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 6 

1.1. DS, cointegrated processes and TS 7 

If a series is stationary around an appropriately defined trend it is said to be integrated 8 

of order zero or I(0), if the deviations from the trend have to be differenced once to 9 

achieve stationarity it is I(1), or I(2) if it has to be differenced twice. An example of 10 

an I(1) process is a first order autoregressive process, in which the coefficient of the 11 

autoregressive term is equal to one, e.g.,  12 

ttt eyy += −1  ….(1) 13 

or  14 

tt ey =∆  15 

where ( )L−=∆ 1  is the difference operator, te ~ ( )2,0.. σdii  is a white noise process, 16 

which could be extended to an ARMA process satisfying the stationarity and 17 

invertibility conditions. This model, also known as random walk, has a stochastic 18 

trend, as can be shown by solving the difference equation (1): 19 
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where 0y  is the initial condition and ∑
−

=
− =

1

0

t

i

tit ve  has a stochastic trend, produced by 1 

the sum of the stationary error term [1]. The mean of the process is constant and its 2 

variance increases with time ( ) ( ) 22

ett tvEyVar σ==  and diverges as ∞→t  [2]. A 3 

generalization of equation (1) is a random walk with a drift (a constant term): 4 

ttt eyy ++= −1β ….(2) 5 

or 6 

tt ey +=∆ β  7 

 8 

The solution of this difference equation is 9 
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where 0y  is the initial condition, tβ  is a deterministic trend and ∑
−

=
− =

1

0

t

i

tit ve  has a 13 

stochastic trend. The variance of this process ( ) ( ) 22

ett tvEyVar σ==  is time dependent 14 

as in the case of a simple random walk, but the mean ( ) tyyE t β+= 0  is no longer 15 

constant. 16 

 17 

Two of the most important features of this type of process are that it is not mean 18 

reverting and that it has infinite memory; shocks do not fade [1]-[2]. The sum of these 19 

random shocks determines the secular movement of the series. That is, all shocks have 20 

permanent effects on the long-run path of temperature. Past and present shocks are as 21 

important for determining the current trend: any shock that occurred even in the 22 



 3 

distant past is as important as present variations. The long-term forecast is always 1 

influenced by historical events, and temperature predictability is limited, even if 2 

forcing factors are held constant [3]-[4]. It is worth noting that this is not consistent 3 

with the physical fact of climate being a highly dissipative system [5]. 4 

 5 

Two integrated variables are said to be cointegrated if there exists a linear 6 

combination of them that produces stationary residuals [6]. Cointegration implies that 7 

there is a long-run equilibrium relationship between two or more variables because 8 

they share the same stochastic trend [7]. To illustrate this concept consider the 9 

following integrated processes: 10 

xtxttx εµ +=  11 

ztzttz εµ +=  12 

where xtµ , ztµ  are unit root processes wich contain a stochastic trend and xtε , ztε  are 13 

stationary noise processes. For these two variables to be cointegrated there must exist 14 

a linear combination tt zx 21 αα +  ( 1α , 2α  are different from zero) such that 15 

ztxt µ
α
α

µ
1

2−  is stationary, indicating that the stochastic trends  xtµ , ztµ  are identical 16 

up to a scalar. Consequently, 
tx  and 

tz  share a common secular movement and a 17 

regression between these two variables will produce stationary residuals. 18 

  19 

In the application of cointegration techniques to climate variables this common 20 

stochastic trend has been interpreted as the fingerprint of anthropogenic activities in 21 

global and hemispheric temperatures. It should be noted however that a requirement 22 

for this concept is the existence of stochastic trends. If the variables are for example 23 



 4 

I(0) and I(1) the cointegration representation does not exist and spurious cointegration 1 

is likely to occur (e.g., [8]-[10]). 2 

 3 

On the other hand, a trend stationary process consists of a deterministic component 4 

plus a stochastic process which can range from a simple white noise to a variety of 5 

different types of autoregressive and moving average structures such as AR, MA, 6 

ARMA. A simple example of this class of process is an AR(1) equation of the form: 7 

