer mutations per

mutation type, thus increasing the relative variability in the

bootstrapping procedure (Experimental Procedures), which

diminishes the ability of our approach to find the signatures

of the operative mutational processes. This limitation should

be taken in consideration when choosing the number of muta-

tion types that are being analyzed. Despite this limitation, we

can observe new sequence context dependencies in at least

one of these processes (Figure 6A). Signature 2 substitutions

at TpCpN trinucleotides are dependent on the next base 50,
which is predominantly a pyrimidine (Figures 6A and 6B). Of

all C > X at TpCpN mutations caused by Signature 2, 41%

are at CpTpCpN, 33% at TpTpCpN, and the remaining 26%

are either G or A 50 to the TpCpN trinucleotide (Figure 6C).

Such a tetranucleotide distribution is highly unlikely to happen

purely by chance in the human genome (c2 test, p value <

0.0001). The result illustrates the richness of detail potentially

revealed by this type of analysis, which may be of value in

future comparisons of signatures extracted from different

cancer types or experimental systems.

Using Mutational Catalogs from Exome Sequencing
to Deconvolute Mutational Signatures
The combined protein coding exons (the ‘‘exome’’) constitute

�1% of the human genome. Analysis of exomes compared to

whole genome sequences is often perceived as advantageous

because of lower cost and because a substantial proportion of

cancer-causing driver somatic substitutions, indels, and copy

number changes (although not usually rearrangements) may be

found using this strategy. As a result, many more exome

sequences of cancers are currently being generated than whole

genomes.
Figure 3. Evaluating Factors Affecting the Efficacy of Deciphering Mut

(A) Evaluating the effect of deciphering similar mutational signatures frommutatio

IV were simulated with cosine similarity between 0.9 and 1.0 (i.e., with extremely

any of the other signatures (Figure S1A).

(B) Evaluating the effect of deciphering mutational signatures with different simil

(C) Evaluating the effect of deciphering different number of mutational signatures

cancer genomes.

(D) Evaluating the effect of deciphering different number of mutational signatures f

were simulated with different average number of mutations in a cancer genome.

(E) Evaluating the effect of deciphering two, three, five, or seven mutational signat

mutations per cancer genome. The line colors correspond to the ones in (D) lege

(F) Evaluating the effect of deciphering mutational signatures with different contri

fixed to contribute a fixed percentage of all mutations in either the whole set of mu

have different contributions of Signature I (blue bars) or in each individual cance

catalog (red bars).

(G) Comparison, across all performed simulations, between the accuracy for d

contributions of these signatures. The deciphering Frobenius reconstruction erro

the number of mutations in the respective mutational catalog. In all panels, dec

sponds to extracting exactly the same process used to simulate the data.

The error bars represent the SD of the deciphering accuracies after performing e

See also Figure S1.

C

We therefore assessed the power of our approach to extract

mutational processes from exome sequences using 100 recently

sequenced breast cancer exomes (Stephens et al., 2012) con-

taining�7,000 somatic substitutions, �25-fold fewer than found

in the 21 whole cancer genomes. Our framework revealed two

reproducible mutational signatures with strong similarities to

the previously described Signatures 1 and 2 (Figure 7). Thus,

mutational catalogs from exomes can be used to extract muta-

tional signatures, although not with the precision and compre-

hensiveness provided by the much larger mutation numbers in

whole genomes. It is quite possible, however, that increasing

the number of exome sequences to a few thousand will allow

identification of many mutational processes operative in breast

cancer.

Analysis of smaller, exome-derived mutational catalogs (or

catalogs from other subcomponents of the genome) may also

be useful in detecting biologically revealing features of muta-

tional processes that are particular to coding, transcribed, non-

transcribed, or other functionally distinct regions. For example,

incorporating transcriptional strand in the analysis of the 100

breast cancer exomes revealed the presence of a context-

specific (i.e., TpCpT) strand bias for Signature 2 (Figures 7B

and 7C). However, this strand bias is not observed in the version

of Signature 2 extracted from whole cancer genome sequences,

which include complete footprints (including introns and

untranslated exons) of protein coding genes, suggesting that

the underlying mechanism generating strand bias is restricted

to exons (Figures 5 and 7). Examining only the exon compart-

ments of the whole cancer genome sequences reveals the pres-

ence of this strand bias in samples with substantial exposure to

Signature 2, supporting this conclusion. This result is biologically

surprising and the mechanism underlying this difference in

strand bias between exons and introns is currently unknown.

