Engineering a Cell-surface Aptamer Circuit for Targeted and Amplified Photodynamic Cancer Therapy

Da Han,¹Guizhi Zhu,^{1,2}Cuichen Wu,¹Zhi Zhu,^{2,3} Tao Chen,¹ Xiaobing Zhang² and Weihong Tan^{1,2*}

¹Center for Research at Bio/nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
²Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, China

3. State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Key Laboratory of Analytical Science, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005,

China

Supporting information

Gel electrophoresis to demonstrate the catalytic effect of C sequence. Polyacrylamide gel electrophoresis was performed on a 10% native gel in TBE buffer (89 mM Tris-HCl, 89 mM boric acid, 2 mM EDTA) with 5 mM MgCl₂ and run for 60 min at 100 V. Gels were then stained using StainsALL to image the positions of DNA strands. Five samples were prepared as follows: lane 1, purified A_1 ; lane 2, purified A_2 ; lane 3, mixture of A_1 and A_2 only; lane 4, preannealed A_1 and A_2 , which will form the A_{12} duplex; lane 5, the mixture of A_1 , A_2 and C (0.5× concentration of A_1) preincubated for 30 min.

Figure S1. Image of the PAGE gel proving the catalytic effect of C sequence.

Figure S2. Fluorescence kinetics describing the leakage reaction of A_1 , A_2 and R_{12} in the Fluo buffer. The data were normalized to the initial fluorescence intensity of the circuit.

Figure S3. The fluorescence spectra of mixtures containing 100 nM A_1 , 100 nM A_2 and 150 nM Ce6-modified R_{12} with different concentrations of **TDO5-C** in buffer.

Figure S4. The fluorescence kinetics of LNA-DNA hybrid R_{12} and pure DNA R_{12} with 100 K Ramos cells in washing buffer.

Sequence Name	Sequence
C (c*b*a*)	CGACATCT_AACCTAGC_TCACTGAC
A ₁ (abcd*c*b*e*)	GTCAGTGA_GCTAGGTT_AGATGTCG_CCATGTGTAGA_CGACAT C_TAACCTAGC_ ACTTGTCATAGAGCAC
A ₂ (cdc*b*d*)	AGATGTCG_TCTACACATGG_CGACATCTAACCTAGC_CCATGTG TAGA
R ₁ (eb)	Ce6 (FAM) G <u>T</u> GC <u>T</u> C <u>T</u> A <u>T</u> GACAAGT_GCTAGGTT
R ₂ (b)	ACTTGTCATAGAGCAC BHQ2 (DABCYL)
TDO5	AACACCGTGGAGGATAGTTCGGTGGCTGTTCAGGGTCTCCTCCC GGTG
TDO5-C	CGACATCTAACCTAGCTCACTGAC_TTTTTTTTTTTTTTT

Table S1. Sequence of oligonucleotides used in this work. Domains are separated by underscores. LNA bases are indicated by bold and underscores.