 8 
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where φ is a constant satisfying 1pφ , te ~ ( )2,0.. σdii  is a white noise process which 10 

could also be extended to an ARMA process satisfying the stationarity and 11 

invertibility conditions, tτ  can be any deterministic function of time producing a 12 

variety of linear and nonlinear trends and α is the intercept of the trend function. The 13 

deterministic component of this process dominates its long run behavior: variations 14 

are transitory and do not change the long run path of the series [11]. These processes 15 

are mean reverting around a trend function of the form ( ) ttxE τα += . Local scale 16 

monthly temperatures in low and middle latitudes frequently provide examples of 17 

trend stationary processes, for which standard unit root test are able to strongly reject 18 

the null hypothesis of the presence of stochastic trends [e.g., 4].  19 

 20 

It has been shown that when considering the problem of investigating the data 21 

generating process, care must be exercised when the trend function is subject to 22 

changes in level and/or slope [12]. The class of models considered in [12] are special 23 

cases for which the trend function changes only once in the sample. In this case, the 24 
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usual strategy is to treat such changes as exogenous and they are not explicitly 1 

modeled via a parametric stochastic structure. Under this parameterization, there are 2 

only some shocks that can change the long-term behavior of the time series, as 3 

opposed to the case of a unit root where all shocks produce long-term changes. In the 4 

climate context, long-term changes are not frequent in the scale of the sample under 5 

analysis and are produced by important changes in key external forcing factors such 6 

as Earth orbit changes, solar irradiance, and greenhouse gases concentrations [3]. 7 

 8 

In general, the trend parameters and their structural changes are not assumed to be 9 

deterministic [12]-[13]. In order to illustrate the class of model that applies in such 10 

cases, consider the following framework [13]: 11 

 12 

tttt Zty ++= βµ  13 

tt eLBZLA )()( = ; te ~ ),0.(.. 2

edii σ  14 

ttt u+= −1ββ  15 

ttt v+= −1µµ  16 

 17 

where A(L) and B(L) are polynomials in the lag operator L defined as 1−= tt XLX . The 18 

intercept and slope of the trend function are time varying stochastic processes. The 19 

noise components 
tu  and 

tv  are modeled as mixtures of normal distributions where 20 

the realizations from each of these variables are drawn from one of two normal 21 

distributions, one with high and the other with small or zero variance. These mixtures 22 

of normal distributions for the error terms tu  and tv  can be described as: 23 

( ) tttttu 21 1 γλγλ −+=  24 



 6 

( ) tttttv 21 1 δκδκ −+=  1 

where 
itγ ~ ),0(... 2

i$dii γσ , 
itδ ~ ),0(... 2

i$dii δσ  while 
tλ  and 

tκ  are Bernoulli variables 2 

that take value one with probability λα  and κα and zero with probability (1- λα ) and 3 

(1- κα ), respectively. One can then obtain a model with infrequent changes in the 4 

slope and intercept parameters when λα  and κα  are close to one and 2

1γσ  and 2

1δσ  are 5 

zero. If 02

2 >γσ  there will be occasional changes in the slope, and correspondingly if 6 

02

2 >δσ  there will be infrequent changes in the intercept. As mentioned above, in the 7 

case of climate change these breaks in the trend function are driven by changes in key 8 

external forcing factors. When only one break occurs, it becomes difficult to model 9 

the change with a stochastic structure. Hence, the common approach in the literature 10 

has been to consider the change as being ‘exogenous’. We shall adopt this approach in 11 

our various analyses. 12 

 13 

The occurrence of secular co-movement is not restricted to integrated variables and 14 

cointegration is only a particular case of a broader class of processes that share 15 

common time-series features. Trend stationary processes such as those described 16 

above can also exhibit a common secular movement represented by a variety of linear 17 

and nonlinear deterministic trends that may include characteristic features such as 18 

breaks in the trend function. The concept of nonlinear co-trending applied in this 19 

paper is described in section 1.5 of the present supplementary text. 20 

 21 

1.2. Standard unit root tests and the lag length and bandwidth selection 22 

In this paper five of the must commonly used unit root/stationarity tests were applied 23 

to the simulated global temperature and radiative forcing series [14]-[18]. A 24 
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description of these unit root tests and a discussion of their similarities and differences 1 

is available in the literature (e.g., [1]). For the ADF and DF-GLS tests the lag length 2 

was selected using the Akaike Information Criterion. For the KPSS test, the Bartlett 3 

kernel is used with the bandwidth selected using the Newey-West method [19] which 4 

automatically selects, by means of a nonparametric approach, the number of 5 

autocovariances to use when computing a hetersokedasticity and autocorrelation 6 

consistent covariance matrix. For the ERS-PO, the autoregressive spectral density 7 

estimator is used with the lag length selected using the Akaike Information Criterion. 8 

