Supplementary material for "A multiscale approximation in a heat shock response model of E. coli"

Hye-Won Kang*

¹ Mathematical Biosciences Institute, Ohio State University, Columbus, OH, USA

Email: kang.235@mbi.osu.edu;

*Corresponding author

1 The scaled stochastic equations

The stochastic equation governing the species numbers is

$$X(t) = X(0) + \sum_{k=1}^{r_0} R_k^t(\lambda_k(X))(\nu'_k - \nu_k),$$

where

$$R_k^t(\lambda_k(X)) = Y_k\left(\int_0^t \lambda_k(X(s)) \, ds\right),$$

and the Y_k 's are independent unit Poisson processes. Let Λ_N be an $s_0 \times s_0$ -dimensional diagonal matrix with entries $N^{-\alpha_i}$. The process for the scaled species numbers after a time change is described by

$$Z^{N,\gamma}(t) = Z^{N,\gamma}(0) + \Lambda_N \sum_{k=1}^{r_0} R_k^t \left(N^{\gamma+\rho_k} \hat{\lambda}_k(Z^{N,\gamma}) \right) (\nu'_k - \nu_k).$$

The process $Z^{N,\gamma}$ is an s_0 -dimensional vector with each component written as

$$\begin{split} Z_1^{N,\gamma}(t) &= Z_1^{N,\gamma}(0) + N^{-\alpha_1} \Big[R_{13}^t (N^{\gamma+\rho_{13}} \kappa_{13}) - R_{14}^t (N^{\gamma+\rho_{14}} \kappa_{14} Z_1^{N,\gamma}) \Big], \\ Z_2^{N,\gamma}(t) &= Z_2^{N,\gamma}(0) + N^{-\alpha_2} \Big[R_3^t (N^{\gamma+\rho_3} \kappa_3 Z_3^{N,\gamma}) + R_4^t (N^{\gamma+\rho_4} \kappa_4 Z_1^{N,\gamma}) \\ &\quad + R_5^t (N^{\gamma+\rho_5} \kappa_5 Z_3^{N,\gamma}) + R_6^t (N^{\gamma+\rho_6} \kappa_6 Z_3^{N,\gamma}) + R_7^t (N^{\gamma+\rho_7} \kappa_7 Z_3^{N,\gamma}) \\ &\quad + R_8^t (N^{\gamma+\rho_8} \kappa_8 Z_7^{N,\gamma}) - R_2^t (N^{\gamma+\rho_2} \kappa_2 Z_2^{N,\gamma}) \\ &\quad - R_9^t (N^{\gamma+\rho_9} \kappa_9 Z_2^{N,\gamma} Z_6^{N,\gamma}) \Big], \\ Z_3^{N,\gamma}(t) &= Z_3^{N,\gamma}(0) + N^{-\alpha_3} \Big[R_2^t (N^{\gamma+\rho_2} \kappa_2 Z_2^{N,\gamma}) - R_3^t (N^{\gamma+\rho_3} \kappa_3 Z_3^{N,\gamma}) \\ &\quad - R_5^t (N^{\gamma+\rho_5} \kappa_5 Z_3^{N,\gamma}) - R_6^t (N^{\gamma+\rho_6} \kappa_6 Z_3^{N,\gamma}) - R_7^t (N^{\gamma+\rho_7} \kappa_7 Z_3^{N,\gamma}) \Big], \end{split}$$

$$\begin{split} Z_4^{N,\gamma}(t) &= Z_4^{N,\gamma}(0) + N^{-\alpha_4} \Big[R_6^t(N^{\gamma+\rho_6}\kappa_6 Z_3^{N,\gamma}) - R_{18}^t(N^{\gamma+\rho_{18}}\kappa_{18} Z_4^{N,\gamma}) \Big], \\ Z_5^{N,\gamma}(t) &= Z_5^{N,\gamma}(0) + N^{-\alpha_5} \Big[R_5^t(N^{\gamma+\rho_5}\kappa_5 Z_3^{N,\gamma}) - R_{16}^t(N^{\gamma+\rho_{16}}\kappa_{16} Z_5^{N,\gamma}) \Big], \\ Z_6^{N,\gamma}(t) &= Z_6^{N,\gamma}(0) + N^{-\alpha_6} \Big[R_7^t(N^{\gamma+\rho_7}\kappa_7 Z_3^{N,\gamma}) + R_8^t(N^{\gamma+\rho_8}\kappa_8 Z_7^{N,\gamma}) \\ &\quad + R_{12}^t(N^{\gamma+\rho_{12}}\kappa_{12} Z_9^{N,\gamma}) + R_{15}^t(N^{\gamma+\rho_{15}}\kappa_{15} Z_4^{N,\gamma} Z_7^{N,\gamma}) \\ &\quad - R_9^t(N^{\gamma+\rho_9}\kappa_9 Z_2^{N,\gamma} Z_6^{N,\gamma}) - R_{10}^t(N^{\gamma+\rho_{10}}\kappa_{10} Z_6^{N,\gamma} Z_8^{N,\gamma}) \\ &\quad - R_{17}^t(N^{\gamma+\rho_{17}}\kappa_{17} Z_6^{N,\gamma}) \Big], \\ Z_7^{N,\gamma}(t) &= Z_7^{N,\gamma}(0) + N^{-\alpha_7} \Big[R_9^t(N^{\gamma+\rho_9}\kappa_9 Z_2^{N,\gamma} Z_6^{N,\gamma}) - R_8^t(N^{\gamma+\rho_8}\kappa_8 Z_7^{N,\gamma}) \\ &\quad - R_{15}^t(N^{\gamma+\rho_{15}}\kappa_{15} Z_4^{N,\gamma} Z_7^{N,\gamma}) \Big], \\ Z_8^{N,\gamma}(t) &= Z_8^{N,\gamma}(0) + N^{-\alpha_8} \Big[R_{1}^t(N^{\gamma+\rho_1}\kappa_1) + R_{12}^t(N^{\gamma+\rho_{12}}\kappa_{12} Z_9^{N,\gamma}) \\ &\quad - R_{10}^t(N^{\gamma+\rho_{10}}\kappa_{10} Z_6^{N,\gamma} Z_8^{N,\gamma}) - R_{11}^t(N^{\gamma+\rho_{11}}\kappa_{11} Z_8^{N,\gamma}) \Big], \\ Z_9^{N,\gamma}(t) &= Z_9^{N,\gamma}(0) + N^{-\alpha_9} \Big[R_{10}^t(N^{\gamma+\rho_{10}}\kappa_{10} Z_6^{N,\gamma} Z_8^{N,\gamma}) - R_{12}^t(N^{\gamma+\rho_{12}}\kappa_{12} Z_9^{N,\gamma}) \Big]. \end{split}$$

In each reaction term, R_k^t , the propensity includes $N^{\gamma+\rho_k}$ produced from scaling the species numbers in the propensity and from change of the time variable. ρ_k 's are given in the following table in terms of α_i 's and β_k 's.

