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A human cDNA encoding a novel protein in the helix-loop-helix family has been isolated by screening a
bacteriophage expression library with a probe containing the binding site for major late transcription factor.
The protein encoded by this cDNA, TFEB, probably recognizes E-box sequences in the heavy-chain
immunoglobulin enhancer.

A family of sequence-specific DNA-binding factors with a
helix-loop-helix structure has been identified (18). Several
human genes of this family have been described previously,
including E47 and E12, which bind to the immunoglobulin K

light-chain gene enhancer (18); MyoD (31) and myogenin
(35), which are specific for muscle cell differentiation; TFE3,
which recognizes sequences in the immunoglobulin heavy-
chain gene enhancer (3); and the proto-oncogenes c-, N-, and
L-myc (31). In Drosophila melanogaster, members of this
family include daughterless (6, 9), hairy (22), twist (32), and
the achaete-scute complex (1, 6).
We have isolated a partial cDNA segment that encodes

another member of the helix-loop-helix family. A sequence
in the major late promoter of adenovirus (5'GTAGGCCA
CGTGACCGGG3', base pairs -66 to -49), recognized by
major late transcription factor (MLTF) (5, 8, 25), was used to
probe a Agtll expression library made with mRNA from a
human B-cell line (BIAB; a kind gift of L. Staudt [30]) by the
gene screen method (28). Of 6 x 105 bacteriophage screened,
2 recombinants, shown to be identical and designated
XTFEB, demonstrated specific binding.
DNA-binding specificity of the XTFEB protein was tested

by probing purified phage plaque replicas with three different
DNAs (Fig. 1). The XTFEB protein bound strongly to the
MLTF binding-site segment but bound only very weakly to
the double point mutant segment and to the polylinker
segment alone.

Extracts of lysogens generated from the phage recombi-
nant (14) were analyzed in a Southwestern (DNA-protein)
protocol with either the wild-type binding-site DNA probe or
the double point mutant DNA probe (Fig. 2). Control ex-
tracts containing the Xh3 fusion protein, which specifically
binds to the H2TF-1/NF-kB-binding site (28), did not bind to
the MLTF-binding-site probe. A protein of approximately
180 kilodaltons (kDa) from the XTFEB lysogen extracts
bound the wild-type binding-site probe very strongly and the
double point mutant probe at least 100-fold less strongly.
Since the ,-galactosidase portion of the fusion protein is
approximately 120 kDa, the cDNA-encoded portion must be
approximately 60 kDa.
The sequence-specific binding protein detected by South-

western analysis could not be solubilized by treatment of
XTFEB lysogen extracts with denaturing agents such as
guanidine hydrochloride (6 M), deoxycholate (0.5%), octyl-
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glucoside (1.5%), or potassium thiocyanate (2 M). This
problem has not been observed with other ,-galactosidase
fusion proteins which bind DNA in a sequence-specific
manner.
Guanine methylations which interfere with the binding of

the MLTF-binding-site probe to the XTFEB fusion protein
were determined by using a partially methylated probe in a
Southwestern analysis. Bound probe was eluted and cleaved
at sites of modification. Comparison of this cleavage pattern
with that of a control of input probe shows that the methyl-
ation interference pattern for binding to XTFEB recombinant
protein is similar to that previously characterized for MLTF
protein (7) (Fig. 3C). On the coding strand, modificatio'n of
any of four guanines interfered with binding;'two of these
modifications also interfere with the binding of MLTF (7).
On the noncoding strand, the same four guanine modifica-
tions previously identified as important for the binding of
MLTF (7) interfered with binding to the fusion protein.
Two bands complementary to the cDNA were detec.ted by

a Southern analysis of X50-7 (human B-cell) DNA in each of
three digestions with enzymes which did not cut within the
cDNA (data not shown). Thus, the cDNA is encoded by one
or a few cellular genes. A 3-kilobase mRNA was detected by
a Northern (RNA blotting) protocol on polyadenylated
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FIG. 1. Specificity of binding of XTFEB-encoded protein. Rep-
lica filters from platings of XTFEB recombinant phage were tested
for specificity of DNA binding. The probes were cut from pUC13
plasmids containing inserts of either the wild-type binding site or the
mutant binding site or no insert. (A) Probe 1, Wild-type MLTF
binding site; probe 2, double point mutant, which binds the MLTF
with an approximately 150-fold lower affinity; probe 3, pUC poly-
linker segment into which both the wild-type and the mutant
sequences were inserted. (B) Filters which were lifted from plaques
that produced the fusion protein were probed with the three different
sequences, as described previously (28), with the addition of a
renaturation step (33).
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FIG. 2. Southwestern analysis of extracts of the XTFEB lysogen and the methylation interference pattern of the XTFEB fusion protein.
The lysates of induced lysogens were resolved by electrophoresis in parallel, and the gels were transferred to nitrocellulose and subjected to
Southwestern and Western (immunoblot) procedures. (A) Southwestern blot of wild-type MLTF probe. A Western blot of the same gel
developed with antiserum to P-galactosidase (28) showed that the proteins which bound probe were P-galactosidase fusion proteins (data not
shown). Lanes 1 and 2, Lysates prepared from two lysogens of the XTFEB phage; lane 3, control lysate prepared from a lysogen of a Xh3

phage (28). Protein sizes (in thousands [K]) are indicated to the right of the gel. (B) Nitrocellulose blot treated as in panel A, except that the
double point mutant was used in the Southwestern analysis. The arrow in panels A and B points to the 180K protein band identified in this
analysis. (C) Probe was partially methylated with dimethylsulfoxide before binding to the Southwestern blot. Bound probe was eluted from
the band with NaCl and treated with piperidine before analysis on a sequencing gel (16). Results for the coding and noncoding strands are as

shown. Lanes F, Methylated and cleaved input probe which was not selected on the Southwestern blot; lanes B, methylated probe that was
eluted from the band in the Southwestern blot and cleaved.

