


Supplementary Figure 1. Adaptation to the spontaneous physical activity (SPA) chamber for 24 h recording of intrinsic SPA (SPA_{INT}) in Sprague-Dawley rats. SPA_{INT} for three consecutive 24 h periods was measured in Sprague-Dawley rats (n = 8). A repeated measures ANOVA shows there is a significant effect of day ($F_{2,14} = 19.32$, P = 0.001), but pairwise analyses show higher SPA_{INT} only during the first 24 h of recording with no differences between 24h SPA_{INT} recorded on the second and third day (SPA_{INT} day 1 vs. day 2, P = 0.0039; SPA_{INT} day 1 vs. day 3, P = 0.0039, SPA_{INT} day 2 vs. day 3, P = 0.526). These data show that, under our experimental conditions, 24 h adaptation is sufficient for SPA_{INT} behavioral measures.

Supplementary Figure 2. Time-course of ambulatory spontaneous physical activity (SPA) before and after orexin-A (OXA) injections. Time course of ambulatory SPA before and after injection of either aCSF (vehicle) or 500 pmol OXA in either (A, B) rostral lateral hypothalamus (RLH) or (C, D) substantial nigra pars compacta (SN) from high activity (HA) and low activity (LA) rats. Note return of activity to baseline 2 h after orexin-A injection. Data is shown in summary form in Figure 2 from main text. Y-axis, mean \pm sem.

Supplementary Table 1A. Effect of selection criteria on body weight comparisons between high activity (HA) and low activity (LA) rats

НА		LA				
SPA ≥	Body Weight	SPA ≤	≤ Body Weight		df	p-value
(min / 24 h)	(g, mean ± SEM)	(min / 24 h)	(g, mean ± SEM)	t	ui	p-value
		60	282.5 ± 9.176	0.664	12.027	0.519
		70	285.786 ± 7.418	0.395	19.858	0.697
100	289.052 ± 3.64	80	285.56 ± 5.968	0.5	43.655	0.62
		90	282.256 ± 5.35	1.05	74.904	0.297
		100	283.068 ± 4.73	1.003	121.118	0.318
		60	282.5 ± 9.176	0.51	14.356	0.618
		70	285.786 ± 7.418	0.226	25.107	0.823
110	287.775 ± 4.758	80	285.56 ± 5.968	0.29	56.391	0.773
		90	282.256 ± 5.35	0.771	90.976	0.443
		100	283.068 ± 4.73	0.702	127.011	0.484
		60	282.5 ± 9.176	0.882	15.45	0.391
		70	285.786 ± 7.418	0.664	27.36	0.512
120	291.804 ± 5.201	80	285.56 ± 5.968	0.789	59.356	0.433
		90	282.256 ± 5.35	1.28	88.899	0.204
		100	283.068 ± 4.73	1.243	111.364	0.217
		60	282.5 ± 9.176	0.781	17.878	0.445
	291.095 ± 6.079	70	285.786 ± 7.418	0.554	31.783	0.584
130		80	285.56 ± 5.968	0.65	61.124	0.518
		90	282.256 ± 5.35	1.091	78.377	0.278
		100	283.068 ± 4.73	1.042	83.921	0.3
		60	282.5 ± 9.176	0.557	22.188	0.583
		70	285.786 ± 7.418	0.314	37.248	0.755
140	289.091 ± 7.482	80	285.56 ± 5.968	0.369	55.641	0.714
		90	282.256 ± 5.35	0.743	59.902	0.46
		100	283.068 ± 4.73	0.68	57.608	0.499
		60	282.5 ± 9.176	0.888	25.448	0.383
	294 ± 9.134	70	285.786 ± 7.418	0.698	34.899	0.49
150		80	285.56 ± 5.968	0.774	38.382	0.444
		90	282.256 ± 5.35	1.109	37.156	0.274
		100	283.068 ± 4.73	1.063	34.442	0.295
		60	282.5 ± 9.176	1.118	24.939	0.274
		70	285.786 ± 7.418	0.956	29.038	0.347
160	297.889 ± 10.263	80	285.56 ± 5.968	1.038	28.16	0.308
		90	282.256 ± 5.35	1.351	26.617	0.188
		100	283.068 ± 4.73	1.312	24.663	0.202
		60	282.5 ± 9.176	1.443	18.032	0.166
		70	285.786 ± 7.418	1.313	16.89	0.207
170	304.636 ± 12.288	80	285.56 ± 5.968	1.396	14.928	0.183
		90	282.256 ± 5.35	1.67	14.018	0.117
		100	283.068 ± 4.73	1.638	13.133	0.125