ρ_k		ρ_k		ρ_k	
ρ_1	β_1	ρ_7	$\alpha_3 + \beta_7$	ρ_{13}	β_{13}
ρ_2	$\alpha_2 + \beta_2$	ρ_8	$\alpha_7 + \beta_8$	ρ_{14}	$\alpha_1 + \beta_{14}$
ρ_3	$\alpha_3 + \beta_3$	ρ_9	$\alpha_2 + \alpha_6 + \beta_9$	ρ_{15}	$\alpha_4 + \alpha_7 + \beta_{15}$
ρ_4	$\alpha_1 + \beta_4$	ρ_{10}	$\alpha_6 + \alpha_8 + \beta_{10}$	ρ_{16}	$\alpha_5 + \beta_{16}$
ρ_5	$\alpha_3 + \beta_5$	ρ_{11}	$\alpha_8 + \beta_{11}$	ρ_{17}	$\alpha_6 + \beta_{17}$
ρ_6	$\alpha_3 + \beta_6$	ρ_{12}	$\alpha_9 + \beta_{12}$	ρ_{18}	$\alpha_4 + \beta_{18}$

Table 1: Scaling exponents in propensities

2 Identities

In this section, the governing equations for the linear combinations of the species used in this paper are given. Denote addition of species S_2 and S_3 as S_{23} , addition of species S_6 and S_7 as S_{67} , addition of S_2 , S_3 , and S_7 as S_{237} , and addition of S_6 , S_7 , and S_9 as S_{679} . Define variables for the normalized numbers of the linear combinations of the species, S_{23} , S_{67} , S_{237} , and S_{679} as

$$\begin{split} Z_{23}^{N,\gamma}(t) &\equiv \frac{N^{\alpha_2} Z_2^{N,\gamma}(t) + N^{\alpha_3} Z_3^{N,\gamma}(t)}{N^{\max(\alpha_2,\alpha_3)}}, \\ Z_{67}^{N,\gamma}(t) &\equiv \frac{N^{\alpha_6} Z_6^{N,\gamma}(t) + N^{\alpha_7} Z_7^{N,\gamma}(t)}{N^{\max(\alpha_6,\alpha_7)}}, \\ Z_{237}^{N,\gamma}(t) &\equiv \frac{N^{\alpha_2} Z_2^{N,\gamma}(t) + N^{\alpha_3} Z_3^{N,\gamma}(t) + N^{\alpha_7} Z_7^{N,\gamma}(t)}{N^{\max(\alpha_2,\alpha_3,\alpha_7)}} \\ Z_{679}^{N,\gamma}(t) &\equiv \frac{N^{\alpha_6} Z_6^{N,\gamma}(t) + N^{\alpha_7} Z_7^{N,\gamma}(t) + N^{\alpha_9} Z_9^{N,\gamma}(t)}{N^{\max(\alpha_6,\alpha_7,\alpha_9)}} \end{split}$$

The stochastic equations for the linear combinations of the species are given as

$$\begin{split} Z_{23}^{N,\gamma}(t) &= Z_{23}^{N,\gamma}(0) + N^{-\max(\alpha_{2},\alpha_{3})} \Big[R_{4}^{t} (N^{\gamma+\rho_{4}}\kappa_{4}Z_{1}^{N,\gamma}) + R_{8}^{t} (N^{\gamma+\rho_{8}}\kappa_{8}Z_{7}^{N,\gamma}) \\ &\quad -R_{9}^{t} (N^{\gamma+\rho_{9}}\kappa_{9}Z_{2}^{N,\gamma}Z_{6}^{N,\gamma}) \Big], \\ Z_{67}^{N,\gamma}(t) &= Z_{67}^{N,\gamma}(0) + N^{-\max(\alpha_{6},\alpha_{7})} \Big[R_{7}^{t} (N^{\gamma+\rho_{7}}\kappa_{7}Z_{3}^{N,\gamma}) + R_{12}^{t} (N^{\gamma+\rho_{12}}\kappa_{12}Z_{9}^{N,\gamma}) \\ &\quad -R_{10}^{t} (N^{\gamma+\rho_{10}}\kappa_{10}Z_{6}^{N,\gamma}Z_{8}^{N,\gamma}) - R_{17}^{t} (N^{\gamma+\rho_{17}}\kappa_{17}Z_{6}^{N,\gamma}) \Big], \\ Z_{237}^{N,\gamma}(t) &= Z_{237}^{N,\gamma}(0) + N^{-\max(\alpha_{2},\alpha_{3},\alpha_{7})} \Big[R_{4}^{t} (N^{\gamma+\rho_{4}}\kappa_{4}Z_{1}^{N,\gamma}) - R_{15}^{t} (N^{\gamma+\rho_{15}}\kappa_{15}Z_{4}^{N,\gamma}Z_{7}^{N,\gamma}) \Big], \\ Z_{679}^{N,\gamma}(t) &= Z_{679}^{N,\gamma}(0) + N^{-\max(\alpha_{6},\alpha_{7},\alpha_{9})} \Big[R_{7}^{t} (N^{\gamma+\rho_{7}}\kappa_{7}Z_{3}^{N,\gamma}) - R_{17}^{t} (N^{\gamma+\rho_{17}}\kappa_{17}Z_{6}^{N,\gamma}) \Big]. \end{split}$$

To show convergence of $Z_2^{N,2}$ and $Z_3^{N,2}$ as $N \to \infty$ in Section 5.1, we use an equation for $(\kappa_2 Z_2^{N,2}(t) - \kappa_3 Z_3^{N,2}(t))^2$. Define

$$\mathcal{D}^{N,\gamma}(t) \equiv \frac{\kappa_2 N^{\alpha_2} Z_2^{N,\gamma}(t) - \kappa_3 N^{\alpha_3} Z_3^{N,\gamma}(t)}{N^{\max(\alpha_2,\alpha_3)}}.$$

Using the equations for $Z_2^{N,\gamma}$ and $Z_3^{N,\gamma}$ given in Section 1, $\mathcal{D}^{N,\gamma}$ satisfies

$$\mathcal{D}^{N,\gamma}(t) = \mathcal{D}^{N,\gamma}(0) + (\kappa_2 + \kappa_3) N^{-\max(\alpha_2,\alpha_3)} \Big[R_3^t (N^{\gamma+\rho_3} \kappa_3 Z_3^{N,\gamma}) + R_5^t (N^{\gamma+\rho_5} \kappa_5 Z_3^{N,\gamma}) + R_6^t (N^{\gamma+\rho_6} \kappa_6 Z_3^{N,\gamma}) + R_7^t (N^{\gamma+\rho_7} \kappa_7 Z_3^{N,\gamma}) - R_2^t (N^{\gamma+\rho_2} \kappa_2 Z_2^{N,\gamma}) \Big] + \kappa_2 N^{-\max(\alpha_2,\alpha_3)} \Big[R_4^t (N^{\gamma+\rho_4} \kappa_4 Z_1^{N,\gamma}) + R_8^t (N^{\gamma+\rho_8} \kappa_8 Z_7^{N,\gamma}) - R_9^t (N^{\gamma+\rho_9} \kappa_9 Z_2^{N,\gamma} Z_6^{N,\gamma}) \Big].$$
(1)

Using (1) and applying Ito's formula, we have

$$\begin{aligned} \mathcal{D}^{N,\gamma}(t)^{2} &= \mathcal{D}^{N,\gamma}(0)^{2} + N^{-\max(\alpha_{2},\alpha_{3})} \int_{0}^{t} 2(\kappa_{2} + \kappa_{3}) \mathcal{D}^{N,\gamma}(s-) \\ &\times \left[dR_{3}^{s}(N^{\gamma+\rho_{3}}\kappa_{3}Z_{3}^{N,\gamma}) + dR_{5}^{s}(N^{\gamma+\rho_{5}}\kappa_{5}Z_{3}^{N,\gamma}) + dR_{6}^{s}(N^{\gamma+\rho_{6}}\kappa_{6}Z_{3}^{N,\gamma}) \\ &+ dR_{7}^{s}(N^{\gamma+\rho_{7}}\kappa_{7}Z_{3}^{N,\gamma}) - dR_{2}^{s}(N^{\gamma+\rho_{2}}\kappa_{2}Z_{2}^{N,\gamma}) \right] \\ &+ N^{-\max(\alpha_{2},\alpha_{3})} \int_{0}^{t} 2\kappa_{2}\mathcal{D}^{N,\gamma}(s-) \left[dR_{4}^{s}(N^{\gamma+\rho_{4}}\kappa_{4}Z_{1}^{N,\gamma}) \\ &+ dR_{8}^{s}(N^{\gamma+\rho_{8}}\kappa_{8}Z_{7}^{N,\gamma}) - dR_{9}^{s}(N^{\gamma+\rho_{9}}\kappa_{9}Z_{2}^{N,\gamma}Z_{6}^{N,\gamma}) \right] \\ &+ (\kappa_{2} + \kappa_{3})^{2}N^{-2\max(\alpha_{2},\alpha_{3})} \left[R_{3}^{t}(N^{\gamma+\rho_{3}}\kappa_{3}Z_{3}^{N,\gamma}) + R_{5}^{t}(N^{\gamma+\rho_{5}}\kappa_{5}Z_{3}^{N,\gamma}) \\ &+ R_{6}^{t}(N^{\gamma+\rho_{6}}\kappa_{6}Z_{3}^{N,\gamma}) + R_{7}^{t}(N^{\gamma+\rho_{7}}\kappa_{7}Z_{3}^{N,\gamma}) + R_{2}^{t}(N^{\gamma+\rho_{2}}\kappa_{2}Z_{2}^{N,\gamma}) \right] \\ &+ \kappa_{2}^{2}N^{-2\max(\alpha_{2},\alpha_{3})} \left[R_{4}^{t}(N^{\gamma+\rho_{4}}\kappa_{4}Z_{1}^{N,\gamma}) + R_{8}^{t}(N^{\gamma+\rho_{8}}\kappa_{8}Z_{7}^{N,\gamma}) \\ &+ R_{9}^{t}(N^{\gamma+\rho_{9}}\kappa_{9}Z_{2}^{N,\gamma}Z_{6}^{N,\gamma}) \right]. \end{aligned}$$

