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1 The scaled stochastic equations

The stochastic equation governing the species numbers is

X(t) = X(0) +
r0∑

k=1

Rt
k(λk(X))(ν′k − νk),

where

Rt
k (λk(X)) = Yk

(∫ t

0

λk(X(s)) ds

)
,

and the Yk’s are independent unit Poisson processes. Let ΛN be an s0 × s0-dimensional diagonal matrix

with entries N−αi . The process for the scaled species numbers after a time change is described by

ZN,γ(t) = ZN,γ(0) + ΛN

r0∑
k=1

Rt
k

(
Nγ+ρk λ̂k(ZN,γ)

)
(ν′k − νk).

The process ZN,γ is an s0-dimensional vector with each component written as

ZN,γ
1 (t) = ZN,γ

1 (0) + N−α1

[
Rt

13(N
γ+ρ13κ13)−Rt

14(N
γ+ρ14κ14Z

N,γ
1 )

]
,

ZN,γ
2 (t) = ZN,γ

2 (0) + N−α2

[
Rt

3(N
γ+ρ3κ3Z

N,γ
3 ) + Rt

4(N
γ+ρ4κ4Z

N,γ
1 )

+Rt
5(N

γ+ρ5κ5Z
N,γ
3 ) + Rt

6(N
γ+ρ6κ6Z

N,γ
3 ) + Rt

7(N
γ+ρ7κ7Z

N,γ
3 )

+Rt
8(N

γ+ρ8κ8Z
N,γ
7 )−Rt

2(N
γ+ρ2κ2Z

N,γ
2 )

−Rt
9(N

γ+ρ9κ9Z
N,γ
2 ZN,γ

6 )
]
,

ZN,γ
3 (t) = ZN,γ

3 (0) + N−α3

[
Rt

2(N
γ+ρ2κ2Z

N,γ
2 )−Rt

3(N
γ+ρ3κ3Z

N,γ
3 )

−Rt
5(N

γ+ρ5κ5Z
N,γ
3 )−Rt

6(N
γ+ρ6κ6Z

N,γ
3 )−Rt

7(N
γ+ρ7κ7Z

N,γ
3 )

]
,
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ZN,γ
4 (t) = ZN,γ

4 (0) + N−α4

[
Rt

6(N
γ+ρ6κ6Z

N,γ
3 )−Rt

18(N
γ+ρ18κ18Z

N,γ
4 )

]
,

ZN,γ
5 (t) = ZN,γ

5 (0) + N−α5

[
Rt

5(N
γ+ρ5κ5Z

N,γ
3 )−Rt

16(N
γ+ρ16κ16Z

N,γ
5 )

]
,

ZN,γ
6 (t) = ZN,γ

6 (0) + N−α6

[
Rt

7(N
γ+ρ7κ7Z

N,γ
3 ) + Rt

8(N
γ+ρ8κ8Z

N,γ
7 )

+Rt
12(N

γ+ρ12κ12Z
N,γ
9 ) + Rt

15(N
γ+ρ15κ15Z

N,γ
4 ZN,γ

7 )

−Rt
9(N

γ+ρ9κ9Z
N,γ
2 ZN,γ

6 )−Rt
10(N

γ+ρ10κ10Z
N,γ
6 ZN,γ

8 )

−Rt
17(N

γ+ρ17κ17Z
N,γ
6 )

]
,

ZN,γ
7 (t) = ZN,γ

7 (0) + N−α7

[
Rt

9(N
γ+ρ9κ9Z

N,γ
2 ZN,γ

6 )−Rt
8(N

γ+ρ8κ8Z
N,γ
7 )

−Rt
15(N

γ+ρ15κ15Z
N,γ
4 ZN,γ

7 )
]
,

ZN,γ
8 (t) = ZN,γ

8 (0) + N−α8

[
Rt

1(N
γ+ρ1κ1) + Rt

12(N
γ+ρ12κ12Z

N,γ
9 )

−Rt
10(N

γ+ρ10κ10Z
N,γ
6 ZN,γ

8 )−Rt
11(N

γ+ρ11κ11Z
N,γ
8 )

]
,

ZN,γ
9 (t) = ZN,γ

9 (0) + N−α9

[
Rt

10(N
γ+ρ10κ10Z

N,γ
6 ZN,γ

8 )−Rt
12(N

γ+ρ12κ12Z
N,γ
9 )

]
.

In each reaction term, Rt
k, the propensity includes Nγ+ρk produced from scaling the species numbers in

the propensity and from change of the time variable. ρk’s are given in the following table in terms of αi’s

and βk’s.

Table 1: Scaling exponents in propensities

ρk ρk ρk

ρ1 β1 ρ7 α3 + β7 ρ13 β13

ρ2 α2 + β2 ρ8 α7 + β8 ρ14 α1 + β14

ρ3 α3 + β3 ρ9 α2 + α6 + β9 ρ15 α4 + α7 + β15

ρ4 α1 + β4 ρ10 α6 + α8 + β10 ρ16 α5 + β16

ρ5 α3 + β5 ρ11 α8 + β11 ρ17 α6 + β17

ρ6 α3 + β6 ρ12 α9 + β12 ρ18 α4 + β18

2 Identities

In this section, the governing equations for the linear combinations of the species used in this paper are

given. Denote addition of species S2 and S3 as S23, addition of species S6 and S7 as S67, addition of S2, S3,

and S7 as S237, and addition of S6, S7, and S9 as S679. Define variables for the normalized numbers of the
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linear combinations of the species, S23, S67, S237, and S679 as

