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In this Supporting Text, we first expand our discussion of the boundary conditions for equation (16).
We then outline the derivation of the exact solution, given by equation (18), for the transition from
non-splitting to splitting behavior in a special case of equation (12). Finally, we show that both effective
advection and effective growth can allow defectors to expand faster in mixed waves than they can do by
invading cooperators.

Boundary conditions for equation (16)

Here, we show that ψ(±∞) = 0 are the proper boundary conditions for equation (16). Since the boundary
conditions for f(ζ) are f(−∞) = 1 and f(+∞) = 0, it is sufficient to show that u(−∞) > 0 and u(+∞) ≤
0; see equation (15). The former condition follows from the fact that vc > 0 and va(−∞) = 0. The latter
condition follows from the fact that va(+∞) ≥ vc, which we prove below.

The density profile at large ζ decays exponentially as e−γζ; moreover, γ ≥
√

Gc(0, 0)/D for a weak
Allee effect [1]. We then substitute this scaling form in the equation (9) for c(t, x), change to the comoving
reference frame, and require that the wave profile does not depend on τ . This calculation yields

vc = Dγ +
Gc(0, 0)

γ
. (1)

This expression for vc can now be compared to the advection velocity va = −2D∂ ln[c(t, x)]/∂x = 2Dγ.
For a strong Allee effect, Gc(0, 0) is negative and, therefore, va > vc. For a weak Allee effect, va − vc =

Dγ − Gc(0,0)
γ ≥ 0, where the last inequality follows from γ ≥

√

Gc(0, 0)/D; see [1].

Derivation of equation (18)

Here, we derive equation (18). Since, for Gf (c, f) decreasing with f , wave splitting is affected only by
the linearization of Gf (c, f)f for small f , we are free to replace Gf (c, f)f with any other function that
has identical behavior for f → 0. It is particularly useful to approximate Gf (c, f)f with a piece-wise
linear function because this allows for an exact solution for f(t, x) everywhere in space, which captures
the qualitative dependence of the solution on the parameters of the model. In contrast, eigenfunctions
of L only describe the behavior of f(t, x) close to the front and only up to a normalization factor. To
this purpose, we redefine G(c, f)f as

Gf (c, f)f = gf (c)f
∗(c)min{f, f∗(c)− f}. (2)

Note that this redefinition does not have a fixed point at f = 1, which is appropriate as long as we are
not interested in cooperators invading defectors.

We now turn to equation (12), which can be further simplified by the change of variables from ζ
to ϕ = c/K using equation (4). The result reads

ϕ2(1 − ϕ)2f ′′ + 2ϕ(1− ϕ)

(

1− 2ϕ+
c∗

K

)

+
2

gcK2
[Gf (Kϕ, f)− λ]f = 0, (3)

where primes now denote derivatives with respect to ϕ. We further assume that c∗ = 0 and obtain that

[ϕ2(1− ϕ)2f ′]′ = − 2

gcK2
Gf (Kϕ, f)f, (4)
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where we also set λ = 0 because λ vanishes at the splitting transition. We now use equation (S2) and the
assumption that f∗(ϕ) = f∗ for ϕ > ϕ̄ ≡ c̄/K and f(ϕ) = 0 for ϕ < ϕ̄, i.e. defectors are not viable at very
low densities. The right hand side of equation (S4) is then proportional to f for f < f∗/2 and to f∗ − f
for f > f∗/2; therefore, further simplifications occur upon integrating both sides of equation (S4) over ϕ
and defining a new variable F =

∫

fdϕ for f < f∗/2 and E =
∫

(f∗ − f)dϕ for f > f∗/2. For example,
for the region where f < f∗/2 and ϕ > ϕ̄, we obtain

ϕ2(1 − ϕ)2F ′′ = −2gff
∗

gcK2
F (5)

The general solution of this equation is given by

F = C1ϕ
α(1 − ϕ)1−α + C2ϕ

1−α(1 − ϕ)α, with

α =
1

2

(

1 +

√

1− 8gff∗

gcK2

)

.
(6)

Similarly, for f > f∗/2, we find

E = C3ϕ
β(1− ϕ)1−β + C4ϕ

1−β(1 − ϕ)β , with

β =
1

2

(

1 +

√

1 +
8gff∗

gcK2

)

.
(7)