3 Scaling exponents and rate constants

Recall that the normalized rate constants are defined as

$$\kappa_k = \frac{\kappa'_k}{N_0^{\beta_k}}$$

where $N_0 = 100$ in this paper. In Table 2 and 3, unscaled and scaled rate constants are given with the corresponding scaling exponents.

	Rates		Rates		Rates
κ'_1	4.00×10^{0}	κ'_7	4.88×10^{-3}	κ'_{10}	3.62×10^{-4}
κ'_2	$7.00 imes 10^{-1}$	κ_8'	4.40×10^{-4}	κ'_{11}	$9.99 imes 10^{-5}$
κ'_3	$1.30 imes 10^{-1}$	κ'_9	$3.62 imes 10^{-4}$	κ'_{12}	4.40×10^{-5}
κ'_4	$7.00 imes 10^{-3}$	κ'_{10}	$3.62 imes 10^{-4}$	κ'_{13}	1.40×10^{-5}
κ_5'	$6.30 imes 10^{-3}$	κ'_{11}	$9.99 imes 10^{-5}$	κ'_{14}	1.40×10^{-6}
κ_6'	4.88×10^{-3}	κ'_{12}	4.40×10^{-5}	κ'_{15}	1.42×10^{-6}
κ_7'	4.88×10^{-3}	κ'_{13}	1.40×10^{-5}	κ'_{16}	1.80×10^{-8}
κ_8'	4.40×10^{-4}	κ_{15}	1.42×10^{-6}	κ'_{17}	6.40×10^{-10}
κ'_9	3.62×10^{-4}	κ'_{16}	1.80×10^{-8}	κ'_{18}	7.40×10^{-11}

Table 2: The unscaled stochastic reaction rate constants

Scaled	rates	β_k		Scaled	rates	β_k		Scaled	rates	β_k	
κ_1	4	β_1	0	κ_7	0.488	β_7	-1	κ_{13}	0.14	β_{13}	-2
κ_2	0.7	β_2	0	κ_8	4.4	β_8	-2	κ_{14}	0.014	β_{14}	-2
κ_3	0.13	β_3	0	κ_9	3.62	$\beta_9^{* 1}$	-2	κ_{15}	1.42	β_{15}^*	-3
κ_4	0.7	β_4	-1	κ_{10}	3.62	β_{10}^*	-2	κ_{16}	0.00018	β_{16}	-2
κ_5	0.63	β_5	-1	κ_{11}	0.999	β_{11}	-2	κ_{17}	0.0000064	β_{17}	-2
κ_6	0.488	β_6	-1	κ_{12}	0.44	β_{12}	-2	κ_{18}	0.0000074	β_{18}	-2

Table 3: The scaled stochastic reaction rate constants with scaling exponents

In Table 4, three sets of α_i 's and ρ_k 's we use in this model are given.

 α_i First Second Third First Second Third First Second Third ρ_k ρ_k scaling scaling scaling scaling scaling scaling scaling scaling scaling -2 α_1^{\dagger} 1 0 0 0 0 0 -10 ρ_1 ρ_{10} α_2^{\dagger} 0 0 0 -20 1 0 1 -1 ρ_2 ρ_{11} $\alpha_3^{\overline{\dagger}}$ -20 0 1 0 0 1 -10 ρ_3 ρ_{12} 2 $\mathbf{2}$ $\mathbf{2}$ 0 $^{-1}$ $^{-1}$ -2-2-2 α_4 ρ_4 ρ_{13} 2 $\mathbf{2}$ 20 -2 $^{-1}$ $^{-1}$ $^{-1}$ -2 α_5 ρ_5 ρ_{14} 0 0 0 -1 $^{-1}$ -1 $^{-1}$ 0 $^{-1}$ α_6 ρ_6 ρ_{15} 0 0 0 -1 $^{-1}$ 0 0 0 0 α_7 ρ_7 ρ_{16} α_8^{\dagger} 0 $\mathbf{2}$ -2-21 -2-2-2-2 ρ_8 ρ_{17} 0 2-2-21 $^{-1}$ 0 0 0 α_9^{\intercal} ρ_9 ρ_{18}

Table 4: Scaling exponents

The initial species numbers of the parametrized family by N are given as

$$X_i^N(0) \equiv \left\lfloor \left(\frac{N}{N_0}\right)^{\alpha_i} X_i(0) \right\rfloor$$

and the normalized initial species numbers are given as

$$Z_i^{N,\gamma}(0) \equiv \frac{1}{N^{\alpha_i}} \left\lfloor \left(\frac{N}{N_0}\right)^{\alpha_i} X_i(0) \right\rfloor.$$

so that $Z_i^{N,\gamma}(0) \to \frac{1}{N_0^{\alpha_i}} X_i(0) \equiv Z_i^{\gamma}(0)$ as $N \to \infty$. In Table 5, the initial species numbers, $X_i(0)$, obtained from [1] and limits of the normalized initial species numbers, $Z_i^{\gamma}(0)$, in the three time scales are given.

¹* are scaling exponents for bimolecular reaction rate constants.

 $^{^{2}\}alpha_{i}$'s depending on γ is marked by \dagger .

	Initial values	$\gamma = 0$	$\gamma = 1$	$\gamma = 2$
S_1	10	0.1	10	10
S_2	1	1	1	0.01
S_3	1	1	1	0.01
S_4	93	0.0093	0.0093	0.0093
S_5	172	0.0172	0.0172	0.0172
S_6	54	54	54	54
S_7	7	7	7	7
S_8	50	50	0.5	0.005
S_9	0	0	0	0

Table 5: Initial values used in the simulation

For the α_i 's and ρ_k 's determining the three scalings given in Table 4, we check the balance equations given in Table 4 in the main paper. If the balance equation fails, the corresponding time-scale constraint is computed. We have

Table 6: Balance conditions used in the model

	First	Second	Third		First	Second	Third
	scaling	scaling	scaling		scaling	scaling	scaling
S_1	$\gamma \leq 2$	balanced	balanced	$S_2 + S_3 + S_7$	$\gamma \leq 0$	balanced	balanced
S_2	balanced	balanced	balanced	$S_2 + S_3$	$\gamma \leq 0$	$\gamma \leq 1$	balanced
S_3	balanced	balanced	balanced	$S_2 + S_7$	balanced	balanced	balanced
S_4	$\gamma \leq 2$	$\gamma \leq 2$	balanced	$S_6 + S_7 + S_9$	$\gamma \leq 1$	$\gamma \leq 2$	$\gamma \leq 2$
S_5	$\gamma \leq 2$	$\gamma \leq 2$	balanced	$S_6 + S_7$	$\gamma \leq 1$	balanced	balanced
S_6	$\gamma \leq 1$	balanced	balanced	$S_6 + S_9$	$\gamma \leq 1$	$\gamma \leq 2$	$\gamma \leq 2$
S_7	$\gamma \leq 1$	$\gamma \leq 1$	balanced	$S_8 + S_9$	$\gamma \leq 0$	$\gamma \leq 1$	balanced
S_8	$\gamma \leq 0$	$\gamma \leq 1$	balanced				
S_9	balanced	balanced	balanced				