ZN,γ
23 (t) ≡ Nα2ZN,γ

2 (t) + Nα3ZN,γ
3 (t)

Nmax(α2,α3)
,

ZN,γ
67 (t) ≡ Nα6ZN,γ

6 (t) + Nα7ZN,γ
7 (t)

Nmax(α6,α7)
,

ZN,γ
237 (t) ≡ Nα2ZN,γ

2 (t) + Nα3ZN,γ
3 (t) + Nα7ZN,γ

7 (t)
Nmax(α2,α3,α7)

,

ZN,γ
679 (t) ≡ Nα6ZN,γ

6 (t) + Nα7ZN,γ
7 (t) + Nα9ZN,γ

9 (t)
Nmax(α6,α7,α9)

.

The stochastic equations for the linear combinations of the species are given as

ZN,γ
23 (t) = ZN,γ

23 (0) + N−max(α2,α3)
[
Rt

4(N
γ+ρ4κ4Z

N,γ
1 ) + Rt

8(N
γ+ρ8κ8Z

N,γ
7 )

−Rt
9(N

γ+ρ9κ9Z
N,γ
2 ZN,γ

6 )
]
,

ZN,γ
67 (t) = ZN,γ

67 (0) + N−max(α6,α7)
[
Rt

7(N
γ+ρ7κ7Z

N,γ
3 ) + Rt

12(N
γ+ρ12κ12Z

N,γ
9 )

−Rt
10(N

γ+ρ10κ10Z
N,γ
6 ZN,γ

8 )−Rt
17(N

γ+ρ17κ17Z
N,γ
6 )

]
,

ZN,γ
237 (t) = ZN,γ

237 (0) + N−max(α2,α3,α7)
[
Rt

4(N
γ+ρ4κ4Z

N,γ
1 )−Rt

15(N
γ+ρ15κ15Z

N,γ
4 ZN,γ

7 )
]
,

ZN,γ
679 (t) = ZN,γ

679 (0) + N−max(α6,α7,α9)
[
Rt

7(N
γ+ρ7κ7Z

N,γ
3 )−Rt

17(N
γ+ρ17κ17Z

N,γ
6 )

]
.

To show convergence of ZN,2
2 and ZN,2

3 as N → ∞ in Section 5.1, we use an equation for
(
κ2Z

N,2
2 (t) −

κ3Z
N,2
3 (t)

)2. Define

DN,γ(t) ≡ κ2N
α2ZN,γ

2 (t)− κ3N
α3ZN,γ

3 (t)
Nmax(α2,α3)

.

Using the equations for ZN,γ
2 and ZN,γ

3 given in Section 1, DN,γ satisfies

DN,γ(t) = DN,γ(0) + (κ2 + κ3)N−max(α2,α3)
[
Rt

3(N
γ+ρ3κ3Z

N,γ
3 )

+ Rt
5(N

γ+ρ5κ5Z
N,γ
3 ) + Rt

6(N
γ+ρ6κ6Z

N,γ
3 ) + Rt

7(N
γ+ρ7κ7Z

N,γ
3 )

−Rt
2(N

γ+ρ2κ2Z
N,γ
2 )

]
+ κ2N

−max(α2,α3)
[
Rt

4(N
γ+ρ4κ4Z

N,γ
1 )

+ Rt
8(N

γ+ρ8κ8Z
N,γ
7 )−Rt

9(N
γ+ρ9κ9Z

N,γ
2 ZN,γ

6 )
]
.

(1)
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Using (1) and applying Ito’s formula, we have

DN,γ(t)2 = DN,γ(0)2 + N−max(α2,α3)

∫ t

0

2(κ2 + κ3)DN,γ(s−)

×
[
dRs

3(N
γ+ρ3κ3Z

N,γ
3 ) + dRs

5(N
γ+ρ5κ5Z

N,γ
3 ) + dRs

6(N
γ+ρ6κ6Z

N,γ
3 )

+ dRs
7(N

γ+ρ7κ7Z
N,γ
3 )− dRs

2(N
γ+ρ2κ2Z

N,γ
2 )

]
+ N−max(α2,α3)

∫ t

0

2κ2DN,γ(s−)
[
dRs

4(N
γ+ρ4κ4Z

N,γ
1 )

+ dRs
8(N

γ+ρ8κ8Z
N,γ
7 )− dRs

9(N
γ+ρ9κ9Z

N,γ
2 ZN,γ

6 )
]

+ (κ2 + κ3)2N−2 max(α2,α3)
[
Rt

3(N
γ+ρ3κ3Z

N,γ
3 ) + Rt

5(N
γ+ρ5κ5Z

N,γ
3 )

+ Rt
6(N

γ+ρ6κ6Z
N,γ
3 ) + Rt

7(N
γ+ρ7κ7Z

N,γ
3 ) + Rt

2(N
γ+ρ2κ2Z

N,γ
2 )

]
+ κ2

2N
−2 max(α2,α3)

[
Rt

4(N
γ+ρ4κ4Z

N,γ
1 ) + Rt

8(N
γ+ρ8κ8Z

N,γ
7 )

+ Rt
9(N

γ+ρ9κ9Z
N,γ
2 ZN,γ

6 )
]
.

