Appendix: Model Equations

Calcium Input

The model input is a time-varying intracellular calcium concentration, described by the following equation.

$$[Ca^{2+}](t) = \begin{cases} \frac{Ca_{max}}{2} \left(1 - \cos\left(\frac{\pi t}{T_1}\right) \right) & \text{if } 0 \le t < T_1 \\ \frac{Ca_{max}}{2} \left(1 + \cos\left(\frac{\pi (t - T_1)}{T_2 - T_1}\right) \right) & \text{if } T_1 \le t < T_2 \\ 0 & \text{otherwise} \end{cases}$$
(A.1)

Cardiac Muscle Model

Passive force generated by stretching the muscle unit is given by:

$$F_p = K(L - L_0)^5, (A.2)$$

while active muscle force depends on two main factors: elongation of cross-bridges and concentration of attached cross-bridges. Elongation of cross-bridges is equal to L-X, where the return to equilibrium is governed by:

$$\frac{\mathrm{d}X}{\mathrm{d}t} = B(L - X - h_c). \tag{A.3}$$

Concentration of attached cross-bridges is linked to a chemical reaction network involving four species whose concentrations can be computed by:

$$\frac{d[TCa]}{dt} = Q_b - Q_a$$

$$\frac{d[TCa^*]}{dt} = Q_a - Q_r - Q_{d1}$$

$$\frac{d[T^*]}{dt} = Q_r - Q_d - Q_{d2}$$

$$Q_a = Y_2 \cdot [TCa]_{eff} - Z_2 \cdot [TCa^*]$$

$$Q_b = Y_1 \cdot [Ca^{2+}] \cdot [T] - Z_1 \cdot [TCa]$$

$$Q_r = Y_3 \cdot [TCa^*] - Z_3 \cdot [T^*] \cdot [Ca^{2+}]$$
(A.5)

$$Q_{d} = Y_{4} \cdot [T^{*}]$$

$$Q_{d1} = Y_{d} \cdot \left(\frac{dX}{dt}\right)^{2} \cdot [TCa^{*}]$$

$$Q_{d2} = Y_{d} \cdot \left(\frac{dX}{dt}\right)^{2} \cdot [T^{*}]$$

$$[TCa]_{eff} = [TCa]e^{-R(L-L_{a})^{2}}$$

$$[T] = T_{t} - [TCa^{*}] - [TCa] - [T^{*}].$$
(A.6)

Finally, force generated by cross-bridges is related to concentration of attached cross-bridges and elongation of cross-bridges by:

$$F_b = A([TCa^*] + [T^*])(L - X).$$
 (A.7)

Total force generated by the muscle unit is thus:

$$F = F_b + F_p. (A.8)$$

A series elastic element is added to the muscle unit, whose force F_s and length L_s are given by:

$F_{\rm S}=\alpha(e^{\beta L_{\rm S}}-1)$	(A.9)
$F = F_s$	(A.10)
$L_t = L + L_s.$	(A.11)

Ventricular Model

The spherical ventricle model consists of an arrangement of N_c half-sarcomeres on the circumference of a sphere. The number N_c of half-sarcomeres is given by:

$$V_{mw} = K_v L_t^3$$

$$K_v = \frac{N_c^3}{6\pi^2}.$$
(A.12)

The pressure inside the spherical ventricle can be obtained by the following relationship:

$$P_{lv} = 5 \frac{F}{L_r} \frac{V_w}{K_v L_t^2}.$$
 (A.13)

To derive the total length of the muscle unit from the ventricle volume V_{lv} , the following equation is used:

$$L_t = \sqrt[3]{\frac{V_w f + V_{lv}}{K_v}}.$$
(A.14)

Cardiovascular system model

Pressure in the right ventricle is given by:

$$P_{rv} = e(t)E_{rv}V_{rv} \tag{A.15}$$

with

$$e(t) = \sum_{i=1}^{3} A_i e^{-B_i(t-C_i)^2}.$$
 (A.16)

The other elastic chambers are passive, hence

$P_{ao} = E_{ao}V_{ao}$	(A.17)
$P_{vc} = E_{vc}V_{vc}$	(A.18)
$P_{pa} = E_{pa}V_{pa}$	(A.19)
$P_{pu} = E_{pu}V_{pu}.$	(A.20)

Flows between chambers are computed by Poiseuilles' law:

$Q_{mt} = r \left(\frac{P_{pu} - P_{lv}}{R_{mt}} \right)$	(A.21)
$Q_{av} = r\left(\frac{P_{lv} - P_{ao}}{R_{av}}\right)$	(A.22)
$Q_{sys} = \frac{P_{ao} - P_{vc}}{R_{sys}}$	(A.23)
$Q_{tc} = r \left(\frac{P_{vc} - P_{rv}}{R_{tc}} \right)$	(A.24)

$Q_{pv} = r \left(\frac{P_{rv} - P_{pa}}{R_{ap}} \right)$	(A.25)
$Q_{pul} = \frac{P_{pa} - P_{pu}}{R_{pul}}$	(A.26)

where r denotes the ramp function, defined as

$$r(x) = \begin{cases} 0, & x < 0 \\ x, & x \ge 0. \end{cases}$$
 (A.27)

The volume change in the six chambers can be derived from the continuity equation:

$\frac{\mathrm{d}V_{lv}}{\mathrm{d}t} = Q_{mt} - Q_{av}$	(A.28)
$\frac{\mathrm{d}V_{ao}}{\mathrm{d}t} = Q_{av} - Q_{sys}$	(A.29)
$\frac{\mathrm{d}V_{vc}}{\mathrm{d}t} = Q_{sys} - Q_{tc}$	(A.30)
$\frac{\mathrm{d}V_{rv}}{\mathrm{d}t} = Q_{tc} - Q_{pv}$	(A.31)
$\frac{\mathrm{d}V_{pa}}{\mathrm{d}t} = Q_{pv} - Q_{pul}$	(A.32)
$\frac{\mathrm{d}V_{pa}}{\mathrm{d}t} = Q_{pul} - Q_{mt}.$	(A.33)