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1 The scaled stochastic equations

The stochastic equation governing the species numbers is

X(t) = X(0)+ Y RLOw(X) (i —m),
k=1

where

v = v [ t M) ds).

and the Yj’s are independent unit Poisson processes. Let Ay be an sy X sg-dimensional diagonal matrix

with entries N~%. The process for the scaled species numbers after a time change is described by
L)
2N = ZNI(0) + Ay ZRL (ny+pk)\k(ZN,7)) W — ).
k=1
The process ZV7 is an s¢-dimensional vector with each component written as

ZX() = Z(0) + N7 R (N0 ) — RE (N 00 27)]

23 = 2370+ N7 R (N Tk Z07) 4 R (N TPy 2117
RNV 152377 ) + RE(N T 016 2507 ) + RE (NP7 17 Z57)
FRAN T s Z)T) = RS (NP2 k2))
—R(N T kg 23 23],

23 = Z3(0) + N7 [RE(NT 2007 = RY(NTH2 15 2007

_RE(N7+p5/<;5ZéVW) _ Ré(NVJFpB/igZéV’W) _ Rt7(N7+p7H7ZéV,v) 7



270 = 2070+ N7 [REN g Z007) — Rig(NT s 20,
ZXW) = ZY(0) + N7 [RENTH s Z3) — Rig(NTHome 2007,
200 = Z30) N7 RN Z5) 4 RN s 2V
FR (N k12 207) 4 Rig (N2 k15 207 Z007)
—RY(N"* P rg 2y 25 7) = Rig(N"T 701025 7 257
~Ri (N2
2N = ZY(0) + N7 [RE N kg 23 2307 = RY(NTH s 27
—Ris(N%pwﬁwZiVﬁZ;M)}»
28 = Z8(0) + N7 [RENTH k) + Rip (N 205 2007)
— R (NP0 10257 257 — R§1(N7+p11"5112év’7)}>

270 = Z30) + N RN P kg 237 Z07) = Rip (N7 51027,

In each reaction term, R}, the propensity includes N7+ produced from scaling the species numbers in
the propensity and from change of the time variable. p;’s are given in the following table in terms of «;’s

and (;’s.

Table 1: Scaling exponents in propensities

Pk Pk Pk
o B pr  az+ 7 P13 Pis
p2 az+ B2 | pg  ar+fB pua a1+ Pu

p3 a3+ B3| pg  axtas+Py | p15 outar+ Bis
pe a1+PB4 | pro astas+Pio | pre as+ Bie
ps  az+ PG5 | puu ag+ B pir e+ Bir
pe asz+ B | p12 a9+ P2 pis o4+ Pig

2 ldentities
In this section, the governing equations for the linear combinations of the species used in this paper are
given. Denote addition of species So and S3 as Sa3, addition of species Sg and S7 as Sg7, addition of Ss, S3,

and S7 as So37, and addition of Sg, S7, and Sy as Sgrzg. Define variables for the normalized numbers of the



linear combinations of the species, Ss3, Sg7, S237, and Sgrg as

N Z) (1) + N 23 1)

N,y —
Z23 (t) - Nmax(az,ag) ’
ag 7Ny ar 7Ny
67 = Nmax(ag,or) ’
oy~ N N2 4 N2
237 = N max(az,az,a7) ’
pa = NOZO)F NI + N2y 1)
679 = '

Nmax(as,a7,09)

The stochastic equations for the linear combinations of the species are given as

ZE0 ) = ZN(0) + N max(ezes) [R (N1, ZN 7Y 4 RE(NTHPs g 2V
—RY(NVPo gz N Z Y )},
Zé\;v(t) = Zé\;’W(O) + N~ max(as,ar) [R N7+p7/€7ZN7) +RY (N7+P12,<;12ZN"/)
— Rl (NP0 207 Z507) — R§7(N"+p17l€17zévﬁ)}7
Zy7(t) = Zag7 (0) N7 mexozesen) [RZ(NW’“MZ?W) - R§5(N7+Pl5n15ZiV’VZ;VW)},
Z53W) = Z(0) + N mesleaenan) [RUNTH 5 Z0) - RE (N7 117 2007,

To show convergence of ZéV’Q and Zév’z as N — oo in Section 5.1, we use an equation for (NQZéV’2(t) —
IigZéV’Z(t))z. Define

ko N2 Z2 (1) — kg N3 Z30 7 (1)

Nmax(ag,ag)

DN”V(t) =

Using the equations for Zév"7 and Z?])V’7 given in Section 1, DNV satisfies
DV (1) = DVI(0) + (13 + Ka) N~ 25(029) [ RE (N0, 2
+ RE(NYFP5 s Z007) + RE(NTHPo kg Z207) + RE(NTHP7 17 Z507)
_ Rg (N'y+pz @Zév"y) + ko N~ max(az,a3) [RZ(NV""M/MZ{V’W)

+ RY(NTH 5k Z)7) = RA (N 210 2307 2007 .