(2)

3 Scaling exponents and rate constants

Recall that the normalized rate constants are defined as

κk =
κ′k

Nβk

0

where N0 = 100 in this paper. In Table 2 and 3, unscaled and scaled rate constants are given with the

corresponding scaling exponents.

Table 2: The unscaled stochastic reaction rate constants

Rates Rates Rates
κ′1 4.00× 100 κ′7 4.88× 10−3 κ′10 3.62× 10−4

κ′2 7.00× 10−1 κ′8 4.40× 10−4 κ′11 9.99× 10−5

κ′3 1.30× 10−1 κ′9 3.62× 10−4 κ′12 4.40× 10−5

κ′4 7.00× 10−3 κ′10 3.62× 10−4 κ′13 1.40× 10−5

κ′5 6.30× 10−3 κ′11 9.99× 10−5 κ′14 1.40× 10−6

κ′6 4.88× 10−3 κ′12 4.40× 10−5 κ′15 1.42× 10−6

κ′7 4.88× 10−3 κ′13 1.40× 10−5 κ′16 1.80× 10−8

κ′8 4.40× 10−4 κ′15 1.42× 10−6 κ′17 6.40× 10−10

κ′9 3.62× 10−4 κ′16 1.80× 10−8 κ′18 7.40× 10−11
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Table 3: The scaled stochastic reaction rate constants with scaling
exponents

Scaled rates βk Scaled rates βk Scaled rates βk

κ1 4 β1 0 κ7 0.488 β7 −1 κ13 0.14 β13 −2
κ2 0.7 β2 0 κ8 4.4 β8 −2 κ14 0.014 β14 −2
κ3 0.13 β3 0 κ9 3.62 β∗9

1 −2 κ15 1.42 β∗15 −3
κ4 0.7 β4 −1 κ10 3.62 β∗10 −2 κ16 0.00018 β16 −2
κ5 0.63 β5 −1 κ11 0.999 β11 −2 κ17 0.0000064 β17 −2
κ6 0.488 β6 −1 κ12 0.44 β12 −2 κ18 0.00000074 β18 −2

In Table 4, three sets of αi’s and ρk’s we use in this model are given.

Table 4: Scaling exponents

αi First Second Third ρk First Second Third ρk First Second Third
scaling scaling scaling scaling scaling scaling scaling scaling scaling

α†1
2 1 0 0 ρ1 0 0 0 ρ10 −2 −1 0

α†2 0 0 1 ρ2 0 0 1 ρ11 −2 −1 0
α†3 0 0 1 ρ3 0 0 1 ρ12 −2 −1 0
α4 2 2 2 ρ4 0 −1 −1 ρ13 −2 −2 −2
α5 2 2 2 ρ5 −1 −1 0 ρ14 −1 −2 −2
α6 0 0 0 ρ6 −1 −1 0 ρ15 −1 −1 −1
α7 0 0 0 ρ7 −1 −1 0 ρ16 0 0 0
α†8 0 1 2 ρ8 −2 −2 −2 ρ17 −2 −2 −2
α†9 0 1 2 ρ9 −2 −2 −1 ρ18 0 0 0

The initial species numbers of the parametrized family by N are given as

XN
i (0) ≡

⌊(
N

N0

)αi

Xi(0)
⌋

and the normalized initial species numbers are given as

ZN,γ
i (0) ≡ 1

Nαi

⌊(
N

N0

)αi

Xi(0)
⌋

.

so that ZN,γ
i (0) → 1

N
αi
0

Xi(0) ≡ Zγ
i (0) as N → ∞. In Table 5, the initial species numbers, Xi(0), obtained

from [1] and limits of the normalized initial species numbers, Zγ
i (0), in the three time scales are given.

1∗ are scaling exponents for bimolecular reaction rate constants.
2αi’s depending on γ is marked by †.
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Table 5: Initial values used in the simulation

Initial values γ = 0 γ = 1 γ = 2
S1 10 0.1 10 10
S2 1 1 1 0.01
S3 1 1 1 0.01
S4 93 0.0093 0.0093 0.0093
S5 172 0.0172 0.0172 0.0172
S6 54 54 54 54
S7 7 7 7 7
S8 50 50 0.5 0.005
S9 0 0 0 0

For the αi’s and ρk’s determining the three scalings given in Table 4, we check the balance equations

given in Table 4 in the main paper. If the balance equation fails, the corresponding time-scale constraint is

computed. We have

Table 6: Balance conditions used in the model

First Second Third First Second Third
scaling scaling scaling scaling scaling scaling

S1 γ ≤ 2 balanced balanced S2 + S3 + S7 γ ≤ 0 balanced balanced
S2 balanced balanced balanced S2 + S3 γ ≤ 0 γ ≤ 1 balanced
S3 balanced balanced balanced S2 + S7 balanced balanced balanced
S4 γ ≤ 2 γ ≤ 2 balanced S6 + S7 + S9 γ ≤ 1 γ ≤ 2 γ ≤ 2
S5 γ ≤ 2 γ ≤ 2 balanced S6 + S7 γ ≤ 1 balanced balanced
S6 γ ≤ 1 balanced balanced S6 + S9 γ ≤ 1 γ ≤ 2 γ ≤ 2
S7 γ ≤ 1 γ ≤ 1 balanced S8 + S9 γ ≤ 0 γ ≤ 1 balanced
S8 γ ≤ 0 γ ≤ 1 balanced
S9 balanced balanced balanced