DISCUSSION

We have modeled the signatures of somatic mutational pro-

cesses in cancer genomes as a blind source separation
ational Signatures with Simulated Data

nal catalogs containing different number of cancer genomes. Signatures III and

similar shapes) whereas the remaining two signatures were very different from

arities between them from mutational catalogs of 20 cancer genomes.

from sets of mutational catalogs derived from 10, 20, 30, 50, 70, 100, and 200

rom sets of mutational catalogs derived from 50 cancer genomes. The catalogs

ures from large sets of mutational catalogs containing small number of average

nd.

butions across sets of 50 mutational catalogs. Signature I’s contributions were

tational catalogs, i.e., the overall contribution is fixed but different genomes can

r genome, i.e., Signature I’s contributions are fixed in every single mutational

eciphering mutational signatures and the deciphering error for identifying the

r was calculated and averaged for each contribution and normalized based on

iphering accuracy is shown in cosine similarity where accuracy of 1.00 corre-

ach simulation scenario 100 times.
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Figure 4. Signatures of Mutational Processes Extracted from the Mutational Catalogs of 21 Breast Cancer Genomes

(A) Four mutational signatures deciphered from the base substitutions (including their immediate 30 and 50 sequence context) identified in the 21 breast cancer

genomes.

(B) A fifth mutational signature identified when kataegis, dinucleotide substitutions, and indels at microhomologies and at mono or polynucleotide repeats are

added as mutation types.

(C) Total contributions of mutations of the five signatures for kataegis, dinucleotide substitutions, and indels in the 21 breast cancer genomes.

The error bars represent the SD of the contributions for each mutation type for the deciphered signature.

See also Figure S2.
problem and introduced a computational framework that

extracts these mutational signatures from the mutational

catalogs obtained from cancer genome sequences. To identify

these signatures, the intrinsic nonnegativity of mutations

mandates employment of a method incorporating a nonnegative

constraint and our simulations demonstrate that NMF is

effective in deciphering mutational signatures from mutational

catalogs.

Incorporating additional constraints in NMF could further

improve its efficiency. For example, a strong sparsity constraint

could be applied to the exposure matrix E guaranteeing that

the mutational catalog of a cancer genome is described by

a minimum number of processes. Algorithms implementing this

and other constraints have been previously developed (Berry

et al., 2007; Gao and Church, 2005; Peharz and Pernkopf,

2012; Zheng et al., 2006) and could be applied to cancer geno-

mics data. Nevertheless, this study demonstrates that an

approach based on the simplest (i.e., without additional

constraints) NMF algorithm is sufficient to decipher signatures

of mutational processes from catalogs of mutation from cancer

genomes.
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Parameters to which solutions are sensitive include the

number of operative mutational processes, the strength of their

exposures, the degree of difference between mutational signa-

tures, the number of analyzed cancer genomes, the number of

mutations per cancer genome, and the number of mutation

types that are incorporated into the model. These factors will

determine the manner in which the method will be applied to

future data sets. Importantly, the results show that, despite rela-

tively few mutations present in each case, the approach can

be applied to exome data, extracting at least some of the

signatures.

Although diverse mutation classes can be included and

analyzed by our computational framework, the choice of these

classes will largely depend on prior biological knowledge, the

available experimental data and perhaps on cancer type. Thus

application of our approach can, if desired, be limited to single

base substitutions or be widened to include double nucleotide

substitutions, indels, geographically localized forms of mutation

such as kataegis and mutation features such as transcriptional

strand bias. Following this principle, rearrangements and copy

number changes (and potentially even epigenetic changes)



Figure 5. Strand Bias in Signatures of Mutational Processes Extracted from Genic Regions of 21 Breast Cancer Genomes

(A) Four mutational signatures deciphered from the base substitutions (including their immediate 30 and 50 sequence context) identified in genic regions of 21

breast cancer genomes.