4 Solution of balance conditions computed using Maple

To select values for scaling exponents based on the balance equations, we solve the balance equations with some conditions for monotonicity using *Maple*. The following gives the results we obtain from *Maple*.

restart : with(simplex)
$$BalanceEquations := \Big\{ \beta_{13} = \alpha_1 + \beta_{14},$$

$$\begin{split} \max(\alpha_{3} + \beta_{3}, \alpha_{1} + \beta_{4}, \alpha_{3} + \beta_{5}, \alpha_{3} + \beta_{6}, \alpha_{3} + \beta_{7}, \alpha_{7} + \beta_{8}) \\ &= \max(\alpha_{2} + \beta_{2}, \alpha_{2} + \alpha_{6} + \beta_{9}), \\ \alpha_{2} + \beta_{2} &= \max(\alpha_{3} + \beta_{3}, \alpha_{3} + \beta_{5}, \alpha_{3} + \beta_{6}, \alpha_{3} + \beta_{7}), \\ \alpha_{3} + \beta_{6} &= \alpha_{4} + \beta_{18}, \alpha_{3} + \beta_{5} &= \alpha_{5} + \beta_{16}, \\ \max(\alpha_{3} + \beta_{7}, \alpha_{7} + \beta_{8}, \alpha_{9} + \beta_{12}, \alpha_{4} + \alpha_{7} + \beta_{15}) \\ &= \max(\alpha_{2} + \alpha_{6} + \beta_{9}, \alpha_{6} + \alpha_{8} + \beta_{10}, \alpha_{6} + \beta_{17}), \\ \alpha_{2} + \alpha_{6} + \beta_{9} &= \max(\alpha_{7} + \beta_{8}, \alpha_{4} + \alpha_{7} + \beta_{15}), \\ \max(\beta_{1}, \alpha_{9} + \beta_{12}) &= \max(\alpha_{6} + \alpha_{8} + \beta_{10}, \alpha_{8} + \beta_{11}), \\ \alpha_{6} + \alpha_{8} + \beta_{10} &= \alpha_{9} + \beta_{12}, \alpha_{1} + \beta_{4} &= \alpha_{4} + \alpha_{7} + \beta_{15}, \\ \max(\alpha_{1} + \beta_{4}, \alpha_{7} + \beta_{8}) &= \alpha_{2} + \alpha_{6} + \beta_{9}, \\ \max(\alpha_{1} + \beta_{4}, \alpha_{7} + \beta_{8}) &= \alpha_{2} + \alpha_{6} + \beta_{9}, \\ \max(\alpha_{3} + \beta_{7}, \alpha_{7} + \beta_{8}, \alpha_{4} + \alpha_{7} + \beta_{15}) \\ &= \max(\alpha_{2} + \beta_{2}, \alpha_{4} + \alpha_{7} + \beta_{15}), \alpha_{3} + \beta_{7} &= \alpha_{6} + \beta_{17}, \\ \max(\alpha_{3} + \beta_{7}, \alpha_{9} + \beta_{12}) &= \max(\alpha_{6} + \alpha_{8} + \beta_{10}, \alpha_{6} + \beta_{17}), \\ \beta_{1} &= \alpha_{8} + \beta_{11} \\ Conditions := \left\{ \beta_{1} - \beta_{13} \geq 0, \beta_{9} - \beta_{10} \geq 0, \beta_{10} - \beta_{15} \geq 0, \beta_{2} - \beta_{3} \geq 0, \\ \beta_{3} - \beta_{4} \geq 0, \beta_{4} - \beta_{5} \geq 0, \beta_{5} - \beta_{6} \geq 0, \beta_{6} - \beta_{7} \geq 0, \\ \beta_{7} - \beta_{8} \geq 0, \beta_{8} - \beta_{11} \geq 0, \beta_{11} - \beta_{12} \geq 0, \beta_{12} - \beta_{14} \geq 0, \\ \beta_{14} - \beta_{16} \geq 0, \beta_{16} - \beta_{17} \geq 0, \beta_{17} - \beta_{18} \geq 0 \right\}$$

$$\begin{aligned} \text{Outputs} &:= \text{solve}(BalanceEquations, useassumptions)} \quad assuming \quad Conditions \\ \left\{ \alpha_1 &= -\beta_4 + \alpha_4 + \alpha_7 + \beta_{15}, \, \alpha_2 = -\alpha_6 - \beta_9 + \max(\alpha_7 + \beta_8, \alpha_4 + \alpha_7 + \beta_{15}), \\ \alpha_3 &= \alpha_3, \, \alpha_4 = \alpha_4, \, \alpha_5 = \alpha_3 + \beta_5 - \beta_{16}, \, \alpha_6 = \alpha_6, \, \alpha_7 = \alpha_7, \, \alpha_8 = \alpha_8, \\ \alpha_9 &= \alpha_6 + \alpha_8 + \beta_{10} - \beta_{12}, \, \beta_1 = \alpha_8 + \beta_{11}, \\ \beta_2 &= \alpha_6 + \beta_9 - \max(\alpha_7 + \beta_8, \alpha_4 + \alpha_7 + \beta_{15}) + \alpha_3 + \beta_3, \\ \beta_3 &= \beta_3, \, \beta_4 = \beta_4, \, \beta_5 = \beta_5, \, \beta_6 = -\alpha_3 + \alpha_4 + \beta_{18}, \, \beta_7 = -\alpha_3 + \alpha_6 + \beta_{17}, \\ \beta_8 &= \beta_8, \, \beta_9 = \beta_9, \, \beta_{10} = \beta_{10}, \, \beta_{11} = \beta_{11}, \, \beta_{12} = \beta_{12}, \end{aligned}$$

$$\beta_{13} = -\beta_4 + \alpha_4 + \alpha_7 + \beta_{15} + \beta_{14}, \ \beta_{14} = \beta_{14}, \ \beta_{15} = \beta_{15}, \ \beta_{16} = \beta_{16},$$

$$\beta_{17} = \beta_{17}, \ \beta_{18} = \beta_{18} \Big\}$$

5 The proof of Theorem 1

To prove the convergence for $\gamma = 0$ and $\gamma = 1$, we apply Theorem 4.1 in [2]. Following from Theorem 4.1 (and Remark 4.2) in [2], $Z^{N,\gamma} \Rightarrow Z^{\gamma}$ in the first time scale on $[0, \tau_{\infty})$ where

$$\tau_{\infty} = \lim_{c \to \infty} \tau_c \equiv \inf \left\{ t : \sup_{s \le t} Z^{\gamma}(s) \ge c \right\}.$$

The theorem is directly applicable for $\gamma = 0$, since the first time scale of interest in this model is when $\gamma = 0$. For $\gamma = 1$, we define a stopping time

$$\tau^1_{N,c} = \inf \left\{ t : \sup_{s \le t} Z^{N,1}(s) \ge c \right\},$$

so that $Z^{N,1}(t)$ is bounded for $t \leq \tau_{N,c}^1$. We compare a scaling exponent for each species number to those for all rates of reactions involving the species. Then, α_i is less or equal to $\gamma + \rho_k$ for each $k \in \Gamma_i^+ \cup \Gamma_i^-$ for all species except for Species 2 and 3, i.e., the only species possibly not bounded in this time scale are S_2 and S_3 . On the other hand, $Z_2^{N,1}(t), Z_3^{N,1}(t) \leq Z_{23}^{N,1}(t) \leq c$ on $[0, \tau_{N,c}^1)$. Therefore, relative compactness of $\{Z^{N,1}(\cdot \wedge \tau_{N,c}^1)\}$ is satisfied, since all propensities $\hat{\lambda}_k(Z^{N,1}(\cdot \wedge \tau_{N,c}^1))$ are uniformly bounded. Then, $(Z^{N,1}(\cdot \wedge \tau_{N,c}^1), \tau_{N,c}^1) \Rightarrow (Z^1(\cdot \wedge \tau_c^1), \tau_c^1)$ for all but countably many c and we can set $\tau_{\infty}^1 = \lim_{c \to \infty} \tau_c^1$.