4 Solution of balance conditions computed using Maple

To select values for scaling exponents based on the balance equations, we solve the balance equations with

some conditions for monotonicity using Maple. The following gives the results we obtain from Maple.

restart :

with(simplex)

BalanceEquations :=
{

β13 = α1 + β14,
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max(α3 + β3, α1 + β4, α3 + β5, α3 + β6, α3 + β7, α7 + β8)

= max(α2 + β2, α2 + α6 + β9),

α2 + β2 = max(α3 + β3, α3 + β5, α3 + β6, α3 + β7),

α3 + β6 = α4 + β18, α3 + β5 = α5 + β16,

max(α3 + β7, α7 + β8, α9 + β12, α4 + α7 + β15)

= max(α2 + α6 + β9, α6 + α8 + β10, α6 + β17),

α2 + α6 + β9 = max(α7 + β8, α4 + α7 + β15),

max(β1, α9 + β12) = max(α6 + α8 + β10, α8 + β11),

α6 + α8 + β10 = α9 + β12, α1 + β4 = α4 + α7 + β15,

max(α1 + β4, α7 + β8) = α2 + α6 + β9,

max(α3 + β3, α1 + β4, α3 + β5, α3 + β6, α3 + β7)

= max(α2 + β2, α4 + α7 + β15), α3 + β7 = α6 + β17,

max(α3 + β7, α7 + β8, α4 + α7 + β15)

= max(α2 + α6 + β9, α6 + β17),

max(α3 + β7, α9 + β12) = max(α6 + α8 + β10, α6 + β17),

β1 = α8 + β11

}
Conditions :=

{
β1 − β13 ≥ 0, β9 − β10 ≥ 0, β10 − β15 ≥ 0, β2 − β3 ≥ 0,

β3 − β4 ≥ 0, β4 − β5 ≥ 0, β5 − β6 ≥ 0, β6 − β7 ≥ 0,

β7 − β8 ≥ 0, β8 − β11 ≥ 0, β11 − β12 ≥ 0, β12 − β14 ≥ 0,

β14 − β16 ≥ 0, β16 − β17 ≥ 0, β17 − β18 ≥ 0
}

Outputs := solve(BalanceEquations, useassumptions) assuming Conditions{
α1 = −β4 + α4 + α7 + β15, α2 = −α6 − β9 + max(α7 + β8, α4 + α7 + β15),

α3 = α3, α4 = α4, α5 = α3 + β5 − β16, α6 = α6, α7 = α7, α8 = α8,

α9 = α6 + α8 + β10 − β12, β1 = α8 + β11,

β2 = α6 + β9 −max(α7 + β8, α4 + α7 + β15) + α3 + β3,

β3 = β3, β4 = β4, β5 = β5, β6 = −α3 + α4 + β18, β7 = −α3 + α6 + β17,

β8 = β8, β9 = β9, β10 = β10, β11 = β11, β12 = β12,
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β13 = −β4 + α4 + α7 + β15 + β14, β14 = β14, β15 = β15, β16 = β16,

β17 = β17, β18 = β18

}

5 The proof of Theorem 1

To prove the convergence for γ = 0 and γ = 1, we apply Theorem 4.1 in [2]. Following from Theorem 4.1

(and Remark 4.2) in [2], ZN,γ ⇒ Zγ in the first time scale on [0, τ∞) where

τ∞ = lim
c→∞

τc ≡ inf
{

t : sup
s≤t

Zγ(s) ≥ c

}
.

The theorem is directly applicable for γ = 0, since the first time scale of interest in this model is when γ = 0.

For γ = 1, we define a stopping time

τ1
N,c = inf

{
t : sup

s≤t
ZN,1(s) ≥ c

}
,

so that ZN,1(t) is bounded for t ≤ τ1
N,c. We compare a scaling exponent for each species number to those

for all rates of reactions involving the species. Then, αi is less or equal to γ + ρk for each k ∈ Γ+
i ∪ Γ−i for

all species except for Species 2 and 3, i.e., the only species possibly not bounded in this time scale are S2

and S3. On the other hand, ZN,1
2 (t), ZN,1

3 (t) ≤ ZN,1
23 (t) ≤ c on [0, τ1

N,c). Therefore, relative compactness

of {ZN,1(· ∧ τ1
N,c)} is satisfied, since all propensities λ̂k(ZN,1(· ∧ τ1

N,c)) are uniformly bounded. Then,(
ZN,1(· ∧ τ1

N,c), τ
1
N,c

)
⇒
(
Z1(· ∧ τ1

c ), τ1
c

)
for all but countably many c and we can set τ1

∞ = limc→∞ τ1
c .

5.1 The proof of the convergence for γ = 2

Proof. Computing natural time scales of the species, we get γ2 = γ3 = γ6 = 0, γ7 = 1, and γ1 = γ4 = γ5 =

γ8 = γ9 = 2. Since we already get the limiting models for S2, S3, S23, S6, S7, and S8 in the previous time

scales, we set γ = 2 and derive a limiting model for a subset of species we are interested in. For γ = 2, ZN,2
1 ,

ZN,2
4 , ZN,2

5 , ZN,2
8 , and ZN,2

9 are of order 1, and averaged behavior of ZN,2
2 , ZN,2

3 ZN,2
6 , and ZN,2

7 is expressed

in terms of the limits of the scaled species numbers of order 1 in this time scale. In the section of limiting

models in three time scales in the main text, we already derived limiting equations for Z2
23, Z2

8 , and Z2
9 .