(B) Sequence context independent summary of strand bias in the four mutational signatures extracted from the 21 breast cancer genomes.

The error bars represent the SD of the contributions for each mutation type for the deciphered signature.
could be incorporated, such that a comprehensive overview of

operative mutational processes could be derived. Further, the

approach can then be used to estimate the contribution of

each mutation process to each cancer and also to time the

activity of each process (Nik-Zainal et al., 2012b).

The complexity of the mutational processes operative in

some cancers and the inherent challenges in extracting their

attendant mutational signatures should not be underestimated.

For example, the mutational catalog of a lung cancer in

a tobacco smoker will carry the signature of �60 chemicals

that bind and mutate DNA (Pleasance et al., 2010). Each of

these chemicals may have its unique mutational signature. A

group of smokers loyal to the same brand will be simul-

taneously exposed to the same combination of mutagens.

Analysis of tumors from this group of individuals therefore

may not allow the mutagens to be distinguished from one

another and our model will extract one signature that encom-

passes the combined mutational activity of all �60 chemicals.

However, as different cigarette brands may contain different

combinations and amounts of mutagens, analysis of mutational

catalogs from cancers due to different tobacco brands could

allow differentiation between the signatures of each of the

different chemicals. An ambitious aspiration of this nature

would, however, probably only be feasible with data from thou-

sands of cases, coupled to the statistical power and resolution
C

provided by whole genome mutational catalogs. It should be

noted, that even the availability of tens of thousands of cancer

genomes may not allow deciphering of the full complexity of all

mutational processes occurring in the cancer cells of a person,

who has been exposed to various mutagens and treatments

throughout his/her lifetime. Nevertheless, our approach allows

deciphering the signatures of the most prevalent processes

and as the amount of available cancer genomics data

increases, it will allow better understanding cellular processes

and mutagenesis.

In our first set of experiments using data from breast cancer

genomes, we have already extracted mutational signatures for

which the underlying biological process is not known. It is

highly likely that further cryptic mutational signatures will be ex-

tracted once thousands of cancers have been analyzed. Under-

standing the biological basis of these signatures will be the next

imperative. One major approach to achieving this will be to

extract mutational signatures from systems (e.g., human cells,

mice, yeast, bacteria) with known exposures to mutagens

and/or known or engineered changes in DNA editing and repair.

Matching of cryptic mutational signatures found in naturally

occurring cancers to signatures generated in experimental

systems will provide clues to their provenance. These

approaches, applied to mutational signatures derived from

thousands of human tumors, promise to provide substantial
ell Reports 3, 246–259, January 31, 2013 ª2013 The Authors 255



Figure 6. Signatures of Mutational Processes Extended to Include Additional Sequence Context

(A) Signature 2 deciphered from the base substitutions (including the two bases 50 and 30 to each mutated base resulting in 1,536 possible mutated pentanu-

cleotides) identified in 21 breast cancer genomes.

(B) Detailed view of C > T mutation types in Signature 2. Purine nucleotides located two bases 50 of the mutated base are shown in green whereas pyrimidine

nucleotides are in red.

(C) Summary of all mutation types caused by Signature 2.

The error bars represent the SD of the contributions for each mutation type for the deciphered signature.
insights into the DNA damage and repair processes that

underlie somatic mutagenesis across the spectrum of human

cancer.

EXPERIMENTAL PROCEDURES

Model Definition

Mutation type is mathematically represented as a letter from a K-letter

alphabet X. Mutational signature is defined as a discrete probability density

function over the domain of mutation types in X, P : X/RK
+ . Thus, a signature

of a mutational process P1 can be expressed as a nonnegative K-tuple,

P1 = ½p1
1;p

2
1;.pK

1 �T , where
PK

k = 1p
k
1 = 1 and pk

1 is the probability of the muta-

tional processes P1 to cause the mutation type corresponding to the k-th letter

of the alphabetX. Hence, a set ofNmutational signatures can be expressed as

a nonnegativemutational signature matrix P=

"
p1
1 p1

2 / p1
N�1 p1

N

« « 1 « «
pK
1 pK

2 / pK
N�1 pK

N

#
with

size K 3 N, where K is the number of mutation types and N is the number of

signatures. The subscript index indicates the signature, whereas the super-

script index corresponds to the mutation type.

