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Supplementary text 

The probability of coalescence in the presence of variable population size 

The probability that two chromosomes with compatible genetic backgrounds 
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Note that the definition above has made use of the fact that d and ( )
1

a
G  can be 

determined by ( )
1

i
G  and ( )

1
j

G . Let N ≡ N(0) and rescale time in units of N 

generations, so that τ = t/N and T = T/N. Following Tavaré's approach (2004), we first 

define the relative size function 
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where x is the smallest integer greater than x. By replacing summation with 

integration, we yield 
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Thus, the waiting time to the next coalescent event follows a non-homogeneous 

exponential distribution.  
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Factors affecting accuracy of the coalescent model 

The coalescent model relies on two key assumptions. First, the population size is 

sufficiently large that the genetic composition of the population, as characterised by 

the distribution of d, stays close to Eq. (2). Second, the number of individuals in each 

genetic background (i.e., Nf(d)P(G); see Eq. (4)) is sufficiently large that the 

continuous time approximation is valid. As pointed out previously (Zeng and 

Charlesworth, 2011), the tendency for the coalescent model to produce somewhat 

higher E(Tn), the mean total branch length for a sample of size n, compared to forward 

simulations (e.g., Figure 3) is probably caused by the use of small population sizes in 

the forward simulations (typically N = 5,000). Specifically, when Nf(d)P(G) is small, 

both the probability of multiple coalescent events occurring in one generation and the 

probability of having coalescent events where more than two ancestral lineages find 

their common ancestor in the previous generation are non-negligible. This will make 

the actual rate of coalescence higher than assumed by the coalescent model. In 

addition, in small populations, genetic drift induces significant linkage disequilibrium 

between selected sites, and the interference between selection at different sites may 

further reduce E(Tn) (Hill and Robertson, 1966). Because forward simulations are 

extremely time-consuming even for moderately large populations (e.g., N > 5,000), 

verifying these intuitions systematically by simulating large populations is 

computationally prohibitive, although some evidence has been obtained from a 

small-scale experiment (Zeng and Charlesworth, 2011).  

Diagnostic methods can be constructed to ensure that these assumptions are 
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approximately valid. The treatments below assume that the population of interest has 

a constant size N, and that there is one type of selected sites (i.e., K = 1). The total 

deleterious mutation rate and the selection coefficient are denoted by U and s, 

respectively, with λ = U/s. In an infinite population, the number of deleterious 

variants on a random chromosome, d, follows a Poisson distribution with mean λ 

whose probability density function is denoted by f(d). 

Firstly, for the distribution of d in a finite population to be close to f(d), two 

conditions should be met: (i) the size of the mutation-free class is sufficiently large; (ii ) 

selection is sufficiently strong. These are to ensure that the effects of Muller's ratchet 

can be ignored (Gordo et al., 2002), and that deleterious mutations are under the 

control of selection rather than drift. The size of the mutation-free class can be 

approximated by Ne-λ (Charlesworth et al., 1993). Since the selection coefficient is 

small, both conditions should be met by requiring 

 1Ne sλ− >  (S1) 

For Nf(d)P(G), it is necessary to consider the expected number of recombination 

events in the history of a sample, because each recombination event creates a new 

subset of individuals amongst those with the same number of deleterious mutations. 

For instance, the recombination event in Figure 2 creates two ancestral lineages with 

genetic backgrounds (3)
1G  and (4)

1G . (3)
1( )P G  is the proportion of individuals with 

one deleterious mutation in [1, 5], a subset amongst those with one mutations; 

similarly, (4)
1G  encompasses individuals with one mutation in [1, 5] and one in [6, 

10], a subset amongst all individuals with two mutations. Intuitively, Nf(d)P(G) 
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decreases as the recombination rate increases, since the focal region will be divided 

into smaller sub-intervals with more recombination events. The expected number of 

recombination events can be predicted as follows. Take an estimate of E(Tn) produced 

by the coalescent model. Note that Tn is scaled by N. Unlike in the main text, it is not 

expressed relative to its neutral expectation here and in Supplementary Table S3. 

Using the theory of Hudson and Kaplan (1985), the expected number of 

recombination events is 

 * ( )e nR E Tρ=  

where ρ = NR and R is the recombination rate. To be conservative, the following 

calculation uses estimates of E(Tn) obtained from the left-hand end of the focal region 

[E(Tn) is larger at the end points (e.g., Figure 3)]. Assume that there are on average 

*
e eR R =    recombination events. Since the recombination rate is uniform across the 

region, we can assume that the Re breakpoints are uniformly distributed, so that they 

divide the focal region into Re + 1 equal-sized sub-intervals. Thus, amongst 

individuals with d deleterious mutations, the number of individuals in the least likely 

genetic background whereby all d mutations are situated within one of the Re + 1 

sub-intervals is 
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Since f(d) is maximised for d close to λ. Thus, with 

 ( 1) 10h λ + >    (S2) 

the second assumption of the coalescent model should be approximately valid over 

the bulk of the distribution of d. 
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Thus, Eqs. (S1) and (S2) define two diagnostic criteria, and when they are both 

satisfied, we expect the coalescent model to provide good approximations. Note that 

these criteria depend solely on data generated by the coalescent model. To assess the 

performance of these criteria, data have been generated by both coalescent and 

forward simulations. A total of 203 sets of parameters have been considered. To make 

the assessment conservative, parameters were chosen from regions in the parameter 

space that are more likely to result in breakdowns of the coalescent model (i.e., when 

selection is weak with γ ≤ 7.5). Forward simulations have been carried out with N = 

5,000. Local genealogies were recorded for the left-hand end only in both types of 

simulations, since recording local genealogies for many sites is computationally 

expensive. Let E(X)forw and E(X)coal denote estimates obtained from the two types of 

simulations, where X = Tn or ξn. We define the relative deviation, Rd(X), as  
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E(Tn) values obtained from the left-hand end were used to calculate Eqs. (S1) 

and (S2). The diagnostic criteria are said to score a true positive when both Eqs. (S1) 

and (S2) are satisfied, and |Rd(Tn)| < 0.05. A less stringent criterion of |Rd(Tn)| < 0.1 

has also been tested. Note that |Rd(Tn)| < 0.05 is likely to be rather conservative, since 

the difference between E(Tn)
forw and E(Tn)

coal is likely to be exaggerated due to the use 

of a small N in the forward simulations. In contrast, the diagnostic criteria are said to 

produce a false positive if both Eqs. (S1) and (S2) are satisfied, but |Rd(Tn)| ≥ 0.05 (or 

|Rd(Tn)| ≥ 0.1). The true and false positive rates are summarised in Supplementary 

Tables S2. Note that the difference in true positive rates between |Rd(Tn)| < 0.05 and 
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|Rd(Tn)| < 0.1 is mainly due to false negatives in the latter case (i.e., |Rd(Tn)| < 0.1 but 

the diagnostic criteria suggest a breakdown). Also reported in the table are the 

frequency of cases where |Rd(ξn)| < |Rd(Tn)|. The full data set can be found in 

Supplementary Tables S3.  
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