Define

DN,2(t) ≡ κ2Z
N,2
2 (t)− κ3Z

N,2
3 (t).

First, we will prove that the scaled species numbers for fast fluctuating species, S2 and S3, actually converge

to a limit in a finite time interval. That is, for any fixed ε > 0 and for any t such that ε < t ≤ τ2
∞,

ZN,2
2 (t) −→ Z̄2

2 (t) =
κ3

κ2 + κ3
Z2

23(t), (3)
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ZN,2
3 (t) −→ Z̄2

3 (t) =
κ2

κ2 + κ3
Z2

23(t), (4)

as N → ∞ by showing DN,2(t)2 → 0 for ε < t ≤ τ2
∞ and using ZN,2

23 (t) → Z2
23(t). The scaled species

numbers of S2 and S3 may not converge to Z̄2
2 (t) and Z̄2

3 (t) in t ∈ [0, ε], since κ2Z
N,2
2 (0) − κ3Z

N,2
3 (0) may

not converge to zero. Plugging αi’s and ρk’s in (2), we have

DN,2(t)2 = DN,2(0)2 + N−1

∫ t

0

2(κ2 + κ3)DN,2(s−) (5)

×
[
dRs

3(N
3κ3Z

N,2
3 ) + dRs

5(N
2κ5Z

N,2
3 ) + dRs

6(N
2κ6Z

N,2
3 ) + dRs

7(N
2κ7Z

N,2
3 )− dRs

2(N
3κ2Z

N,2
2 )

]
+N−1

∫ t

0

2κ2DN,2(s−)×
[
dRs

4(Nκ4Z
N,2
1 ) + dRs

8(κ8Z
N,2
7 )− dRs

9(Nκ9Z
N,2
2 ZN,2

6 )
]

+N−2(κ2 + κ3)2
[
Rt

3(N
3κ3Z

N,2
3 ) + Rt

5(N
2κ5Z

N,2
3 ) + Rt

6(N
2κ6Z

N,2
3 ) + Rt

7(N
2κ7Z

N,2
3 ) + Rt

2(N
3κ2Z

N,2
2 )

]
+N−2κ2

2

[
Rt

4(Nκ4Z
N,2
1 ) + Rt

8(κ8Z
N,2
7 ) + Rt

9(Nκ9Z
N,2
2 ZN,2

6 )
]
.

Define reaction terms centered by their propensities as

R̃t
k(Nγ+ρk λ̂k(ZN,γ)) = Rt

k(Nγ+ρk λ̂k(ZN,γ))−
∫ t

0

Nγ+ρk λ̂k(ZN,γ(s)) ds.

Centering propensity in each reaction term in (5), we get

DN,2(t)2 = DN,2(0)2 +MN (t) +
∫ t

0

[
−2N2(κ2 + κ3)DN,2(s)2 + NEN (s)

]
ds, (6)

where

EN (t) ≡ 2(κ2 + κ3)(κ5 + κ6 + κ7)DN,2(t−)ZN,2
3 (t)

+2N−1κ2DN,2(t−)
[
κ4Z

N,2
1 (t) + N−1κ8Z

N,2
7 (t)− κ9Z

N,2
2 (t)ZN,2

6 (t)
]

+(κ2 + κ3)2
[
κ3Z

N,2
3 (t) + N−1(κ5 + κ6 + κ7)Z

N,2
3 (t) + κ2Z

N,2
2 (t)

]
+N−2κ2

2

[
κ4Z

N,2
1 (t) + N−1κ8Z

N,2
7 (t) + κ9Z

N,2
2 (t)ZN,2

6 (t)
]
,

and

MN (t) ≡ N−1

∫ t

0

2(κ2 + κ3)DN,2(s−)

×
[
dR̃s

3(N
3κ3Z

N,2
3 ) + dR̃s

5(N
2κ5Z

N,2
3 ) + dR̃s

6(N
2κ6Z

N,2
3 ) + dR̃s

7(N
2κ7Z

N,2
3 )− dR̃s

2(N
3κ2Z

N,2
2 )

]
+N−1

∫ t

0

2κ2DN,2(s−)×
[
dR̃s

4(Nκ4Z
N,2
1 ) + dR̃s

8(κ8Z
N,2
7 )− dR̃s

9(Nκ9Z
N,2
2 ZN,2

6 )
]

+N−2(κ2 + κ3)2
[
R̃t

3(N
3κ3Z

N,2
3 ) + R̃t

5(N
2κ5Z

N,2
3 ) + R̃t

6(N
2κ6Z

N,2
3 ) + R̃t

7(N
2κ7Z

N,2
3 ) + R̃t

2(N
3κ2Z

N,2
2 )

]
+N−2κ2

2

[
R̃t

4(Nκ4Z
N,2
1 ) + R̃t

8(κ8Z
N,2
7 ) + R̃t

9(Nκ9Z
N,2
2 ZN,2

6 )
]
.
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In (6),
[
−2N2(κ2 + κ3)(DN,2)2 + NEN

]
is a drift and MN gives noise of (DN,2)2 around its mean satisfying

E[MN (t)] = 0. (7)

Taking an expectation in (6) and using (7), we get

E[DN,2(t)2] = E[DN,2(0)2]−
∫ t

0

2N2(κ2 + κ3)E[DN,2(s)2] ds +
∫ t

0

NE[EN (s)] ds. (8)