5.1 The proof of the convergence for $\gamma = 2$

Proof. Computing natural time scales of the species, we get $\gamma_2 = \gamma_3 = \gamma_6 = 0$, $\gamma_7 = 1$, and $\gamma_1 = \gamma_4 = \gamma_5 = \gamma_8 = \gamma_9 = 2$. Since we already get the limiting models for S_2 , S_3 , S_{23} , S_6 , S_7 , and S_8 in the previous time scales, we set $\gamma = 2$ and derive a limiting model for a subset of species we are interested in. For $\gamma = 2$, $Z_1^{N,2}$, $Z_4^{N,2}$, $Z_5^{N,2}$, $Z_8^{N,2}$, and $Z_9^{N,2}$ are of order 1, and averaged behavior of $Z_2^{N,2}$, $Z_3^{N,2}$ $Z_6^{N,2}$, and $Z_7^{N,2}$ is expressed in terms of the limits of the scaled species numbers of order 1 in this time scale. In the section of limiting models in three time scales in the main text, we already derived limiting equations for Z_{23}^2 , Z_8^2 , and Z_9^2 .

Define

$$\mathcal{D}^{N,2}(t) \equiv \kappa_2 Z_2^{N,2}(t) - \kappa_3 Z_3^{N,2}(t).$$

First, we will prove that the scaled species numbers for fast fluctuating species, S_2 and S_3 , actually converge to a limit in a finite time interval. That is, for any fixed $\epsilon > 0$ and for any t such that $\epsilon < t \le \tau_{\infty}^2$,

$$Z_2^{N,2}(t) \longrightarrow \bar{Z}_2^2(t) = \frac{\kappa_3}{\kappa_2 + \kappa_3} Z_{23}^2(t),$$
 (3)

$$Z_3^{N,2}(t) \longrightarrow \bar{Z}_3^2(t) = \frac{\kappa_2}{\kappa_2 + \kappa_3} Z_{23}^2(t),$$
 (4)

as $N \to \infty$ by showing $\mathcal{D}^{N,2}(t)^2 \to 0$ for $\epsilon < t \leq \tau_{\infty}^2$ and using $Z_{23}^{N,2}(t) \to Z_{23}^2(t)$. The scaled species numbers of S_2 and S_3 may not converge to $\bar{Z}_2^2(t)$ and $\bar{Z}_3^2(t)$ in $t \in [0, \epsilon]$, since $\kappa_2 Z_2^{N,2}(0) - \kappa_3 Z_3^{N,2}(0)$ may not converge to zero. Plugging α_i 's and ρ_k 's in (2), we have

$$\mathcal{D}^{N,2}(t)^{2} = \mathcal{D}^{N,2}(0)^{2} + N^{-1} \int_{0}^{t} 2(\kappa_{2} + \kappa_{3}) \mathcal{D}^{N,2}(s-)$$

$$\times \left[dR_{3}^{s}(N^{3}\kappa_{3}Z_{3}^{N,2}) + dR_{5}^{s}(N^{2}\kappa_{5}Z_{3}^{N,2}) + dR_{6}^{s}(N^{2}\kappa_{6}Z_{3}^{N,2}) + dR_{7}^{s}(N^{2}\kappa_{7}Z_{3}^{N,2}) - dR_{2}^{s}(N^{3}\kappa_{2}Z_{2}^{N,2}) \right]$$

$$+ N^{-1} \int_{0}^{t} 2\kappa_{2} \mathcal{D}^{N,2}(s-) \times \left[dR_{4}^{s}(N\kappa_{4}Z_{1}^{N,2}) + dR_{8}^{s}(\kappa_{8}Z_{7}^{N,2}) - dR_{9}^{s}(N\kappa_{9}Z_{2}^{N,2}Z_{6}^{N,2}) \right]$$

$$+ N^{-2}(\kappa_{2} + \kappa_{3})^{2} \left[R_{3}^{t}(N^{3}\kappa_{3}Z_{3}^{N,2}) + R_{5}^{t}(N^{2}\kappa_{5}Z_{3}^{N,2}) + R_{6}^{t}(N^{2}\kappa_{6}Z_{3}^{N,2}) + R_{7}^{t}(N^{2}\kappa_{7}Z_{3}^{N,2}) + R_{2}^{t}(N^{3}\kappa_{2}Z_{2}^{N,2}) \right]$$

$$+ N^{-2}\kappa_{2}^{2} \left[R_{4}^{t}(N\kappa_{4}Z_{1}^{N,2}) + R_{8}^{t}(\kappa_{8}Z_{7}^{N,2}) + R_{9}^{t}(N\kappa_{9}Z_{2}^{N,2}Z_{6}^{N,2}) \right].$$

$$(5)$$

Define reaction terms centered by their propensities as

$$\tilde{R}_k^t(N^{\gamma+\rho_k}\hat{\lambda}_k(Z^{N,\gamma})) = R_k^t(N^{\gamma+\rho_k}\hat{\lambda}_k(Z^{N,\gamma})) - \int_0^t N^{\gamma+\rho_k}\hat{\lambda}_k(Z^{N,\gamma}(s)) \, ds$$

Centering propensity in each reaction term in (5), we get

$$\mathcal{D}^{N,2}(t)^2 = \mathcal{D}^{N,2}(0)^2 + \mathcal{M}^N(t) + \int_0^t \left[-2N^2(\kappa_2 + \kappa_3)\mathcal{D}^{N,2}(s)^2 + N\mathcal{E}^N(s) \right] \, ds,\tag{6}$$

where

$$\begin{aligned} \mathcal{E}^{N}(t) &\equiv 2(\kappa_{2} + \kappa_{3})(\kappa_{5} + \kappa_{6} + \kappa_{7})\mathcal{D}^{N,2}(t-)Z_{3}^{N,2}(t) \\ &+ 2N^{-1}\kappa_{2}\mathcal{D}^{N,2}(t-) \Big[\kappa_{4}Z_{1}^{N,2}(t) + N^{-1}\kappa_{8}Z_{7}^{N,2}(t) - \kappa_{9}Z_{2}^{N,2}(t)Z_{6}^{N,2}(t) \Big] \\ &+ (\kappa_{2} + \kappa_{3})^{2} \Big[\kappa_{3}Z_{3}^{N,2}(t) + N^{-1}(\kappa_{5} + \kappa_{6} + \kappa_{7})Z_{3}^{N,2}(t) + \kappa_{2}Z_{2}^{N,2}(t) \Big] \\ &+ N^{-2}\kappa_{2}^{2} \Big[\kappa_{4}Z_{1}^{N,2}(t) + N^{-1}\kappa_{8}Z_{7}^{N,2}(t) + \kappa_{9}Z_{2}^{N,2}(t)Z_{6}^{N,2}(t) \Big], \end{aligned}$$

and

$$\begin{split} \mathcal{M}^{N}(t) &\equiv N^{-1} \int_{0}^{t} 2(\kappa_{2} + \kappa_{3}) \mathcal{D}^{N,2}(s-) \\ &\times \Big[d\tilde{R}_{3}^{s}(N^{3}\kappa_{3}Z_{3}^{N,2}) + d\tilde{R}_{5}^{s}(N^{2}\kappa_{5}Z_{3}^{N,2}) + d\tilde{R}_{6}^{s}(N^{2}\kappa_{6}Z_{3}^{N,2}) + d\tilde{R}_{7}^{s}(N^{2}\kappa_{7}Z_{3}^{N,2}) - d\tilde{R}_{2}^{s}(N^{3}\kappa_{2}Z_{2}^{N,2}) \Big] \\ &+ N^{-1} \int_{0}^{t} 2\kappa_{2} \mathcal{D}^{N,2}(s-) \times \Big[d\tilde{R}_{4}^{s}(N\kappa_{4}Z_{1}^{N,2}) + d\tilde{R}_{8}^{s}(\kappa_{8}Z_{7}^{N,2}) - d\tilde{R}_{9}^{s}(N\kappa_{9}Z_{2}^{N,2}Z_{6}^{N,2}) \Big] \\ &+ N^{-2}(\kappa_{2} + \kappa_{3})^{2} \Big[\tilde{R}_{3}^{t}(N^{3}\kappa_{3}Z_{3}^{N,2}) + \tilde{R}_{5}^{t}(N^{2}\kappa_{5}Z_{3}^{N,2}) + \tilde{R}_{6}^{t}(N^{2}\kappa_{6}Z_{3}^{N,2}) + \tilde{R}_{7}^{t}(N^{2}\kappa_{7}Z_{3}^{N,2}) + \tilde{R}_{2}^{t}(N^{3}\kappa_{2}Z_{2}^{N,2}) \Big] \\ &+ N^{-2}\kappa_{2}^{2} \Big[\tilde{R}_{4}^{t}(N\kappa_{4}Z_{1}^{N,2}) + \tilde{R}_{8}^{t}(\kappa_{8}Z_{7}^{N,2}) + \tilde{R}_{9}^{t}(N\kappa_{9}Z_{2}^{N,2}Z_{6}^{N,2}) \Big]. \end{split}$$