woor of (111)	HA		LA			
SPA ≥	Fat Mass	SPA ≤ Fat Mass			10	-
(min / 24 h)	(g, mean ± SEM)	(min / 24 h)	(g, mean ± SEM)	t	df	p-value
	(C.)	60	27.564 ± 1.701	0.529	10.421	0.608
		70	28.892 ± 1.509	-0.249	15.624	0.806
100	28.498 ± 0.47	80	28.824 ± 1.081	-0.277	33.615	0.784
		90	28.49 ± 0.799	0.008	65.682	0.993
		100	28.85 ± 0.676	-0.428	111.479	0.67
		60	27.564 ± 1.701	0.551	11.147	0.593
		70	28.892 ± 1.509	-0.21	16.968	0.836
110	28.553 ± 0.574	80	28.824 ± 1.081	-0.222	38.38	0.826
		90	28.49 ± 0.799	0.064	76.325	0.949
		100	28.85 ± 0.676	-0.335	120.027	0.738
		60	27.564 ± 1.701	0.801	11.227	0.44
		70	28.892 ± 1.509	0.069	17.107	0.945
120	29.004 ± 0.585	80	28.824 ± 1.081	0.146	38.642	0.884
		90	28.49 ± 0.799	0.519	74.799	0.605
		100	28.85 ± 0.676	0.172	111.444	0.864
		60	27.564 ± 1.701	0.568	12.173	0.58
	28.607 ± 0.694	70	28.892 ± 1.509	-0.171	18.817	0.866
130		80	28.824 ± 1.081	-0.169	43.522	0.867
		90	28.49 ± 0.799	0.111	76.584	0.912
		100	28.85 ± 0.676	-0.251	95.176	0.803
		60	27.564 ± 1.701	0.236	13.021	0.817
		70	28.892 ± 1.509	-0.521	20.288	0.608
140	28.006 ± 0.78	80	28.824 ± 1.081	-0.613	46.107	0.543
		90	28.49 ± 0.799	-0.433	69.73	0.666
		100	28.85 ± 0.676	-0.817	74.868	0.416
		60	27.564 ± 1.701	0.443	15.89	0.664
		70	28.892 ± 1.509	-0.245	24.698	0.808
150	28.444 ± 1.027	80	28.824 ± 1.081	-0.255	45.997	0.8
		90	28.49 ± 0.799	-0.035	46.77	0.972
		100	28.85 ± 0.676	-0.33	42.226	0.743
		60	27.564 ± 1.701	0.723	16.339	0.48
	29.022 ± 1.082	70	28.892 ± 1.509	0.07	24.792	0.944
160		80	28.824 ± 1.081	0.129	39.799	0.898
		90	28.49 ± 0.799	0.396	35.822	0.695
		100	28.85 ± 0.676	0.135	31.48	0.894
		60	27.564 ± 1.701	0.757	17.864	0.459
		70	28.892 ± 1.509	0.163	22.945	0.872
170	29.226 ± 1.39	80	28.824 ± 1.081	0.228	22.358	0.822
		90	28.49 ± 0.799	0.459	17.202	0.652
		100	28.85 ± 0.676	0.243	15.151	0.811

Supplementary Table 1B. Effect of selection criteria on fat mass comparisons between high activity (HA) and low activity (LA) rats.

()	НА		LA			
SPA ≥	Lean Mass	SPA ≤	Lean Mass	4	46	n valua
(min / 24 h)	(g, mean ± SEM)	(min / 24 h)	(g, mean ± SEM)	t	df	p-value
		60	228.691 ± 6.558	0.553	12.701	0.59
		70	231.01 ± 5.294	0.272	21.435	0.788
100	232.645 ± 2.859	80	230.096 ± 4.121	0.508	49.717	0.614
		90	228.232 ± 3.866	0.918	81.114	0.361
		100	228.165 ± 3.5	0.991	126.46	0.323
		60	228.691 ± 6.558	0.419	15.41	0.681
		70	231.01 ± 5.294	0.13	27.515	0.898
110	231.847 ± 3.692	80	230.096 ± 4.121	0.316	63.884	0.753
		90	228.232 ± 3.866	0.676	95.712	0.501
		100	228.165 ± 3.5	0.724	127.789	0.471
		60	228.691 ± 6.558	0.849	16.741	0.408
		70	231.01 ± 5.294	0.634	30.156	0.531
120	235.23 ± 4.042	80	230.096 ± 4.121	0.889	65.817	0.377
		90	228.232 ± 3.866	1.251	91.198	0.214
		100	228.165 ± 3.5	1.321	109.841	0.189
		60	228.691 ± 6.558	0.773	19.497	0.449
		70	231.01 ± 5.294	0.553	34.742	0.584
130	234.927 ± 4.701	80	230.096 ± 4.121	0.773	63.833	0.442
		90	228.232 ± 3.866	1.1	77.138	0.275
		100	228.165 ± 3.5	1.154	81.375	0.252
		60	228.691 ± 6.558	0.516	24.34	0.61
		70	231.01 ± 5.294	0.28	39.656	0.781
140	233.208 ± 5.79	80	230.096 ± 4.121	0.438	54.114	0.663
		90	228.232 ± 3.866	0.715	57.298	0.478
		100	228.165 ± 3.5	0.745	55.566	0.459
		60	228.691 ± 6.558	0.932	26.818	0.36
		70	231.01 ± 5.294	0.754	34.995	0.456
150	237.609 ± 6.97	80	230.096 ± 4.121	0.928	36.031	0.36
		90	228.232 ± 3.866	1.176	35.662	0.247
		100	228.165 ± 3.5	1.211	33.682	0.234
		60	228.691 ± 6.558	1.2	25.545	0.241
	240.988 ± 7.873	70	231.01 ± 5.294	1.052	28.286	0.302
160		80	230.096 ± 4.121	1.226	26.197	0.231
		90	228.232 ± 3.866	1.454	25.522	0.158
		100	228.165 ± 3.5	1.488	24.108	0.15
		60	228.691 ± 6.558	1.27	17.02	0.221
		70	231.01 ± 5.294	1.137	15.518	0.273
170	243.818 ± 9.938	80	230.096 ± 4.121	1.275	13.567	0.224
		90	228.232 ± 3.866	1.462	13.176	0.167
		100	228.165 ± 3.5	1.486	12.601	0.162