By Gronwall’s inequality, we get

E[DN,2(t)2] ≤
(
E[DN,2(0)2] +

∫ t

0

NE[EN (s)] ds
)
e−2N2(κ2+κ3)t. (9)

Now, we will get an upper bound for the second moment of reaction terms. Let X(·) be a centered

Poisson process with mean zero and τ be a stopping time for the process {X(t); t ≥ 0}. Theorem 7 in [3]

says that for n ≥ 2, there exist constant C (finite and positive) depending on n such that

E[|X(τ)|n] ≤ C max {E[τ ], E[τn/2]}. (10)

Setting τ =
∫ t

0
Nγ+ρk λ̂k(ZN,γ(s)) ds and X(τ) = R̃t

k(Nγ+ρk λ̂k(ZN,γ)), we have E [X(τ)] = 0 and Theorem

7 is applicable. Using Cauchy-Schwarz inequality, we get

E
[
Rt

k(Nγ+ρk λ̂k(ZN,γ))2
]

= E

[(
R̃t

k(Nγ+ρk λ̂k(ZN,γ)) +
∫ t

0

Nγ+ρk λ̂k(ZN,γ(s)) ds

)2
]

≤ 2E
[
R̃t

k(Nγ+ρk λ̂k(ZN,γ))2
]

+ 2E

[(∫ t

0

Nγ+ρk λ̂k(ZN,γ(s)) ds

)2
]

. (11)

Then, applying (10) to (11) and using Holder’s inequality, we get an upper bound for the second moment of

the random process.

E
[
Rt

k(Nγ+ρk λ̂k(ZN,γ))2
]

≤ 2C1E

[∫ t

0

Nγ+ρk λ̂k(ZN,γ(s)) ds

]
+ 2E

[(∫ t

0

Nγ+ρk λ̂k(ZN,γ(s)) ds

)2
]

≤ 2C1

∫ t

0

E
[
Nγ+ρk λ̂k(ZN,γ(s))

]
ds + 2t

∫ t

0

E
[
N2(γ+ρk)λ̂k(ZN,γ(s))2

]
ds (12)

Next, we will show supt≤τ2
∞

∫ t

0
E[EN (s)] ds < O(N) using boundedness of moments of reaction terms.

Since DN,2(t)2 ≤ (κ2 + κ3)Z
N,2
237 (t)2, using the equation for ZN,2

237 (t) from the one in Section 2 and (12), we

get

E[ZN,2
237 (t)2] ≤ 2E[ZN,2

237 (0)2] + 2E
[(

N−1Rt
4(Nκ4Z

N,2
1 )

)2]
10



≤ 2E[ZN,2
237 (0)2] + 4C1

∫ t

0

N−1κ4E[ZN,2
1 (s)] ds + 4t

∫ t

0

κ2
4E[ZN,2

1 (s)2] ds.

Using the equation for ZN,2
1 (t) and (12), we get

E[ZN,2
1 (t)2] ≤ 2E[ZN,2

1 (0)2] + 2E
[
R13(κ13)2

]
≤ 2E[ZN,2

1 (0)2] + 4C1κ13t + 4κ2
13t

2.

Therefore,

sup
N

sup
t≤τ2
∞

E[ZN,2
1 (t)2] < ∞. (13)

and this gives

sup
N

sup
t≤τ2
∞

E[ZN,2
237 (t)2] < ∞. (14)

Using (14) and (8), we obtain

sup
t≤τ2
∞

∫ t

0

E[EN (s)] ds < O(N),

and this and (9) imply that for any ε > 0 independent of N and for τ2
∞ > ε > 0,

sup
ε<t≤τ2

∞

E[DN,2(t)2] ≤ sup
ε<t≤τ2

∞

(
E[DN,2(0)2] +

∫ t

0

NE[EN (s)] ds
)
e−2N2(κ2+κ3)t

−→ 0,

as N →∞.

Next, we will derive limiting equations for Z2
1 , Z2

4 , and Z2
5 . Using the equation for ZN,γ

1 in Section 1, we

get the equation for ZN,2
1 as

ZN,2
1 (t) = ZN,2

1 (0) + Rt
13(κ13)−Rt

14(κ14Z
N,2
1 ).

Letting N →∞, we get

Z2
1 (t) = Z2

1 (0) + Rt
13(κ13)−Rt

14(κ14Z
2
1 ).

Since ZN,2
1 (0) = Z2

1 (0) = X1(0) due to α1 = 0, we actually have ZN,2
1 (t) = Z2

1 (t). The equations for ZN,2
4

and ZN,2
5 are given from Section 1 as

ZN,2
4 (t) = ZN,2

4 (0) + N−2
[
Rt

6(N
2κ6Z

N,2
3 )−Rt

18(N
2κ18Z

N,2
4 )

]
,

ZN,2
5 (t) = ZN,2

5 (0) + N−2
[
Rt

5(N
2κ5Z

N,2
3 )−Rt

16(N
2κ16Z

N,2
5 )

]
.

11



Using the law of large numbers for Poisson processes and using (4), we get

Z2
4 (t) = Z2

4 (0) +
∫ t

0

(
κ6Z̄

2
3 (s)− κ18Z

2
4 (s)

)
ds,

Z2
5 (t) = Z2

5 (0) +
∫ t

0

(
κ5Z̄

2
3 (s)− κ16Z

2
5 (s)

)
ds.