In the case of the Ng-Perron tests, the AR GLS detrended spectral estimation method 9 

is used with the lag length selected using the Modified Akaike Information Criterion 10 

[18] with the Perron-Qu modification [20]. 11 

 12 

1.3. Perron-Yabu testing procedure for structural changes in the trend function 13 

It has been shown that the presence of structural changes can have considerable 14 

implications when investigating time-series properties by means of unit root tests 15 

[12]. This creates a circular problem given that most of the tests for structural breaks 16 

require to correctly identify whether the data generating process is stationary or 17 

integrated. Depending on whether the process is stationary or integrated the limit 18 

distributions of these tests are different and if the process is misidentified the tests will 19 

have poor properties. 20 

 21 

The Perron-Yabu test [21] was designed explicitly to address the problem of testing 22 

for structural changes in the trend function of a univariate time series without any 23 

prior knowledge as to whether the noise component is stationary or contains an 24 

autoregressive unit root. The approach of Perron-Yabu builds on previous work of the 25 
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same authors who analyzed the problem of hypothesis testing on the slope coefficient 1 

of a linear trend model when no information about the nature, I(0) or I(1), of the noise 2 

component is available [22]. 3 

 4 

We discuss the case of an autoregressive noise component of order one (AR(1)). A 5 

more detailed presentation of this case and of other structural change models and 6 

extensions can be found in [21]. Consider the following data generating process: 7 
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for t=1,...,T; te ~i.i.d. ( )2,0 σ , tx  is a ( )1×r  vector of deterministic components, and 9 

ψ  is a ( )1×r  vector of unknown parameters which are model specific and described 10 

in the next paragraphs. The initial condition 
0u  is assumed to be bounded in 11 

probability. The autoregressive coefficient is such that 1≤α  and therefore, both 12 

integrated and stationary errors are allowed. 13 

The interest resides in testing the null hypothesis of γψ =R  where R  is a 14 

( )rq ×  full rank matrix and γ is a ( )1×q vector, where q is the number of restrictions. 15 

The restrictions here are used to test for the presence of a structural change in the 16 

trend function. For this purpose the Perron-Yabu test considers three models where a 17 

change of intercept and/or slope in the trend function occurs. In what follows, the 18 

break date is denoted [ ]TT BB λ=  for some ( )1,0∈Bλ , where [ ]·  denotes the largest 19 

integer that is less than or equal to the argument. ( ).1  is the indicator function. 20 

 21 

The model to test for a one-time change in the slope of the trend function is specified 22 

with ( )',,1 *

tt DTtx =  and ( )',, 100 ββµψ =  where ( )( )BBt TtTtDT −>= 1*  so that the 23 
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trend function is joined at the time of the break. The hypothesis of interest is 01 =β . 1 

The testing procedure is based on a Quasi Feasible Generalized Least Squares 2 

approach that uses a superefficient estimate of the sum of the autoregressive 3 

parameters α when α=1. The estimate of α is the OLS estimate obtained from an 4 

autoregression applied to detrended data and is truncated to take value 1 when the 5 

estimate is in a δ−T  neighborhood of 1. This makes the estimate "super-efficient" 6 

when α=1 and implies that inference on the slope parameter can be performed using 7 

the standard Normal or Chi-square distribution whether α=1 or |α|<1, when the break 8 

date is known. Theoretical arguments and simulation evidence show that δ=1/2 is the 9 

appropriate choice. When the break date is unknown, the limit distribution is nearly 10 

the same in the I(0) and I(1) cases when considering the Exp functional of the Wald 11 

test across all permissible dates for a specified equation. Hence, it is possible to have 12 

tests with nearly the same size in both cases. To improve the finite sample properties 13 

of the test, they also use the Roy-Fuller bias-corrected version of the OLS estimate of 14 