Using (1) and applying Ito’s formula, we have

DY = DY(0)2 4 N2 [ oy 4 DY)
0
x [ng(N"Y*"S ks ZNT) + RS (NP ks 207 + dRS(N Vo kg ZN )
AR (N7 ke Z00T) = ARS(NTH 215 23|
+ N max(az,05) /0 t 2k DN (5-) {dRi(N”*”‘*mZ{V )
+ARY(NT s ZY) — dRY (N0 207 20| 2)
(2 + g 2N 200 [R (N4 0, ZN) 4 RY(NTH252007)
+ RY(NTHPo kg ZIT) + RE(NYHP7 7 257 + RY (NP2 i Z207)

+ H%N_Q max(az,as) [RZ(N’Y—HM H4z{\77"/) + Ré (N’H‘Ps KZSZ;V”Y)

+ RY(NTH g 23 207

3 Scaling exponents and rate constants

Recall that the normalized rate constants are defined as

Kk

!
K

NG

where Ny = 100 in this paper. In Table 2 and 3, unscaled and scaled rate constants are given with the

corresponding scaling exponents.

Table 2: The unscaled stochastic reaction rate constants

Rates Rates Rates
k) 4.00x10° | kL 4.88x 1073 | K}, 3.62x 1077
Ky T.00x1071 | kg 440 x 107 | Ky 9.99 x 1070
Ky 1.30x 1071 | Ky 3.62x 107 | Ky, 440 x 1070
Ky T.00x1073 | Ky 3.62x107% | k)3 140 x 107°
kKt 6.30x 1073 | Ky 9.99x 1075 | K}, 1.40 x 107°
kg 4.88x 1073 | Ky 4.40x107° | K5  1.42x 107°
Ky 4.88x 1073 | ki3 1.40x107° | K} 1.80 x 1078
kg 440x107% | kly 1.42x 1075 | K}, 6.40 x 10710
Ky 3.62x107% | klg 1.80 x 1078 | Kig 7.40 x 10711




Table 3: The scaled stochastic reaction rate constants with scaling

exponents

Scaled rates [ Scaled rates [ Scaled rates Ok

K1 4 ﬂl 0 K7 0.488 ﬂ7 -1 K13 0.14 513 -2
Ko 0.7 Bo 0 | kg 4.4 Bs —2 | Ky 0.014 Bra  —2
K3 0.13 03 0 | kg 3.62 Bt =2 Kis 1.42 o =3
K4 0.7 ﬁ4 -1 K10 3.62 ﬁiko —2 K16 0.00018 616 -2
K5 0.63 ﬂ5 -1 K11 0.999 ﬂll -2 K17 0.0000064 617 -2
Rg 0.488 ﬂﬁ -1 K12 0.44 512 -2 K18 0.00000074 ﬂlg -2

In Table 4, three sets of a;’s and pg’s we use in this model are given.

Table 4: Scaling exponents

o First  Second Third | px First  Second  Third | px First  Second  Third
scaling scaling scaling scaling scaling scaling scaling scaling scaling
al? 1 0 0 o1 0 0 0 pro =2 -1 0
o 0 0 1 P2 0 0 1 p =2 -1 0
ol 0 0 1 p3 0 0 1 pra =2 -1 0
Qy 2 2 2 P4 0 -1 -1 P13 -2 -2 -2
as 2 2 2 05 —1 -1 0 P14 -1 —2 —2
Qg 0 0 0 06 -1 -1 0 P15 -1 -1 -1
ar 0 0 0 7 -1 -1 0 P16 0 0 0
o 0 1 2 |ps =2 -2 -2 | pr 2 —2 -2
o 0 1 2 pg =2 —2 -1 | pis 0 0 0

The initial species numbers of the parametrized family by N are given as

o = |(3)" 5o

and the normalized initial species numbers are given as

so that Z,"7(0) — = Xi(0) = Z](0) as N — co. In Table 5, the initial species numbers, X;(0), obtained
0

from [1] and limits of the normalized initial species numbers, Z7(0), in the three time scales are given.