Now, we will show that
∫ t

0
ZN,2

2 (s)ZN,2
6 (s) ds,

∫ t

0
ZN,2

6 (s) ds,
∫ t

0
ZN,2

4 (s)ZN,2
7 (s) ds, and

∫ t

0
ZN,2

7 (s) ds

are stochastically bounded in a finite time interval. First, we show that
∫ t

0
E[ZN,2

6 (s)ZN,2
8 (s)] ds and∫ t

0
E[ZN,2

4 (s)ZN,2
7 (s)] ds are bounded for t ≤ τ2

∞. From the equation for ZN,2
679 (t), we have

E[ZN,2
679 (t)] ≤ E[ZN,2

679 (0)] +
∫ t

0

κ7E[ZN,2
3 (s)] ds.

Since supt≤τ2
∞

E[ZN,2
3 (t)] is uniformly bounded due to (14), we get

sup
N

sup
t≤τ2
∞

E[ZN,2
679 (t)] < ∞. (15)

Using N−2E[ZN,2
67 (t)] ≤ E[ZN,2

679 (t)], we also get

sup
N

sup
t≤τ2
∞

N−2E[ZN,2
67 (t)] < ∞.

From the equation for N−2ZN,2
67 (t), we have

N−2E[ZN,2
67 (t)] ≤ N−2E[ZN,2

67 (0)] +
∫ t

0

(
κ7E[ZN,2

3 (s)] + κ12E[ZN,2
9 (s)]− κ10E[ZN,2

6 (s)ZN,2
8 (s)]

)
ds.

Using (14) and (15),
∫ t

0
κ10E[ZN,2

6 (s)ZN,2
8 (s)] ds is uniformly bounded as

sup
N

sup
t≤τ2
∞

∫ t

0

κ10E[ZN,2
6 (s)ZN,2

8 (s)] ds (16)

≤ sup
N

sup
t≤τ2
∞

{
N−2E[ZN,2

67 (0)]−N−2E[ZN,2
67 (t)] +

∫ t

0

(
κ7E[ZN,2

3 (s)] + κ12E[ZN,2
9 (s)]

)
ds
}

< ∞.

Similarly from the equation for ZN,2
237 (t), we have

E[ZN,2
237 (t)] ≤ E[ZN,2

237 (0)] +
∫ t

0

(
κ4E[ZN,2

1 (s)]− κ15E[ZN,2
4 (s)ZN,2

7 (s)]
)
ds.

Using (13),
∫ t

0
κ15E[ZN,2

4 (s)ZN,2
7 (s)] ds is uniformly bounded as

sup
N

sup
t≤τ2
∞

∫ t

0

κ15E[ZN,2
4 (s)ZN,2

7 (s)] ds

≤ sup
N

sup
t≤τ2
∞

{
E[ZN,2

237 (0)]− E[ZN,2
237 (t)] +

∫ t

0

κ4E[ZN,2
1 (s)] ds

}
< ∞.
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Finally, we show stochastic boundedness of
∫ t

0
ZN,2

2 (s)ZN,2
6 (s) ds and

∫ t

0
ZN,2

6 (s) ds for t ≤ τ2
∞. We split

terms and obtain

P

(∫ t

0

κ9Z
N,2
2 (s)ZN,2

6 (s) ds > k

)
≤ P

(∫ t

0

κ9Z
N,2
6 (s)ZN,2

8 (s) ds >
k

m

)
+ P

(
sup

t≤τ2
∞

ZN,2
2 (t)

ZN,2
8 (t)

ds > m

)

≤ m

k
E

[∫ t

0

κ9Z
N,2
6 (s)ZN,2

8 (s) ds

]
︸ ︷︷ ︸

(I)

+P

(
sup

t≤τ2
∞

ZN,2
2 (t)

ZN,2
8 (t)

ds > m

)
︸ ︷︷ ︸

(II)

.

Using (16) and taking k large enough, we can make the term in (I) small. Since ZN,2
2 and ZN,2

8 converge to

their limits as N →∞ and since ZN,2
8 (0) 6= 0, we can take m large to make the term in (II) small. Therefore,∫ t

0
ZN,2

2 (s)ZN,2
6 (s) ds is stochastically bounded. For t ∈ [0, τ2

∞] we have∫ t

0

1[r,∞)(Z
N,2
6 (s)) ds ≤

∫ t

0

ZN,2
6 (s)

r
ds, (17)

and taking the probability in both sides of (17), for fixed δ > 0, we get

P

(∫ t

0

ZN,2
6 (s)

r
ds > δ

)
≤ P

(
inf

t≤τ2
∞

ZN,2
8 (t) ≤ η

)
+ P

(∫ t

0

ZN,2
6 (s)ZN,2

8 (s) ds > rδη

)
≤ P

(
inf

t≤τ2
∞

ZN,2
8 (t) ≤ η

)
︸ ︷︷ ︸

(III)

+
1

rδη
E

[∫ t

0

ZN,2
6 (s)ZN,2

8 (s) ds

]
︸ ︷︷ ︸

(IV)

.

Since ZN,2
8 (0) 6= 0, we can take η > 0 small enough and r large enough to make both terms in (III) and

(IV) small. Therefore, ZN,2
6 is stochastically bounded for t ∈ [0, τ2

∞]. Similarly, the stochastic boundedness

of ZN,2
7 can be shown using

∫ t

0
ZN,2

4 (s)ZN,2
7 (s) ds and inft≤τ2

∞
ZN,2

4 (t) instead of
∫ t

0
ZN,2

6 (s)ZN,2
8 (s) ds and

inft≤τ2
∞

ZN,2
8 (t).