α [23]. 15 

 16 

The testing procedure suggested by the authors is:  17 

1) For any given break date, detrend the data by Ordinary Least Squares (OLS) 18 

to obtain the residuals tû ; 19 

2) Estimate an AR(1) model for tû  yielding the estimate α̂ ; 20 

3) Use α̂  to get the Roy-Fuller biased corrected estimates Mα̂ ; 21 

4) Apply the truncation 22 
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 10 

5) Apply a Generalized Least Squares (GLS) procedure with MSα̂  to obtain the 1 

coefficients of the trend and the variance of the residuals and construct the standard 2 

Wald-statistic FMSW . 3 

6) Since the break date is assumed to be unknown, the 5 steps above must be 4 

repeated for all permissible break dates to construct the Exp functional of the Wald 5 

test denoted by 6 

( ) 








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



=− ∑
Λ

− λFMSFS WTWExp
2

1
explog

1  7 

where { }ελελ −≤≤=Λ 1;  for some 0>ε . =ε 0.15, 0.10 and 0.05 are commonly 8 

used in the literature. 9 

 10 

1.4. The Perron and Kim-Perron unit root tests 11 

Perron [12] proposed an extension of the Augmented Dickey-Fuller (ADF) test [14]-12 

[15] that allows for a one-time break in the trend function of a univariate time series. 13 

Three different model specifications were considered: the "crash" model that allows 14 

for an exogenous change in the level of the series; the "changing growth" model that 15 

permits an exogenous change in the rate of growth; and a third model that allows both 16 

changes. For this test, the break dates are treated as exogenous in the sense of 17 

intervention analysis [24], separating what can and cannot be explained by the noise 18 

in a time series. Our interest centers in the "changing growth" model, which can be 19 

briefly described as follows. The null hypothesis is: 20 

 21 

( ) tttt eDUyy +−++= − 1211 µµµ  22 

 23 
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where 1=tDU  if BTt > , 0 otherwise; BT  refers to the time of the break, and 1 

( ) ( ) tt LBeLA ν= , 
tν ∼i.i.d. ( )2,0 σ , with A(L) and B(L) pth and qth order polynomials, 2 

respectively, in the lag operator. The innovation series { }te  are ARMA(p,q) type with 3 

possibly unknown p, q orders. The alternative hypothesis is: 4 

 5 

( ) ttt eDTty +−++= *1211 βββµ  6 

 7 

where 
Bt TtDT −=*  if BTt >  and 0 otherwise. The "changing growth" model takes an 8 

"additive outlier" approach in which the change is assumed to occur rapidly and the 9 

regression strategy consists in first detrending the series according the following 10 

regression: 11 

 12 

ttt yDTty ~*

1 +++= γβµ        (4) 13 

 14 

where ( )12 ββγ −= . Then an ADF regression is estimated on the residuals ty~  as 15 

follows: 16 

 17 
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 19 

where the k lagged values of ity −∆  are added as a parametric correction for 20 

autocorrelation. In the original Perron test [12] the break is assumed to occur at a 21 

known date. Later, this test was generalized for the case when the date of the break is 22 

unknown and he proposed determining the break point endogenously from the data 23 



 12 

[25]. The break date was originally proposed to be estimated by 1) minimizing the t-1 

statistic for testing 1=α ; 2) minimizing/maximizing the t-statistic of the parameter 2 

associated with γ  in regression (4) or; 3) maximizing the absolute value of the t-3 

statistic of γ  in regression (4). The resulting unit root test is then the t-statistic for 4 

testing that α=1 in regression (5) estimated by OLS. The critical values of the limit 5 

distribution of the test have been tabulated [25]. 6 

 7 

A problem with most procedures for testing for unit roots in the presence of a one-8 

time break that occurs at an unknown date is that the change in the trend function is 9 

allowed only under the alternative hypothesis of a stationary noise component [25]-10 