Supplementary Table 1C. Effect of selection criteria on lean mass comparisons between high activity (HA) and low activity (LA) rats.

Supplementary Table 1. Differences in body weight (A), fat mass (B) or lean mass (C) between HA and LA rats selected using different values of ambulatory SPA_{INT} . HA and LA rats were defined using increments of 10 minutes over a range of ambulatory SPA_{INT} recorded for 24 h. For HA rats, the range was 100 to 170 min. For LA rats, the range was 60 to 100 min. Using these criteria, the minimum number of HA or LA rats in each comparison was 10. Pairwise comparisons were done using a Welch T-test and p-values are shown uncorrected for multiple comparisons. t, t-test statistic, df, degrees of freedom).

Davamatar	Dhanatuna	IDC RECORDING SESSIONS			Б	Б	Б
Parameter	Phenotype	1	2	3	Г _{НА/LA}	F _{TIME}	F _[HA/LA * TIME]
Body Weight (g)	HA	$384.85 \pm 8.196 \\ 385.5 \pm 11.024$	388.21 ± 7.473	389.43 ± 8.04	0.057	0.081	0.989
	LA	385.5 ± 11.024	389.1 ± 12.418	391.5 ± 11.95	0.037	0.081	0.989
Un-corrected EE	HA	3.2 ± 0.057	3.17 ± 0.055	3.19 ± 0.055	0.795	0.992	0.996
(kcal / h)	LA	3.15 ± 0.109	3.15 ± 0.122	3.16 ± 0.113			
Food Intake (g)	HA	29.17 ± 1.317		26.94 ± 0.486	0.366	0.237	0.873
	LA	30.27 ± 1.964	29.28 ± 1.570	28.57 ± 1.281	0.500	0.237	0.875

Supplementary Table 2. Body weight, uncorrected energy expenditure (EE) and food intake (g) in high activity (HA, N = 14) and low activity (LA, N = 10) rats selected based on 24 h ambulatory SPA_{INT} recorded in indirect calorimetry (IDC) cages. Values shown are mean \pm SEM. Each IDC session correspond to 24 h of recording and sessions were consecutive. Data was analyzed with a 2-way repeated measures ANOVA and no significant differences were detected in any variable. P-values are shown in the last three columns from right to left. Terms of the ANOVA are: $F_{HA/LA}$, main effect for differences between HA and LA rats; F_{TIME} , main effect for differences between IDC recording sessions and $F_{[HA/LA * TIME]}$ term for interaction between HA/LA phenotype and IDC recording session.

	HA (n = 11)	LA (n = 7)	t	df	p-value
Fat Mass (g)	44.027 ± 2.479	47.575 ± 26.39	-0.911	16	0.3756
Lean Mass (g)	287.449 ± 26.394	310.67 ± 11.50	-0.6702	16	0.5123

Supplementary Table 3. Fat and lean mass recorded at the end of IDC sessions for a subset of high activity (HA) and low activity (LA) rats selected based on 24 h ambulatory spontaneous physical activity recorded in indirect calorimetry (IDC) cages. Analysis for group differences between HA and LA rats with a t-test did not detect significant differences in either fat or lean mass. Values shown are mean \pm SEM. t, t-test statistic, df, degrees of freedom).