1% are scaling exponents for bimolecular reaction rate constants.
2a;’s depending on v is marked by t.



For the a;’s and pi’s determining the three scalings given in Table 4, we check the balance equations

given in Table 4 in the main paper. If the balance equation fails, the corresponding time-scale constraint is

computed. We have

Table 5: Initial values used in the simulation

Initial values

¥y=0 =1 =2

S1
So
S3
Sy
S
Se
S7
Sy
Sy

10
1
1
93

172

o4
7
50
0

0.1 10
1 1
1 1

10
0.01
0.01

0.0093 0.0093 0.0093
0.0172 0.0172 0.0172

54 54
7 7
50 0.5
0 0

54

7
0.005
0

Table 6: Balance conditions used in the model

First Second Third First Second Third
scaling scaling scaling scaling scaling scaling
S| y<2 balanced balanced | Sy + S3+ 57 | v <0 balanced balanced
Sy | balanced balanced balanced | Sy + S3 v<0 <1 balanced
S3 | balanced balanced balanced | S + S7 balanced balanced balanced
Sy | v<2 v <2 balanced | S +S7+ Sy | ¥ <1 <2 v <2
Ss | vy<2 v <2 balanced | Sg + S7 v<1 balanced balanced
Se | <1 balanced balanced | Sg + So v<1 v <2 <2
Sz v<1 v<1 balanced | Sg + Sy v<0 v<1 balanced
Sg | <0 <1 balanced
Sy | balanced balanced balanced

4 Solution of balance conditions computed using Maple

To select values for scaling exponents based on the balance equations, we solve the balance equations with

some conditions for monotonicity using Maple. The following gives the results we obtain from Maple.

restart :

with(simplex)

BalanceEquations := {613 = a1 + B4,




max(az + (3, a1 + [, a3 + 85, a3 + B, a3 + Br, a7 + Bs)
= max(az + B2, a2 + ag + By),
Qg + B2 = max(az + (3, a3 + 35, a3 + B, a3 + B7),
az + 6 = as + Bis, a3 + B5 = as + P,
max(as + 87, a7 + B, ag + P12, a4 + a7 + Bi5)
= max(ag + ag + B9, a + ag + B0, a6 + Bi7),
az + ag + By = max(ar + fs, 4 + ar + fis),
max (1, ag + B12) = max(ag + ag + Bio, ag + Bi1),
ag +ag + P10 = ag + P12, a1 + B = aq + az + Pis,
max(ay + [y, ar + ) = az + ag + o,
max(az + (3, a1 + [, a3 + G5, a3 + B, a3 + Br)
= max(ag + B2, 4 + a7 + Bis5), az + 87 = ag + iz,
max(az + f7, a7 + B, a4 + a7 + B15)
= max(ag + ag + B9, a6 + Bi7),
max (a3 + (7, ag + f12) = max(as + as + Bio, a6 + P17),
B =as + ﬁn}
Conditions = {ﬂl — 51320, Bg — B10 >0, Bro — Bis > 0, B2 — B3 > 0,
B3 —=B142>0,81—085>0, 05— >0, B — 7 >0,
Br—PBs >0, 8s — P11 =0, B11 — P12 > 0, P2 — f1a > 0,
Bra — P16 = 0, B16 — P17 = 0, P17 — Pis > 0}
Outputs := solve(Balance Equations, useassumptions) assuming Conditions
{041 = —f4+ as + a7 + Bis, a2 = —ag — Pg + max(ay + fs, a4 + a7 + Pi5),
az =g, g = ay, a5 = a3 + B5 — Bis, 6 = a6, a7 = a7, ag = asg,
ag = ag + as + fio — P2, f1 = as + B,
B2 = ag + g — max(ar + Bs, s + a7 + Bis) + az + [,
Bs = B3, Ba = Ba, Bs = B5, 6 = —a3 + au + Pis, fr = —az + as + P,

Bs = B8, Po = Po, Bro = P10, Bi1 = P11, Pi2 = P12,



Bz = = B4 + ag + ar + Bis + P4, Bia = Bia, Bis = Pis, Bis = Bies

Bir = Bz, Bus = Bus }

5 The proof of Theorem 1
To prove the convergence for v = 0 and v = 1, we apply Theorem 4.1 in [2]. Following from Theorem 4.1

(and Remark 4.2) in [2], ZNY = Z7 in the first time scale on [0, 7o,) Where

Too = lim TCEinf{t:supZW(s)Zc}.