In (6), $\left[-2N^2(\kappa_2+\kappa_3)(\mathcal{D}^{N,2})^2+N\mathcal{E}^N\right]$ is a drift and \mathcal{M}^N gives noise of $(\mathcal{D}^{N,2})^2$ around its mean satisfying

$$E[\mathcal{M}^N(t)] = 0. \tag{7}$$

Taking an expectation in (6) and using (7), we get

$$E[\mathcal{D}^{N,2}(t)^2] = E[\mathcal{D}^{N,2}(0)^2] - \int_0^t 2N^2(\kappa_2 + \kappa_3)E[\mathcal{D}^{N,2}(s)^2]\,ds + \int_0^t NE[\mathcal{E}^N(s)]\,ds.$$
(8)

By Gronwall's inequality, we get

$$E[\mathcal{D}^{N,2}(t)^2] \leq \left(E[\mathcal{D}^{N,2}(0)^2] + \int_0^t NE[\mathcal{E}^N(s)] \, ds \right) e^{-2N^2(\kappa_2 + \kappa_3)t}.$$
(9)

Now, we will get an upper bound for the second moment of reaction terms. Let $X(\cdot)$ be a centered Poisson process with mean zero and τ be a stopping time for the process $\{X(t); t \ge 0\}$. Theorem 7 in [3] says that for $n \ge 2$, there exist constant C (finite and positive) depending on n such that

$$E[|X(\tau)|^{n}] \le C \max\{E[\tau], E[\tau^{n/2}]\}.$$
(10)

Setting $\tau = \int_0^t N^{\gamma+\rho_k} \hat{\lambda}_k(Z^{N,\gamma}(s)) \, ds$ and $X(\tau) = \tilde{R}_k^t(N^{\gamma+\rho_k} \hat{\lambda}_k(Z^{N,\gamma}))$, we have $E[X(\tau)] = 0$ and Theorem 7 is applicable. Using Cauchy-Schwarz inequality, we get

$$E\left[R_k^t(N^{\gamma+\rho_k}\hat{\lambda}_k(Z^{N,\gamma}))^2\right] = E\left[\left(\tilde{R}_k^t(N^{\gamma+\rho_k}\hat{\lambda}_k(Z^{N,\gamma})) + \int_0^t N^{\gamma+\rho_k}\hat{\lambda}_k(Z^{N,\gamma}(s))\,ds\right)^2\right]$$
$$\leq 2E\left[\tilde{R}_k^t(N^{\gamma+\rho_k}\hat{\lambda}_k(Z^{N,\gamma}))^2\right] + 2E\left[\left(\int_0^t N^{\gamma+\rho_k}\hat{\lambda}_k(Z^{N,\gamma}(s))\,ds\right)^2\right]. \tag{11}$$

Then, applying (10) to (11) and using Holder's inequality, we get an upper bound for the second moment of the random process.

$$E\left[R_{k}^{t}(N^{\gamma+\rho_{k}}\hat{\lambda}_{k}(Z^{N,\gamma}))^{2}\right]$$

$$\leq 2C_{1}E\left[\int_{0}^{t}N^{\gamma+\rho_{k}}\hat{\lambda}_{k}(Z^{N,\gamma}(s))\,ds\right] + 2E\left[\left(\int_{0}^{t}N^{\gamma+\rho_{k}}\hat{\lambda}_{k}(Z^{N,\gamma}(s))\,ds\right)^{2}\right]$$

$$\leq 2C_{1}\int_{0}^{t}E\left[N^{\gamma+\rho_{k}}\hat{\lambda}_{k}(Z^{N,\gamma}(s))\right]\,ds + 2t\int_{0}^{t}E\left[N^{2(\gamma+\rho_{k})}\hat{\lambda}_{k}(Z^{N,\gamma}(s))^{2}\right]\,ds \qquad (12)$$

Next, we will show $\sup_{t \le \tau_{\infty}^2} \int_0^t E[\mathcal{E}^N(s)] ds < O(N)$ using boundedness of moments of reaction terms. Since $\mathcal{D}^{N,2}(t)^2 \le (\kappa_2 + \kappa_3) Z_{237}^{N,2}(t)^2$, using the equation for $Z_{237}^{N,2}(t)$ from the one in Section 2 and (12), we get

$$E[Z_{237}^{N,2}(t)^2] \leq 2E[Z_{237}^{N,2}(0)^2] + 2E\Big[\big(N^{-1}R_4^t(N\kappa_4 Z_1^{N,2})\big)^2\Big]$$

$$\leq 2E[Z_{237}^{N,2}(0)^2] + 4C_1 \int_0^t N^{-1} \kappa_4 E[Z_1^{N,2}(s)] \, ds + 4t \int_0^t \kappa_4^2 E[Z_1^{N,2}(s)^2] \, ds$$

Using the equation for $Z_1^{N,2}(t)$ and (12), we get

$$E[Z_1^{N,2}(t)^2] \leq 2E[Z_1^{N,2}(0)^2] + 2E\Big[R_{13}(\kappa_{13})^2\Big]$$

$$\leq 2E[Z_1^{N,2}(0)^2] + 4C_1\kappa_{13}t + 4\kappa_{13}^2t^2.$$

Therefore,

$$\sup_{N} \sup_{t \le \tau_{\infty}^{2}} E[Z_{1}^{N,2}(t)^{2}] < \infty.$$
(13)

and this gives

$$\sup_{N} \sup_{t \le \tau_{\infty}^{2}} E[Z_{237}^{N,2}(t)^{2}] < \infty.$$
(14)

Using (14) and (8), we obtain

$$\sup_{t \le \tau_{\infty}^2} \int_0^t E[\mathcal{E}^N(s)] \, ds \quad < \quad O(N),$$

and this and (9) imply that for any $\epsilon > 0$ independent of N and for $\tau_{\infty}^2 > \epsilon > 0$,

$$\sup_{\epsilon < t \le \tau_{\infty}^{2}} E[\mathcal{D}^{N,2}(t)^{2}] \le \sup_{\epsilon < t \le \tau_{\infty}^{2}} \left(E[\mathcal{D}^{N,2}(0)^{2}] + \int_{0}^{t} NE[\mathcal{E}^{N}(s)] \, ds \right) e^{-2N^{2}(\kappa_{2}+\kappa_{3})t}$$
$$\longrightarrow 0,$$

as $N \to \infty$.