Then, the solution for f(ϕ) is given by E′ from equation (S7) for f > f∗/2 and by F ′ from equa-
tion (S6) for f < f∗/2 and ϕ > ϕ̄. The four constants C1, C2, C3, and C4 and the matching point ϕ1/2

are determined by the boundary conditions f(−∞) = f∗ and f(c̄/K) = 0 and the matching conditions
at ϕ1/2, where f(ϕ1/2 − 0) = f(ϕ1/2 + 0) = 1/2 and f ′(ϕ1/2 − 0) = f ′(ϕ1/2 + 0). Upon using four of
the five conditions, one can easily express the four constants in terms of ϕ1/2 because the conditions are
linear with respect to C1, C2, C3, and C4. The remaining condition determines ϕ1/2 and can also be
solved exactly:

ϕ1/2 =
γϕ̄

1− (1− γ)ϕ̄
, where

γ =

[

(β − α)(α− ϕ̄)

(β + α− 1)(1 − α− ϕ̄)

]
1

2α−1

.

(8)

We then obtain the condition for splitting, stated in equation (18), by requiring that γ is real, and ϕ1/2 >
ϕ̄. Note that, ϕ1/2 → 1 as the splitting state is approached, say, by increasing c̄. Since ϕ→ 1 corresponds
to ζ → −∞, we see that the wave of defectors lags more and more behind the wave of cooperators. As
we show in the main text, this is a general result, and the front is populated mostly by the cooperators
close to the splitting transition. As a consequence, the expansion velocity at the splitting transition is
given by equation (3).

Increased spreading through effective advection and growth

Here, we demonstrate the effects of effective advection and growth on the ability of defectors to keep up
with cooperators. When ecological dynamics are not affected by the evolutionary dynamics, the ability
of defectors to follow cooperators in a mixed wave is mathematically equivalent to the ability of a Fisher
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wave to follow a moving boundary between good and bad conditions. In particular, the assumption
that f = 0 for c < c̄ makes this moving boundary absorbing. One can easily show that classic Fisher
waves can only follow an absorbing boundary that moves with a velocity smaller than the Fisher velocity.
Here, we show that even boundaries moving with higher velocities can be followed provided there is an

effective advection or growth. This analysis illustrates the role of the term 2D ∂ ln(c)
∂x

∂f
∂x in equation (10)

and suggests that both effective advection and growth could be useful management strategies to maintain
genetic diversity during range expansions or to help species shift in response to a rapid climate change.

To avoid confusion with the earlier discussion, we introduce new notation. Let v be the velocity of the
absorbing barrier, and g is the per capita growth rate. The Fisher velocity is then 2

√
gD, where D is the

effective diffusion constant. When v > 2
√
gD, the population cannot keep up with the barrier without

external interventions. One possible intervention is to increase g by a factor 1+ δ, say by supplying extra
food, in a region of length a behind the barrier, which is analogous to the effective growth discussed
earlier. Another possibility, analogous to effective advection, is to move the population with velocity u in
a region of length a behind the front, say by capturing and transporting individuals within the population.
The analysis of both of these scenarios follows the same procedure as the derivation of (18), but is much
simpler because the resulting linearized equations have constant coefficients; therefore they can be easily
solved by the standard methods. Below we just summarize the results.

For effective growth, we find that barriers moving with any velocity can be followed, but the region
of effective growth should be sufficiently large:

a >
2D

√

4gD(1 + δ)− v2

[

π − arctan

(

√

4gD(1 + δ)− v2
√

v2 − 4gD

)]

. (9)

Note that the minimal size is finite when v = 2
√
gD, and that it decreases only as δ−1/2 for large δ. This

suggests that there is an optimal size a that minimizes δa, which could be interpreted as the total cost
of the intervention.

For effective advection, we also find that barriers moving with any velocity can be followed pro-
vided 2

√
gD + u > v and the region of advection is sufficiently large:

a >
2D

√

4gD− (v − u)2

[

π − arctan

(

√

4gD− (v − u)2

u+
√

v2 − 4gD

)]

. (10)

Similar to the previous case, minimal a is finite when v = 2
√
gD. More importantly, the minimal size

is the smallest when u and v are about equal. Indeed, when v ≫ u, advection has a small effect on
the dynamics, while, when u ≫ v, the point where the region of advection ends becomes an effectively
absorbing boundary because organisms entering advection region are quickly moved towards the front of
the wave.
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