RNAs from several cell lines (data not shown). Compared
with the amount ofmRNA complementary to an actin cDNA
probe, the TFEB mRNA was abundant in epithelial (HeLa)
and B (X50-7 and BJAB) cell lines but was 10-fold less
abundant in T (Jurkat) cells.
The sequencing (23) of the cDNA insert revealed one open

reading frame specifying a polypeptide of 55 kDa which was
not closed at either end, so the encoded protein must be
greater than 55 kDa. Previous experiments strongly suggest
that MLTF is approximately 43 kDa (5, 8, 24-26). Thus, the
XTFEB cDNA probably specifies a different protein.
The sequence contains several interesting motifs (Fig. 3).

The N-terminal amino acids have a high Gly-Ala content
(approximately 50%), a characteristic typical of structural
proteins such as keratins. There is a pronounced glutamine-
rich (approximately 50%) region from amino acids (aa) 106 to
140 which contains 10 consecutive glutamines. At the car-

boxyl terminus, there is a proline-rich (approximately 40%)
region. The helix-loop-helix homology (18) lies between aa
327 and 392.
Of the helix-loop-helix family of proteins, TFEB is most

closely related to the TFE3 protein (3), which binds specif-
ically to the E3 box of the ,u-chain immunoglobulin en-

hancer. The sequence of the E3 box is similar to that of the
MLTF binding site, and the distribution of methylation sites
which interfere with the binding of TFE3 protein to the E3
box is similar to the distribution of sites which interfere with
the binding of XTFEB protein to the MLTF site (Fig. 3C).
For this family of proteins, the sequences responsible for

specific DNA recognition are contained within the basic
region immediately amino terminal to the helix-loop-helix
(11). TFEB and TFE3 amino acid sequences are identical at
29 positions in this region; therefore, it is not surprising that
the proteins have similar binding specificities. The helix-
loop-helix structure promotes bivalent association of poly-
peptides as homo- or heterodimers, probably through hydro-
phobic interactions of coiled-coil domains (19, 20). It is
possible that the TFEB protein forms heterodimers with
TFE3 or other helix-loop-helix proteins.
The homology between TFE3 and TFEB extends to other

regions. Sequences frorn aa 240 to 320 of TFEB are homol-
ogous to sequences from aa 40 to 127 of TFE3. Since this
region in TFE3 has been shown to possess transactivation
activity, the related region in TFEB may activate transcrip-
tion (3). Also, these two proteins are homologous through a

region containing a potential leucine zipper immediately
carboxyl terminal to the helix-loop-helix domain (Fig. 3B), a
domain which is found in the c-myc protein at a similar
position. The intact c-myc protein is thought to form a

tetramer in solution; deletion of this leucine zipper region
yields a dimeric structure for the partial c-myc protein (10).
It is possible that the leucine zipper sequences of TFE3 and
TFEB proteins will also be active in formation of multiple-
protein complexes.
The immunoglobulin heavy-chain enhancer contains four

related E-box sequences which are specifically bound by
proteins present in B cells (13). Nuclear extracts of B cells
and non-B cells contain distinguishable factors that bind

B.
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FIG. 3. (A) Sequence of the cDNA fragment (GenBank accession number M33782) in XTFEB and its predicted amino acid sequence. The
sequence from aa 37 to 233 of the highly homologous X3 clone protein (encoding TFE3 [3]) is shown below the TFEB sequence, starting at
aa 238. Identities are noted by an asterisk. Several features of the TFEB predicted aa sequence are underlined, including the Gly and Ala
residues in the high-Gly-Ala region (aa 1 to 60) and the glutamine residues in the glutamine-rich region (aa 103 to 140). The region homologous
to the activator region in the X3-encoded protein (3) is enclosed in parentheses, and the region homologous to the helix-loop-helix motif (or
myc similarity region) is boxed. The leucines of a leucine zipper motif directly 3' to the myc similarity region and the prolines in the
proline-rich region (aa 463 to 515) at the carboxyl end of the clone are also underlined. (B) Comparison of the helix-loop-helix regions of
several different proteins. Identities between adjacent sequences are noted by vertical lines. Sequences in the potential leucine zipper are also
shown for some proteins. The homologous proteins include L-myc (aa 284 to 364 [12]), N-myc (aa 388 to 463 [12, 29]), c-myc (aa 341 to 429
[2]), TFEB (aa 326 to 425), TFE3 (aa 134 to 233 [3]), da (daughterless; aa 549 to 645 [6]), E12 (aa 331 to 411 [18]), E47 (aa 331 to 395 [18]),
lyl-l (aa 132 to 1% [17]), twist (an 352 to 409 [32]), MyoDl (aa 104 to 167 [31]), and myogenin (aa 76 to 137 [35]). (C) Comparison of the
methylation interference patterns of MLTF, TFEB, and TFE3. Pattern 1, MLTF binding to the site in the adenovirus major late promoter,
as detertnined previously by Chodosh et al. (7); pattern 2, TFEB binding to the MLTF site (Fig. 2); pattern 3, TFE3 binding to the pLE3 box,
as determined previously by Beckmann et al. (3).
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FIG. 3-Continued.
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each of the boxes with higher affinity than the other three
boxes (4, 15, 21, 27, 34), suggesting that there is a family of
factors with related binding specificities. The relationships
between TFE3 and TFEB proteins and between their bind-
ing-site specificities indicate that they are members of this
family.
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