6 Sketch of the proof of Remark 3

Denote

V N
0 (t) =

(
ZN,2

23 (t), ZN,2
4 (t), ZN,2

5 (t), ZN,2
8 (t), ZN,2

9 (t)
)T

,

V0(t) =
(
Z2

23(t), Z
2
4 (t), Z2

5 (t), Z2
8 (t), Z2

9 (t)
)T

.

We already showed that V N
0 ⇒ V0 as N →∞. We want to estimate an error between V N

0 (t) and V0(t). Define

UN (t) = rN

(
V N

0 (t)− V0(t)
)
. If we show UN ⇒ U , the error between V N

0 (t) and V0(t) is approximately of

order r−1
N0

.
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Suppose that V N
0 (t) and V0(t) satisfy

MN,1(t) = V N
0 (t)− V N

0 (0)−
∫ t

0

FN (V N (s)) ds, (18)

V0(t) = V0(0) +
∫ t

0

F̄ (V0(s)) ds, (19)

where FN (V N (t)) is a drift and MN,1(t) is Poisson noise which gives fluctuations of V N
0 due to the corre-

sponding reactions. V0 is a solution of the stochastic processes whose randomness comes from Z2
1 . The drift

term of V0 is obtained from the drift term of V N
0 by replacing the species numbers fluctuating very rapidly

by some variables describing their averaged behavior. Since Z2
1 rarely moves during the time interval of our

interest, V0 behaves almost like a deterministic process. Denote AN as a differential operator which gives

instantaneous behavior of the normalized species numbers ZN,2 during a very short time interval. For some

function HN which is identified later, ANHN gives a drift for the process HN and denote MN,2(t) as noise.

Then, MN,2(t) satisfies

MN,2(t) = HN (V N (t))−HN (V N (0))−
∫ t

0

ANHN (V N (s)) ds. (20)

Adding (18) and (19) and multiplying by rN , we get

rNMN,1(t) = UN (t)− UN (0)− rN

∫ t

0

(
FN (V N (s))− F̄ (V0(s))

)
ds. (21)

Adding and subtracting terms, we rewrite (21) as

rNMN,1(t) = UN (t)− UN (0)− rN

∫ t

0

(
F̄ (V N

0 (s))− F̄ (V0(s))
)

ds

−rN

∫ t

0

(
FN (V N (s))− F (V N (s))

)
ds (22)

−rN

∫ t

0

(
F (V N (s))− F̄ (V N

0 (s))
)

ds.

We identify HN such that ANHN ≈ F − F̄ , and using (20), (22) becomes

rNMN,1(t) ≈ UN (t)− UN (0)− rN

∫ t

0

(
F̄ (V N

0 (s))− F̄ (V0(s))
)

ds

−rN

∫ t

0

(
FN (V N (s))− F (V N (s))

)
ds (23)

+rNMN,2(t)− rN

(
HN (V N (t))−HN (V N (0))

)
.

We can show that rN

∫ t

0

(
FN (V N (s))− F (V N (s))

)
ds and rN

(
HN (V N (t))−HN (V N (0))

)
converge to zero

as N goes to infinity. We can show that rN

(
MN,1(t)−MN,2(t)

)
⇒ M for an appropriately chosen rN where
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M is a process with mean-zero and independent increments satisfying

E
[
M(t)MT (t)

]
=

∫ t

0

Ḡ(V0(s)) ds.

If Ḡ = σσT , UN ⇒ U with U satisfying

U(t) = U(0) +
∫ t

0

∇F̄ (V0(s))U(s) ds +
∫ t

0

σ(V0(s)) dW (s),

where W (t) is a standard Brownian motion. Let rN = N1/2 and denote

U(t) = (U23(t), U4(t), U5(t), U8(t), U9(t))
T

.

In the heat shock response model of E. coli for γ = 2, UN ⇒ U where U is a solution of

U(t) = +
∫ t

0


1
0
0
0
0


√

κ4Z2
1 (s) + κ9Z̄2

2 (s)Z̄2
6 (s) dW (s)

+
∫ t

0


− κ9

κ2+κ3

(
κ3Z̄

2
6 (s) + κ2κ7

κ10
· Z̄2

2 (s)

Z2
8 (s)

)
U23(s) + κ9

Z̄2
2 (s)Z̄2

6 (s)

Z2
8 (s)

U8(s)− κ9κ12
κ10

· Z̄2
2 (s)

Z2
8 (s)

U9(s)
κ2κ6

κ2+κ3
U23(s)− κ18U4(s)

κ2κ5
κ2+κ3

U23(s)− κ16U5(s)
− κ2κ7

κ2+κ3
U23(s)− κ11U8(s)
κ2κ7

κ2+κ3
U23(s)

 ds.

Noise of the error between V N
0 and V0 comes from two sources: one from the Poisson noise of V N

0 due to

the corresponding reactions and the other from a difference between the drift term of V N
0 and its averaged

behavior. In the case for γ = 2, we find that the noise of the error mainly comes from the Poisson noise of

V N
0 and is dominantly determined by the error between ZN,2

23 (t) and Z2
23(t), since the species number of S23

has lower order of magnitude than those for S4, S5, S8, and S9. Errors are estimated using the central limit

theorem derived in [4]. A detailed proof is omitted.
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