€00 s<t
The theorem is directly applicable for v = 0, since the first time scale of interest in this model is when v = 0.

For v =1, we define a stopping time

TNe = inf{t:supZN’l(s)Zc},

s<t

so that Z™:1(t) is bounded for t < 7‘11\[7 .- We compare a scaling exponent for each species number to those
for all rates of reactions involving the species. Then, «; is less or equal to v + py for each k € FZ'-" ul; for
all species except for Species 2 and 3, i.e., the only species possibly not bounded in this time scale are So
and S3. On the other hand, Zév’l(t),ZéV’l(t) < ZQJ\é’l(t) < con [0,7y,). Therefore, relative compactness
of {ZN1(- A Tx )} is satisfied, since all propensities AR(ZNL( A Tx..)) are uniformly bounded. Then,

(ZNYATN D The) = (21 (- ATl),7}) for all but countably many ¢ and we can set 73, = lime oo 7. .

5.1 The proof of the convergence for v = 2

Proof. Computing natural time scales of the species, we get vo =713 =% =0, 77 =1, and v =4 = v5 =
Y8 = 7v9 = 2. Since we already get the limiting models for Ss, S3, Sa3, Sg, S7, and Sy in the previous time
scales, we set v = 2 and derive a limiting model for a subset of species we are interested in. For v = 2, Z{V ’27
Ziv727 ZéV’Q, Zév’z, and Zév’2 are of order 1, and averaged behavior of Zév727 ZéV’Q ZéV’Q, and Z;V’Q is expressed
in terms of the limits of the scaled species numbers of order 1 in this time scale. In the section of limiting
models in three time scales in the main text, we already derived limiting equations for Z3;, Z2, and Z2.

Define
DN2(t) = koZy(t) — ks Za 2 (1).

First, we will prove that the scaled species numbers for fast fluctuating species, Sy and Ss3, actually converge
to a limit in a finite time interval. That is, for any fixed € > 0 and for any ¢ such that e < ¢t < 72,

K3

ZyR () — Z3(t) = —>—
5 (1) 2(t) =

Z33(t), (3)



_ Ko
ZN) — 20 = 2, @

as N — oo by showing DN2(£)2 — 0 for € < ¢t < 72 and using Z2y>(t) — Z3(t). The scaled species
numbers of S and S5 may not converge to Z2(t) and Z2(t) in t € [0, €], since o Zy 2(0) — k3 Zs>(0) may

not converge to zero. Plugging «;’s and pi’s in (2), we have
DN2(1)? = DV2(0)? 4 N1 /0 s + ra)DV2(s-) (5)
x| dR3 (N Z'%) 4+ dRS (N1 23'2) + ARG (N6 23 ) + ARG (N7 23 %) = dR3(N* o Z3')]
+N ! /Ot 2k D2 (s—) % [de(NmZ{V’z) +dR§(rksZ7 %) — dR§(NkoZy 2 Z3?)
+N "2y + 1i3)? [ RE(NP s Z302) + RE(N?1is 237) + Ry (N?ko 20 %) + Ry (N*he Z3'%) + RE(N*raZ3')]
+N72k3 {RQ(NMZ{V %) + Ri(rsZ7 %) + RY(NkoZy * 25 72)} :

Define reaction terms centered by their propensities as

t
RL(NYEPRN(ZNY)) = RL(NTEPR N (Z2N7)) — / NYFPEN(ZN (s)) ds.
0

Centering propensity in each reaction term in (5), we get

t
DN2(t)2 = DV2(0)2 + MV (1) + / [—2N?% (ks + 13)DV2(s5)? + NEN(s)] ds, (6)
0
where
EN(t) = 2(ka + K3) (ks + ke + k7)DV2(t—)Z3 2 (1)
FON LRy DN 2(t-) {meV’Q(t) + Nl ZN2(¢) — ngéV’Q(t)Zév’g(t)}
(2 + 13)? K 23 (6) + N7 (ks + kg + k) 23 2(8) + 1223 2(1)|
SN2 (a2 () 4 N e ZD () + moZ) (0207 0)
and