Exposure to amutational process P1with signatureP1 = ½p1
1;p

2
1;.pK

1 �T is the

number of mutations, e1g˛N0, attributed to that signature in genome g. In this

notation, the product p2
13e1g is the average number of mutations of type corre-

sponding to the second letter of alphabet X caused by the mutational process

P1 in a cancer genome with number g. Hence, we can express the exposure
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of G genomes to a set of N processes as a nonnegative matrix

E =

"
e11 e12 / e1G�1 e1G
« « 1 « «
eN1 eN2 / eNG�1 eNG

#
with size N3G. Here, the subscript index indi-

cates the genome whereas the superscript index corresponds to the

signature.

The mutational catalog of a cancer genome g defined over the alphabet of

mutation types X is represented by mg : X/NK
0 . For a given genome, g = 1,

its mutational catalog can be expressed as a nonnegative K-tuple,

m1 = ½m1
1;m

2
1;.mK

1 �T . Hence, the mutational catalogs of G cancer genomes

can be expressed as a nonnegative mutational catalogs matrix

M=

"
m1

1 m1
2 / m1

G�1 m1
G

« « 1 « «
mK

1 mK
2 / mK

G�1 mK
G

#
of size K 3 G. In this case, the genomes

form the columns of the matrix, where K is the number of mutation types

and G is the number of genomes. The subscript index indicates the genome

whereas the superscript index corresponds to the mutation type.

In our model, the mutational catalog of a cancer genome is examined as

a linear superposition of the signatures of the mutational processes operative

in this genome and their respective exposures. This can be expressed for a set

of G genomes and N mutational signatures as M z P 3 E. The approximate

equality is due to nonsystematic errors and sampling noise.
Framework for Deciphering Signatures of Mutational Processes

For a given set of mutational catalogs M that contain G cancer genomes

defined over an alphabet X with K letters corresponding to mutation types



Figure 7. Signatures of Mutational Processes Extracted from the Mutational Catalogs of 100 Breast Cancer Exomes

(A) Two mutational signatures deciphered from the base substitutions (including their immediate 30 and 50 sequence context) identified in the exomes of 100

breast cancers.

(B) Strand bias signatures deciphered from the base substitutions identified in the exomes of 100 breast cancers.

(C) Sequence context independent summary of strand bias in the two mutational signatures extracted from the 100 breast cancer exomes.

The error bars represent the SD of the contributions for each mutation type for the deciphered signature.
(i.e., M has a size K3 G), we extract Nmutational signatures defined over the

same alphabet X by applying the algorithm below:

Step 1 (Dimension Reduction)

Reduce the dimensions of the original matrix M by removing any mutation

types that together account for %1% of the mutations in all genomes, i.e.,

remove the maximum set of rows R in M for which:

X
r˛R

XG
g= 1

mr
g%0:013

XK
k = 1

XG
g= 1

mk
g;

and the cardinality of the set R, jRj, is maximized. The matrixM is transformed

into a new matrix _M with dimensions _K3G, where _K =K � jRj.
Step 2 (Bootstrap)

Apply Monte Carlo bootstrap resampling to the dimensionally reduced matrix
_M resulting in a new matrix M

^
, where the probability for getting a mutation of

type corresponding to the qth letter in the alphabet X in a genome g is

Prðm^q

gÞ= _mq
g=
PK

k = 1
_mk
g whereas the total number of mutations in each genome

g remains unaffected, i.e.,
PK

k =1m
^k

g =
PK

k =1
_mk
g.

Step 3 (NMF)

Apply the multiplicative update algorithm (Lee and Seung, 1999) for nonnega-

tive matrix factorization to the bootstrapped data by finding the solution

to min
P˛Mð _K;NÞ

R+
;E˛MðN;GÞ

R+

kM^ � P3Ek
2

F :

1. Initialize matrices P and E as random nonnegative matrices with

respective sizes _K3G and N3G, where N is the number of signatures.
C

2. Iterate until convergence, defined as 10,000 iterations without change,

or until the maximum number of 1,000,000 iterations is reached:

eN
G)eN

G

h
PTM

^i
N;G

½PTPE�N;G

p
_K
N)p

_K
N

h
M
^

ET
i

_K;N

½PEET � _K;N

The notation [AB]x,y is equivalent to the (x, y)th element of the matrix C,

where C = A 3 B.