Next, we will derive limiting equations for Z_1^2 , Z_4^2 , and Z_5^2 . Using the equation for $Z_1^{N,\gamma}$ in Section 1, we get the equation for $Z_1^{N,2}$ as

$$Z_1^{N,2}(t) = Z_1^{N,2}(0) + R_{13}^t(\kappa_{13}) - R_{14}^t(\kappa_{14}Z_1^{N,2}).$$

Letting $N \to \infty$, we get

$$Z_1^2(t) = Z_1^2(0) + R_{13}^t(\kappa_{13}) - R_{14}^t(\kappa_{14}Z_1^2).$$

Since $Z_1^{N,2}(0) = Z_1^2(0) = X_1(0)$ due to $\alpha_1 = 0$, we actually have $Z_1^{N,2}(t) = Z_1^2(t)$. The equations for $Z_4^{N,2}$ and $Z_5^{N,2}$ are given from Section 1 as

$$Z_4^{N,2}(t) = Z_4^{N,2}(0) + N^{-2} \Big[R_6^t (N^2 \kappa_6 Z_3^{N,2}) - R_{18}^t (N^2 \kappa_{18} Z_4^{N,2}) \Big],$$

$$Z_5^{N,2}(t) = Z_5^{N,2}(0) + N^{-2} \Big[R_5^t (N^2 \kappa_5 Z_3^{N,2}) - R_{16}^t (N^2 \kappa_{16} Z_5^{N,2}) \Big].$$

Using the law of large numbers for Poisson processes and using (4), we get

$$Z_4^2(t) = Z_4^2(0) + \int_0^t \left(\kappa_6 \bar{Z}_3^2(s) - \kappa_{18} Z_4^2(s)\right) ds,$$

$$Z_5^2(t) = Z_5^2(0) + \int_0^t \left(\kappa_5 \bar{Z}_3^2(s) - \kappa_{16} Z_5^2(s)\right) ds.$$

Now, we will show that $\int_0^t Z_2^{N,2}(s) Z_6^{N,2}(s) ds$, $\int_0^t Z_6^{N,2}(s) ds$, $\int_0^t Z_4^{N,2}(s) Z_7^{N,2}(s) ds$, and $\int_0^t Z_7^{N,2}(s) ds$ are stochastically bounded in a finite time interval. First, we show that $\int_0^t E[Z_6^{N,2}(s) Z_8^{N,2}(s)] ds$ and $\int_0^t E[Z_4^{N,2}(s) Z_7^{N,2}(s)] ds$ are bounded for $t \leq \tau_{\infty}^2$. From the equation for $Z_{679}^{N,2}(t)$, we have

$$E[Z_{679}^{N,2}(t)] \leq E[Z_{679}^{N,2}(0)] + \int_0^t \kappa_7 E[Z_3^{N,2}(s)] \, ds.$$

Since $\sup_{t \le \tau_{\infty}^2} E[Z_3^{N,2}(t)]$ is uniformly bounded due to (14), we get

$$\sup_{N} \sup_{t \le \tau_{\infty}^{2}} E[Z_{679}^{N,2}(t)] < \infty.$$
(15)

Using $N^{-2}E[Z_{67}^{N,2}(t)] \le E[Z_{679}^{N,2}(t)]$, we also get

$$\sup_{N} \sup_{t \le \tau_{\infty}^{2}} N^{-2} E[Z_{67}^{N,2}(t)] < \infty.$$

From the equation for $N^{-2}Z^{N,2}_{67}(t)$, we have

$$N^{-2}E[Z_{67}^{N,2}(t)] \leq N^{-2}E[Z_{67}^{N,2}(0)] + \int_0^t \left(\kappa_7 E[Z_3^{N,2}(s)] + \kappa_{12} E[Z_9^{N,2}(s)] - \kappa_{10} E[Z_6^{N,2}(s)Z_8^{N,2}(s)]\right) ds.$$

Using (14) and (15), $\int_0^t \kappa_{10} E[Z_6^{N,2}(s)Z_8^{N,2}(s)] ds$ is uniformly bounded as

$$\sup_{N} \sup_{t \le \tau_{\infty}^{2}} \int_{0}^{t} \kappa_{10} E[Z_{6}^{N,2}(s) Z_{8}^{N,2}(s)] ds$$

$$\leq \sup_{N} \sup_{t \le \tau_{\infty}^{2}} \left\{ N^{-2} E[Z_{67}^{N,2}(0)] - N^{-2} E[Z_{67}^{N,2}(t)] + \int_{0}^{t} \left(\kappa_{7} E[Z_{3}^{N,2}(s)] + \kappa_{12} E[Z_{9}^{N,2}(s)] \right) ds \right\} < \infty.$$
(16)

Similarly from the equation for $Z_{237}^{N,2}(t)$, we have

$$E[Z_{237}^{N,2}(t)] \leq E[Z_{237}^{N,2}(0)] + \int_0^t \left(\kappa_4 E[Z_1^{N,2}(s)] - \kappa_{15} E[Z_4^{N,2}(s)Z_7^{N,2}(s)]\right) ds$$

Using (13), $\int_0^t \kappa_{15} E[Z_4^{N,2}(s)Z_7^{N,2}(s)] ds$ is uniformly bounded as

$$\sup_{N} \sup_{t \le \tau_{\infty}^{2}} \int_{0}^{t} \kappa_{15} E[Z_{4}^{N,2}(s) Z_{7}^{N,2}(s)] ds$$

$$\leq \sup_{N} \sup_{t \le \tau_{\infty}^{2}} \left\{ E[Z_{237}^{N,2}(0)] - E[Z_{237}^{N,2}(t)] + \int_{0}^{t} \kappa_{4} E[Z_{1}^{N,2}(s)] ds \right\} < \infty.$$

Finally, we show stochastic boundedness of $\int_0^t Z_2^{N,2}(s) Z_6^{N,2}(s) ds$ and $\int_0^t Z_6^{N,2}(s) ds$ for $t \leq \tau_{\infty}^2$. We split terms and obtain

$$\begin{split} P\left(\int_{0}^{t} \kappa_{9} Z_{2}^{N,2}(s) Z_{6}^{N,2}(s) \, ds > k\right) &\leq P\left(\int_{0}^{t} \kappa_{9} Z_{6}^{N,2}(s) Z_{8}^{N,2}(s) \, ds > \frac{k}{m}\right) + P\left(\sup_{t \leq \tau_{\infty}^{2}} \frac{Z_{2}^{N,2}(t)}{Z_{8}^{N,2}(t)} \, ds > m\right) \\ &\leq \underbrace{\frac{m}{k} E\left[\int_{0}^{t} \kappa_{9} Z_{6}^{N,2}(s) Z_{8}^{N,2}(s) \, ds\right]}_{(\mathrm{II})} + \underbrace{P\left(\sup_{t \leq \tau_{\infty}^{2}} \frac{Z_{2}^{N,2}(t)}{Z_{8}^{N,2}(t)} \, ds > m\right)}_{(\mathrm{III})}. \end{split}$$

Using (16) and taking k large enough, we can make the term in (I) small. Since $Z_2^{N,2}$ and $Z_8^{N,2}$ converge to their limits as $N \to \infty$ and since $Z_8^{N,2}(0) \neq 0$, we can take m large to make the term in (II) small. Therefore, $\int_0^t Z_2^{N,2}(s) Z_6^{N,2}(s) \, ds$ is stochastically bounded. For $t \in [0, \tau_\infty^2]$ we have

$$\int_{0}^{t} \mathbb{1}_{[r,\infty)}(Z_{6}^{N,2}(s)) \, ds \leq \int_{0}^{t} \frac{Z_{6}^{N,2}(s)}{r} \, ds, \tag{17}$$

and taking the probability in both sides of (17), for fixed $\delta > 0$, we get

$$P\left(\int_{0}^{t} \frac{Z_{6}^{N,2}(s)}{r} \, ds > \delta\right) \leq P\left(\inf_{t \le \tau_{\infty}^{2}} Z_{8}^{N,2}(t) \le \eta\right) + P\left(\int_{0}^{t} Z_{6}^{N,2}(s) Z_{8}^{N,2}(s) \, ds > r \delta \eta\right)$$
$$\leq \underbrace{P\left(\inf_{t \le \tau_{\infty}^{2}} Z_{8}^{N,2}(t) \le \eta\right)}_{(\text{III})} + \underbrace{\frac{1}{r \delta \eta} E\left[\int_{0}^{t} Z_{6}^{N,2}(s) Z_{8}^{N,2}(s) \, ds\right]}_{(\text{IV})}.$$

Since $Z_8^{N,2}(0) \neq 0$, we can take $\eta > 0$ small enough and r large enough to make both terms in (III) and (IV) small. Therefore, $Z_6^{N,2}$ is stochastically bounded for $t \in [0, \tau_{\infty}^2]$. Similarly, the stochastic boundedness of $Z_7^{N,2}$ can be shown using $\int_0^t Z_4^{N,2}(s) Z_7^{N,2}(s) ds$ and $\inf_{t \leq \tau_{\infty}^2} Z_4^{N,2}(t)$ instead of $\int_0^t Z_6^{N,2}(s) Z_8^{N,2}(s) ds$ and $\inf_{t \leq \tau_{\infty}^2} Z_8^{N,2}(t)$.