[27]. Consequently, it is possible that a rejection occurs when the noise is I(1) and 11 

there is a large change in the slope of the trend function. A method that avoids this 12 

problem is that of Kim-Perron [28]. Their procedure is based on a pre-test for a 13 

change in the trend function, namely the Perron-Yabu test described above. If this pre-14 

test rejects, the limit distribution of the unit root test is then the same as if the break 15 

date was known [12], [29]. This is very advantageous since when a break is present 16 

the test has much greater power. It was also shown in simulations to maintain good 17 

size in finite samples and that it offers improvements over other commonly used 18 

methods. The testing procedure under the additive outlier approach for the changing 19 

growth model consists in the following steps: 20 

 21 

1. Obtain an estimate of the break date TTB λ̂ˆ =  by minimizing the sum of 22 

squared residuals from regression (4). Then construct a window around that 23 

estimate defined by a lower bound lT  and an upper bound hT . A window of 9 24 
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observations was used. Note that the results are not sensitive to this choice 1 

[28]; 2 

2. Create a new data set { }ny  by removing the data from 1+lT  to 
hT , and 3 

shifting down the data after the window by 
lh TT yyTS −=)( , hence, 4 
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 5 

3. Perform the unit root test using the break date 
lT  and compute the t-test 6 

statistic for testing 1~ =α , denoted by ( )AO

trt λα
ˆ , from the following OLS 7 

regression: 8 
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where ˆ λ tr
AO = Tl Tr , )( lhr TTTT −−=  and n

ty~  is the detrended value of ny . 10 

 11 

The number of lags in (5) and (6) was chosen using the Schwarz Information 12 

Criterion (BIC) but the results are in general robust to alternative methods for 13 

choosing the lag length such as the Akaike Information Criterion (AIC) or the 14 

Hannan-Quinn criterion (HQ). In all cases, no evidence of remaining autocorrelation 15 

was found based on Ljung-Box tests applied to the residuals. 16 

 17 

1.5. Bierens nonparametric nonlinear co-trending test 18 

Nonlinear co-trending is special case of the more general "common features" concept 19 

[30]. The advantage of the test proposed by Bierens is that the nonlinear trend does 20 

not have to be parameterized [31]. The nonlinear trend stationarity model can be 21 

expressed as follows: 22 

( ) tt utgz +=  23 



 14 

with 1 

( ) ( )tfttg ++= 10 ββ  2 

where tz  is a k-variate time series, tu  is a k-variate zero-mean stationary process and 3 

( )tf  is deterministic k-variate general nonlinear trend function that allows, in 4 

particular, structural changes. Nonlinear co-trending occurs when there exists a non-5 

zero vector θ  such that ( ) 0=′ tfθ . Hence, the null hypothesis of this test is that the 6 

multivariate time series 
tz  is nonlinear co-trended, implying that there is one or more 7 

linear combinations of the time series that are stationary around a constant or a linear 8 

trend. Note that this test is a cointegration test in the case when it is applied to series 9 

that contain unit roots. 10 

The nonparametric test for nonlinear co-trending is based on the generalized 11 

eigenvalues of the matrices 1M  and 2M  defined by: 12 

 13 
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where 16 
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 18 

if [ ]1,1−∈ nx , ( ) 0=xF  if [ ]1,0 −∈ nx  with 0β̂  and 1β̂  being the estimates of the vectors 19 

of intercepts and slope parameters in a regression of tz  on a constant and a time trend; 20 

and 21 

 22 
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 2 

where αnm =  with n equal to the number of observations and 5.0=α  [31]. Solving 3 

021 =− MM λ  and denoting the solution rλ̂ , the test statistic is rn λα ˆ1− . The null 4 

hypothesis is that there are r co-trending vectors against the alternative of r-1 co-5 

trending vectors. This test has a non-standard distribution and the critical values have 6 

been tabulated [31]. The existence of r co-trending vectors in r+1 series indicates the 7 

presence of r linear combinations of the series that are stationary around a linear trend 8 

and that these series share a single common nonlinear deterministic trend. Such a 9 

result indicate a strong secular co-movement in the r+1 series. 10 

 11 

1.6 Robustness of the unit root test results 12 

In this subsection the robustness of the results about the unit root tests presented in 13 