MM ()= N1 /Ot 2(kyp + k3) DN (5—)
x| AR5 (N1 Z32) + AR5 (N5 Z37) + ARG (N* e Z3'2) + AR (N* 7 23'%) — AR5 (N 2)]
+N1 /0 t 259DV (5—) x {de(N/uZ{V’Z) + dR3 (ks Z2?) — ng(ngz;VszéVvQ)}
+N "2 (k2 + K3)? [RQ(N%;),Z;,V’Q) + RE(N?w5Z3%) + RE(N? ke Z3 ) + RE(N? ke Z3y %) + Rg(zv%zz;“)}

+N"2x2 [RZ(NH4ZfV’2) + R(ks ZN2) + RY (N ko Zy 2 22|



In (6), [-2N?(kg + k3)(DN-2)2 + NEN] is a drift and M¥ gives noise of (DV:2)? around its mean satisfying
EMY (@) = 0. (7)

Taking an expectation in (6) and using (7), we get

t

E[DY2(1)] = E[DN2(0) - /

2N? (kg + r3) E[DN?(s5)?] ds + /t NE[EN (s)] ds. (8)
0 0

By Gronwall’s inequality, we get
t
E[DN2(1)’] < (E[DN’z(O)Q] + / NE[EN (5)] ds)e_QNz("”“f‘)t. (9)
0

Now, we will get an upper bound for the second moment of reaction terms. Let X(-) be a centered
Poisson process with mean zero and 7 be a stopping time for the process {X(¢);t > 0}. Theorem 7 in [3]

says that for n > 2, there exist constant C' (finite and positive) depending on n such that
E[IX(7)["] < Cmax {E[r], E[r"/]}. (10)

Setting 7 = fot NP\ (ZN () ds and X (1) = RL(NYHPEN(ZN7)), we have E[X(7)] = 0 and Theorem

7 is applicable. Using Cauchy-Schwarz inequality, we get

E[RLNYs N (ZN7)?] = E

(Aveszy o+ [ N2V (s)) d)]

( /0 t NYFPEX(ZN(s)) ds) 21 . (11)

Then, applying (10) to (11) and using Holder’s inequality, we get an upper bound for the second moment of

< 2B [RL(NTA(2V)2] + 2B

the random process.
B [ RN A (V)]

t
<2C1E U N7+p’“5\k(ZN’7(s))ds} +2F
0

(/Ot ROV VARI) d5> 2]

<204 /0 ‘& [NW%(ZN”(s))] ds + 2t /O ‘B [N2<7+Pk>ﬂk(ZN”(s))2} ds (12)

Next, we will show sup,2 f(f E[EN(s)]ds < O(N) using boundedness of moments of reaction terms.
Since DN2(1)2 < (kg + k) Zay2 (t)2, using the equation for Zag2 (t) from the one in Section 2 and (12), we

get
EIZNZ@?) < 2B[ZN207] + 2B (N7 Ry (Nwa2)'?)) ]

10



¢ ¢
< 2B[Z32(0)?] +4Cl/ N7 ey E[Z)Y2(s)] ds +4t/ K2E[Z)2(s)? ds.
0 0
Using the equation for Z;"?(t) and (12), we get

BlZN*t)?) < zE[Z{“(o)?]+2E[313(n13)ﬂ

< 2B[2%(0)?] + 401 kst + k34t

Therefore,

sup sup E[Z) (1) < oo. (13)
N t<72

and this gives
sup sup E[Za2(t)?] < oo (14)
N t<72

Using (14) and (8), we obtain

sup /OtE[SN(s)]ds < O(N),

t<t2

and this and (9) imply that for any ¢ > 0 independent of N and for 72, > ¢ > 0,

sup E[DV2(t)’] < sup (E[DN72(0)2]+ /tNE[SN(s)}ds)e—2N2(~z+n3)t
0

e<t<t2 e<t<t2

— 0,

as N — oo.
Next, we will derive limiting equations for Z2, Z2, and Z2. Using the equation for Z"” in Section 1, we

get the equation for va 2 as
2 = Z20%(0) + Rig(ris) — Rig(k1a2y?).
Letting N — o0, we get
Zi(t) = Zi(0)+ Riz(k1s) — Ris(k1aZ7).