3. Store the identified signatures P and their respective exposures E.

Although there aremany freely available and commercial implementations of

the multiplicative update algorithm (Lee and Seung, 1999), the results reported

here were deriving mostly using the implementation in Brunet et al. (2004).

Step 4 (Iterate)

Perform Steps 2 and 3 for I iterations. I is determined by evaluating the conver-

gence of the iteration-averaged signature matrix P (see below for deriving P). I

is selected in a way such that performing 2 * I iterations (i.e., doubling the iter-

ations) does not significantly change P. In most cases between 400 and 500

iterations are needed, however, sometimes solutions could be found for I %

100 whereas in rare cases more than 1,000 iterations might be required. In

general, the value of I is strongly dependent on the size and type of the initial

matrix M.
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Step 5 (Cluster)

The iterations performed in Step 4 result in two sets of matrices, SP ˛M
ð _K;NÞ
R+

and SE ˛M
ð _K;NÞ
R+

, that correspond respectively to the mutational signatures

and their exposures generated over the I iterations. A partition-clustering algo-

rithmwas applied to the set of matrices SP to cluster the data intoN clusters. A

variation of k-means (Jain, 2010), where each signature forcP˛Sp is assigned

to exactly one cluster, was used to partition the data. Similarities between

mutational signatures were calculated using a cosine similarity (see below)

whereas the N centroids were calculated by averaging the signatures

belonging to each cluster. The iteration-averaged matrix P was formed

by combining the N centroid vectors ordered by their reproducibility (see

Step 6). The error bars reported for each mutation type in each signature

in P were calculated as the SD of the corresponding mutation type in each

centroid over the I iterations. Note that clustering the data in SP effectively

results in clustering SE as each signature unambiguously corresponds to

exactly one exposure, thus allowing derivation of E.

Step 6 (Evaluate)

The reproducibility of the derived average signatures P is evaluated by exam-

ining the tightness and separation of the clusters used to form the centroids in

P (see Step 5). More specifically, using cosine similarity, the average silhouette

width for each of the N clusters is calculated. An average silhouette width of

1.00 is equivalent to consistently deciphering the same mutational signature,

whereas a low silhouette width indicates lack of reproducibility of the solution.

The average silhouette width (Rousseeuw, 1987) of the N clusters is used as

a measure of reproducibility for the whole solution. In addition to reproduc-

ibility, the average Frobenius reconstruction error is used to evaluate the accu-

racy with which the deciphered mutational signatures and their respective

exposures describe the original matrix M, i.e., kM� P3Ek2F , where lower Fro-

benius reconstruction error corresponds to better describing the original

matrix. There is some association between the reproducibility of a solution

and its reconstruction error. For example, solutions with very low reproduc-

ibility may have iteration inconsistent high Frobenius reconstruction errors.

Last, comparison between two mutational signatures A and B, each defined

for K mutation types, is done using cosine similarity:

simðA;BÞ=
PK
k = 1

AkBkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
k = 1

ðAkÞ2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

k =1

ðBkÞ2
s :

Because the elements of A and B are nonnegative, the cosine similarity has

a range between 0 and 1. When the cosine similarity is 1 between two signa-

tures, these signatures are exactly the same. In contrast, when the similarity is

0, the signatures are independent.

Model Selection Approach

Our framework for deciphering signatures of mutational processes relies on

two input parameters, the original matrix M (size K 3 G) and the number of

mutational signatures N to be deciphered from M. However, in most cases,

the value of N is unknown and needs to be determined from M. The model

selection framework relies on applying the framework for deciphering signa-

tures of mutational processes for values of N between 1 and min(K,G) � 1.

The reproducibility and average Frobenius reconstruction error are evaluated

for each N. The value of N is selected when decomposing the matrix M

results in highly reproduciblemutational signatures and low overall reconstruc-

tion error.