Table 1 of the main text is explored by comparing them to those that can be obtained 14 

using the Perron test described above [25]. For this purpose, two of the different 15 

methods for selecting the break date for this test were applied. Although both methods 16 

are equivalent to choosing the break date by minimizing the sum of squared residuals, 17 

the test and the appropriate critical values in each case are different, as explained 18 

below. 19 

 20 

The first method consists in maximizing the value of the of the t-statistic of 21 

coefficient γ  in regression (4) to obtain the test statistic 
*

,γαt  from regression (5). This 22 

method allows to impose a mild prior restriction of a one-sided change ( 0>γ ), 23 

limiting the analysis to the case of interest of the present paper (i.e., when there is an 24 



 16 

increase in the rate of growth). This restriction increases the power of the test when 1 

there is indeed a non-zero change in the slope [25]. The existence of breaks in the 2 

slope of the trend function of temperature and radiative forcing series was previously 3 

established using the Perron-Yabu test [21], and consequently this is the relevant test 4 

statistic for investigating their time-series properties. The second method does not 5 

impose any restriction on γ  and consists in maximizing the absolute value of the t-6 

statistic of the coefficient γ  to obtain the test statistic *

, γαt . The results obtained 7 

following this procedure are more conservative since no information about the sign of 8 

the change is included and the corresponding critical values are larger in absolute 9 

value. Note that both tests yield exactly the same values. The difference between the 10 

two relates to the assessment of the significance of a given value for the statistic. If 11 

one imposes a prior that the change is positive, the critical values are smaller (in 12 

absolute value) and, hence, the tests is more powerful. 13 

 14 

Table A1 provides strong evidence on the robustness of the results shown in Table 1 15 

of the main text. Whether the restriction of a one-sided test is imposed or not, results 16 

unambiguously indicate that both the temperature simulations and radiative forcing 17 

series are better represented as trend stationary processes with a one-time break in the 18 

slope of their trend function. For all temperature simulations both *

,γαt  and *

, γαt  are 19 

significant at the 1% level, with the exception of GFDL_CM2.1_3, for which they are 20 

significant at the 2.5% and 5% levels, respectively. For the radiative forcing series the 21 

*

,γαt  is significant at the 1%, 2.5% and 5% levels for SOLAR, TRF and WM_GHG, 22 

respectively. The results are broadly similar even when using the more conservative 23 

critical values corresponding to *

, γαt . In this case, the test statistic is significant at the 24 



 17 

1%, 2.5% and 5% levels for SOLAR, TRF and WM_GHG, respectively. As such, the 1 

conclusion obtained by applying the Kim-Perron test [28] in that both temperature 2 

simulations and radiative forcing series can be better described as trend stationary 3 

processes with a change in their rates of growth is strongly supported by the Perron 4 

test [25], whether or not a prior restriction on the sign of the change is imposed. 5 

 6 

Table A1. Perron test for a unit root with a one-time break in the trend function. The 7 

regression model for the unit root tests is defined in equations (4) and (5). The values 8 

of the estimated parameters are reported in Table 1 of the main text. a, b, c, d denotes 9 

statistical significance at the 1%, 2.5%, 5% and 10% respectively. The critical values 10 

are from [25] Table 1, panels (h) and (i). 11 

Series *

,γαt , 
*

, γαt  Significance level imposing the 

prior of a positive slope change 

Significance level without 

a prior imposed 

Globe -6.6978 a a 

ECHAM5_1 -10.5027 a a 

ECHAM5_2 -6.7142 a a 

ECHAM5_3 -11.1100 a a 

ECHAM5_4 -6.2068 a a 

BCCR -6.7843 a a 

CCCMA -9.0049 a a 

GFDL_CM2.1_1 -5.0001 a a 

GFDL_CM2.1_3 -4.5615 b c 

GFDL_CM2.0_1 -5.4219 a a 

HADLEY_CM3_1 -5.7231 a a 

HADLEY_CM3_2 -8.0815 a a 

GISS_AOM_1 -8.2308 a a 

GISS_AOM_2 -6.3705 a a 

IPSL -10.1338 a a 

TRF -4.5822 b b 

WM_GHG -4.2380 c d 

SOLAR -9.3831 a a 

  12 
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