Since Z1%(0) = Z2(0) = X1(0) due to a; = 0, we actually have Z1?(t) = Z2(t). The equations for Z,

N2 . .
and Z;° are given from Section 1 as

2V = 20+ N2 RN — BV a2

72Nt = Z5*(0)+ N2 {RE(N%%Z?I,V’Z) - R§6(N2n1625],v’2)]

11



Using the law of large numbers for Poisson processes and using (4), we get

20 = O+ | (reZis) = i ZE) ds,
22 = Z2(0)+ /O (ks Z2(s) — r16Z2(s)) ds.

Now, we will show that fot Z32(s) 2 (s) ds, fg Zy2(s) ds, fg ZN2(5) 2N (s) ds, and fg ZN2(s)ds
are stochastically bounded in a finite time interval. First, we show that fg E[Z{%(s)ZY 2 ()] ds and

fot E[Z)N?(s)ZN?(s)] ds are bounded for ¢ < 72.. From the equation for Z v (t), we have
t
BIZG0) < Bz O+ | wrBlzy )]s
Since sup;< 2. E[Zév’2 (t)] is uniformly bounded due to (14), we get

sup sup E[ZX2(t)] < oo. (15)
N t<72

Using N72E[Z32(t)] < E[Z&2(t)], we also get

sup sup N 2E[Zo?(t)] < oo.
N t<72

From the equation for N=2Z20%(t), we have
t
N7E[Zg*(t)] < N7?E[Zg*(0)] +/ (k7 B[22 ()] + s12 B (25" (5)] = mi0E[Zg ()25 *(s)]) ds.
0
Using (14) and (15), fot k10 E[Z8 2 (s) Z8 % (s)] ds is uniformly bounded as

t
sup sup / k0B[22 (s) 22 ()] ds (16)
0

N t<72

< sup sup {N‘QE[Z(];;’Q(O)} — N2E[ZN2(1)] +/O (k7 E[ZN2(9)] + k12 B[22 (s)) ds} < .

N t<72
Similarly from the equation for Zsg2 (t), we have
t
BIZSE0) < BIZRRON+ [ (B2 (o) = maBlZ) ()28 (s)) s
. t N.2 N2 . .
Using (13), [, k15E[Z, " (s)Z7 " (s)] ds is uniformly bounded as
t
sup sup / ks B1ZN 2 (s) 222 ()] ds
N t<72 Jo

< sup sup {E[Z%?(O)] — B1Z32 (1) +/0 kaB[ZY2(s)] ds} < 0.

N <72

12



Finally, we show stochastic boundedness of fot Z32(s)Z5"2(s) ds and fot ZY2(s)ds for t < 2. We split

terms and obtain

K N2 N2 K N,2 N2 k ZN’2<t)
P(/ H9Z27(8)Z67(8)d8>k> < P(/ HQZG’(S)ZS7(S)CZS>)+P sup —2———2ds >m
0 0 m t<73 ZS ' (t)
t N,2
m N2 N2 Zy " (t)
< —E//iZ’ VAN sds}—i—P su ds>m|.
k |: 0 946 ( ) 8 ( ) <t§7’1;2)0 ZéV,Q(t)

¢9) (11)
Using (16) and taking k large enough, we can make the term in (I) small. Since ZQN 2 and Zév 2 converge to

their limits as N — oo and since Zé\m(()) # 0, we can take m large to make the term in (II) small. Therefore,

fg Z3"2(s)Ze % (s) ds is stochastically bounded. For t € [0,72] we have

t t N,2
/ Lo (ZV2(s)) ds < / Z5(5) 4 (17)
0 0

r

and taking the probability in both sides of (17), for fixed § > 0, we get

"Z57(s) 4
P(/O " d>5>

IN

t
P ( inf Zév’z(t) < 77> +P (/ Zév’2(s)ZéV’2(s) ds > 7‘577)
0

t<t2

IA

t
P ( inf Z2(t) < 77) + L E [/ Z3 2 (5) 282 (s) ds] .
rén 0

t<72

(117) ()

Since Zév 2(0) # 0, we can take 7 > 0 small enough and 7 large enough to make both terms in (III) and
(IV) small. Therefore, Z¢"? is stochastically bounded for ¢ € [0,72]. Similarly, the stochastic boundedness
of ZM? can be shown using fg ZYN2(5)ZN2(s) ds and infi< 2 ZY2(t) instead of fot ZY2(5) 232 () ds and

inf, <2 Z3 ().