Simulating Mutational Catalogs of Cancer Genomes

Signatures of mutational processes with different exposures were randomly

generated and used to simulate mutational catalogs of cancer genomes.

The simulated mutational catalogs were leveraged to assess the ability of

our approach to decipher the mutational signatures with which the data

were simulated. In most cases (i.e., unless specified otherwise in the main

text), the signatures of mutational processes were stochastically generated

with similarities between them similar to those previously observed between

signatures of mutational processes derived from the mutational catalogs of

breast cancer genomes (Nik-Zainal et al., 2012a). Similarly, unless specified
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otherwise, the contributions of mutational processes were uniformly distrib-

uted across the set of simulated cancer genomes whereas the total number

of mutations in each mutational catalog was drawn from a distribution compa-

rable to the distribution of the total substitutions found in many human cancer

genomes (Greenman et al., 2007; Nik-Zainal et al., 2012a; Stratton, 2011;

Wood et al., 2007). For every mutational process with signature

P1 = ½p1
1;p

2
1;.pK

1 �T contributing e1g mutations in a cancer genome g, each

mutation is assigned to one of the K mutation types according to the discrete

probability density function of P1. Poisson noise was added to every simulated

mutational catalog. Lastly, each simulation scenario was repeated 100 times

and the SD of the results over these 100 repeats are reported as error bars

in the respective figures.

Examined Mutation Types

Mutational catalogs were derived for each of the analyzed samples from the

previously identified substitution and indels for the 21 breast cancer whole-

genomes (Nik-Zainal et al., 2012a) and 100 breast cancer whole-exomes

(Stephens et al., 2012). The immediate 50 and 30 sequence context was ex-

tracted using the ENSEMBL Core APIs for human genome build GRCh37.

Dinucleotide substitutions were identified when two substitutions were

present in consecutive bases on the same chromosome (sequence context

was ignored). The immediate 50 and 30 sequence content of all indels was

examined and the ones present at mono/polynucleotide repeats or microho-

mologies were included in the analyzed mutational catalogs as their respec-

tive types. Kataegis substitutions were identified based on their intermutation

distances (regardless of sequence context) and excluded from the other

substitutions. Strand bias catalogs were derived for each sample using only

substitutions identified in the transcribed regions of well-annotated protein

coding genes.

Source Code

The framework for deciphering signatures of mutational processes—including

its source code, brief documentation, mutational catalogs of the 21 breast

cancer whole-genomes, mutational catalogs of 100 breast cancer whole-

exomes, and examples (that reproduce results presented in this article) of

applying it to these mutational catalogs—are freely available for download

from http://www.mathworks.com/matlabcentral/fileexchange/38724.
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Supplemental Information

Figure S1. Additional Factors Affecting the Efficacy of Deciphering Mutational Signatures with Simulated Data, Related to Figure 3

(A) Design for simulating the signatures of four mutational processes with different similarities between them. Signatures I and II differ significantly from each other

as well as from the other two Signatures (cosine similarity between 0.00 and 0.20). Signatures III and IV were simulated with varying similarities between them.

(B) Dependency between accurately deciphered signatures (i.e., cosine similarity between simulated and deciphered signature > 0.95) and the number of

mutational catalogs needed to decipherer these signatures.

(C) Identifying the maximum number of accurately deciphered signatures (cosine similarity between simulated and deciphered signature shown in the legend)

from sets of mutational catalogs simulated using the signatures of 20 mutational processes.

(D) Distribution of the normalized Frobenius error for identifying the contributions of accurately deciphered signatures of mutational processes (i.e., cosine

similarity between simulated and deciphered signature > 0.95).

(E) Average symmetric mean absolute percentage error for identifying the contributions of accurately deciphered signatures of mutational processes (i.e., cosine

similarity between simulated and deciphered signature > 0.95) based on the number mutations contributed by the signature.
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Figure S2. Signatures of Mutational Processes Extracted from the Extended Mutational Catalogs of 21 Breast Cancer Genomes, Related to

Figure 4

Four of the five mutational signatures deciphered from the base substitutions (including their immediate 30 and 50 sequence context), kataegis, indels, and

dinucleotide substitutions identified in the 21 breast cancer genomes. The fifth mutational signature is shown in Figure 4B.
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