_	_	-	

6 Sketch of the proof of Remark 3

Denote

$$V_0^N(t) = \left(Z_{23}^{N,2}(t), Z_4^{N,2}(t), Z_5^{N,2}(t), Z_8^{N,2}(t), Z_9^{N,2}(t) \right)^T,$$

$$V_0(t) = \left(Z_{23}^2(t), Z_4^2(t), Z_5^2(t), Z_8^2(t), Z_9^2(t) \right)^T.$$

We already showed that $V_0^N \Rightarrow V_0$ as $N \to \infty$. We want to estimate an error between $V_0^N(t)$ and $V_0(t)$. Define $U^N(t) = r_N \left(V_0^N(t) - V_0(t)\right)$. If we show $U^N \Rightarrow U$, the error between $V_0^N(t)$ and $V_0(t)$ is approximately of order $r_{N_0}^{-1}$.

Suppose that $V_0^N(t)$ and $V_0(t)$ satisfy

$$M^{N,1}(t) = V_0^N(t) - V_0^N(0) - \int_0^t F^N(V^N(s)) \, ds,$$
(18)

$$V_0(t) = V_0(0) + \int_0^t \bar{F}(V_0(s)) \, ds, \tag{19}$$

where $F^N(V^N(t))$ is a drift and $M^{N,1}(t)$ is Poisson noise which gives fluctuations of V_0^N due to the corresponding reactions. V_0 is a solution of the stochastic processes whose randomness comes from Z_1^2 . The drift term of V_0 is obtained from the drift term of V_0^N by replacing the species numbers fluctuating very rapidly by some variables describing their averaged behavior. Since Z_1^2 rarely moves during the time interval of our interest, V_0 behaves almost like a deterministic process. Denote A_N as a differential operator which gives instantaneous behavior of the normalized species numbers $Z^{N,2}$ during a very short time interval. For some function H_N which is identified later, $A_N H_N$ gives a drift for the process H_N and denote $M^{N,2}(t)$ as noise. Then, $M^{N,2}(t)$ satisfies

$$M^{N,2}(t) = H_N(V^N(t)) - H_N(V^N(0)) - \int_0^t A_N H_N(V^N(s)) \, ds.$$
⁽²⁰⁾

Adding (18) and (19) and multiplying by r_N , we get

$$r_N M^{N,1}(t) = U^N(t) - U^N(0) - r_N \int_0^t \left(F^N(V^N(s)) - \bar{F}(V_0(s)) \right) \, ds.$$
(21)

Adding and subtracting terms, we rewrite (21) as

$$r_{N}M^{N,1}(t) = U^{N}(t) - U^{N}(0) - r_{N}\int_{0}^{t} \left(\bar{F}(V_{0}^{N}(s)) - \bar{F}(V_{0}(s))\right) ds$$

$$-r_{N}\int_{0}^{t} \left(F^{N}(V^{N}(s)) - F(V^{N}(s))\right) ds$$

$$-r_{N}\int_{0}^{t} \left(F(V^{N}(s)) - \bar{F}(V_{0}^{N}(s))\right) ds.$$
 (22)

We identify H_N such that $A_N H_N \approx F - \overline{F}$, and using (20), (22) becomes

$$r_N M^{N,1}(t) \approx U^N(t) - U^N(0) - r_N \int_0^t \left(\bar{F}(V_0^N(s)) - \bar{F}(V_0(s)) \right) ds - r_N \int_0^t \left(F^N(V^N(s)) - F(V^N(s)) \right) ds + r_N M^{N,2}(t) - r_N \left(H_N(V^N(t)) - H_N(V^N(0)) \right).$$
(23)

We can show that $r_N \int_0^t (F^N(V^N(s)) - F(V^N(s))) ds$ and $r_N (H_N(V^N(t)) - H_N(V^N(0)))$ converge to zero as N goes to infinity. We can show that $r_N (M^{N,1}(t) - M^{N,2}(t)) \Rightarrow M$ for an appropriately chosen r_N where

M is a process with mean-zero and independent increments satisfying

$$E\left[M(t)M^{T}(t)\right] = \int_{0}^{t} \bar{G}(V_{0}(s)) ds$$

If $\bar{G} = \sigma \sigma^T$, $U^N \Rightarrow U$ with U satisfying

$$U(t) = U(0) + \int_0^t \nabla \bar{F}(V_0(s))U(s) \, ds + \int_0^t \sigma(V_0(s)) \, dW(s),$$

where W(t) is a standard Brownian motion. Let $r_N = N^{1/2}$ and denote

$$U(t) = (U_{23}(t), U_4(t), U_5(t), U_8(t), U_9(t))^T$$

In the heat shock response model of E. coli for $\gamma = 2, U^N \Rightarrow U$ where U is a solution of

$$U(t) = + \int_{0}^{t} \begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix} \sqrt{\kappa_{4}Z_{1}^{2}(s) + \kappa_{9}\bar{Z}_{2}^{2}(s)\bar{Z}_{6}^{2}(s)} \, dW(s) \\ + \int_{0}^{t} \begin{bmatrix} -\frac{\kappa_{9}}{\kappa_{2}+\kappa_{3}} \left(\kappa_{3}\bar{Z}_{6}^{2}(s) + \frac{\kappa_{2}\kappa_{7}}{\kappa_{10}} \cdot \frac{\bar{Z}_{2}^{2}(s)}{\bar{Z}_{8}^{2}(s)}\right) U_{23}(s) + \kappa_{9} \frac{\bar{Z}_{2}^{2}(s)\bar{Z}_{6}^{2}(s)}{\bar{Z}_{8}^{2}(s)} U_{8}(s) - \frac{\kappa_{9}\kappa_{12}}{\kappa_{10}} \cdot \frac{\bar{Z}_{2}^{2}(s)}{\bar{Z}_{8}^{2}(s)} U_{9}(s) \\ \frac{\kappa_{2}\kappa_{4}}{\kappa_{2}+\kappa_{3}} U_{23}(s) - \kappa_{18}U_{4}(s) \\ \frac{\kappa_{2}\kappa_{5}}{\kappa_{2}+\kappa_{3}} U_{23}(s) - \kappa_{16}U_{5}(s) \\ -\frac{\kappa_{2}\kappa_{7}}{\kappa_{2}+\kappa_{3}} U_{23}(s) - \kappa_{11}U_{8}(s) \\ \frac{\kappa_{2}\kappa_{7}}{\kappa_{2}+\kappa_{3}} U_{23}(s) \end{bmatrix} ds.$$

Noise of the error between V_0^N and V_0 comes from two sources: one from the Poisson noise of V_0^N due to the corresponding reactions and the other from a difference between the drift term of V_0^N and its averaged behavior. In the case for $\gamma = 2$, we find that the noise of the error mainly comes from the Poisson noise of V_0^N and is dominantly determined by the error between $Z_{23}^{N,2}(t)$ and $Z_{23}^2(t)$, since the species number of S_{23} has lower order of magnitude than those for S_4 , S_5 , S_8 , and S_9 . Errors are estimated using the central limit theorem derived in [4]. A detailed proof is omitted.

References

- 1. Srivastava R, Peterson M, Bentley W: Stochastic kinetic analysis of the Escherichia coli stress circuit using σ^{32} -targeted antisense. *Biotechnol Bioeng* 2001, **75**:120–129.
- Kang HW, Kurtz T: Separation of time-scales and model reduction for stochastic reaction networks 2012. [To appear in Annals of Applied Probability (accepted). Online publication can be found in http://www.imstat.org/aap/future_papers.html. Preprint can be found in http://arxiv.org/abs/1011.1672].
- Athreya K, Kurtz T: A generalization of Dynkin's identity and some applications. The Annals of Probability 1973, 1(4):570–579.
- Kang HW, Popovic L, Kurtz T: Central limit theorems and diffusion approximations for multiscale Markov chain models 2012. [Submitted. Preprint can be found in http://arxiv.org/abs/1208.3783].