6 Sketch of the proof of Remark 3
Denote
VN0 = (25202020, 20, 20, 27

(Z35(1), Z3(t), Z2(t), Z2(1), Z3(1)) " .

=
—~

~
~

We already showed that Vi¥ = V as N — oo. We want to estimate an error between V" (t) and Vi (t). Define
UN(t) =ry (V¥ (t) — Vo(t)). If we show UYN = U, the error between ViV (t) and Vy(t) is approximately of

-1
order r No-
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Suppose that VY (t) and Vp(t) satisfy

FY(V¥(s)) ds, (18)

S~

MM = V() = Ve (0) -

Vo (t) Vo(0) + [ F(Vo(s)) ds, (19)

0
where FN (VN (t)) is a drift and M™:1(¢) is Poisson noise which gives fluctuations of V¥ due to the corre-
sponding reactions. Vj is a solution of the stochastic processes whose randomness comes from Z7. The drift
term of Vj is obtained from the drift term of V;¥ by replacing the species numbers fluctuating very rapidly
by some variables describing their averaged behavior. Since Z? rarely moves during the time interval of our
interest, V) behaves almost like a deterministic process. Denote Ay as a differential operator which gives
instantaneous behavior of the normalized species numbers ZY:2 during a very short time interval. For some
function Hy which is identified later, Ay Hy gives a drift for the process Hy and denote MV ’z(t) as noise.
Then, MN:2(t) satisfies
t
MN2(t) = Hy(VN(t) — Hv(VN(0)) — /O AnHn(VN(s))ds. (20)

Adding (18) and (19) and multiplying by rx, we get
¢
M) = U -0V 0) -y [ (V) - FOG() ds (21)
0
Adding and subtracting terms, we rewrite (21) as

MY = UV () - UN(0) — /0 (P(5Y () = F(Vo(5)) ds

t

TN (FN(VN(S)) - F(VN(S))) ds (22)

—rn | (F(VY(s) = F(V"(5))) ds.

/
t
J
We identify Hy such that Ay Hy ~ F — F, and using (20), (22) becomes
t
M)~ U - UN ) -y [(FOG () - F(Va()) ds
0

iy /0 (FN(VN(s) = F(VN(s))) ds (23)

+rn MY () — vy (Hy (VY () — Hy (VY(0))) -

We can show that ry fot (FN(VN(s)) = F(VN(s))) ds and ry (Hy (VN (t)) = Hy (VN (0))) converge to zero

as N goes to infinity. We can show that ry (M™1(t) — M™-2(t)) = M for an appropriately chosen ry where
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M is a process with mean-zero and independent increments satisfying
t —
EMEM" ()] = / G(Vo(s)) ds.
0
If G =o0l, UN = U with U satisfying
t B t
Ut = VO + [ VEGUE s+ [ olVa(s) v s),
0 0
where W (t) is a standard Brownian motion. Let 7y = N'/2 and denote
U(t) = (Uns(t),Ua(t), Us(), Us(t), Ua(t)" .

In the heat shock response model of E. coli for v = 2, UN = U where U is a solution of

1
¢ 0 - —
Uy = + / 0 | \fraZ2(s) + raZ3(s) Z3(s) W (5)
010
0
r K > Kok Z2(s Z2(s)Z2 (s Kok Z2(s
~ites (R Z800) + 5257 ) V(o) + mo BERT (o) - 28+ ST o
t H’ZT’; UQJ(S) — /€18U4(S)
+/0 ’/22_:23 U23(S) - K16U5(S) ds.
—HZT’ZS U23(8) — Iﬂ;llUg(S)
L rars U23(5)

Noise of the error between V¥ and V; comes from two sources: one from the Poisson noise of ViV due to
the corresponding reactions and the other from a difference between the drift term of ViV and its averaged
behavior. In the case for v = 2, we find that the noise of the error mainly comes from the Poisson noise of
V¥ and is dominantly determined by the error between Zé\g’Q(t) and Z3,(t), since the species number of Sa3
has lower order of magnitude than those for Sy, S5, Ss, and Sg. Errors are estimated using the central limit

theorem derived in [4]. A detailed proof is omitted.
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