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Introduction

We first review the general workflow of our approach. For a candidate module consisting of two loci and
two genes, we first evaluate the likelihood that the module is statistically significant based on a statistic
called PA-score (Potential of Association) and filter out modules whose corresponding PA-scores do not
pass a given cutoff value. Then we filter out modules where the association can be detected using marginal
expression levels without considering co-expression patterns (1D-trait). We note that for modules
where the expressions are affected by markers from the same module in the 1D-Map, the
order of applying these two processes does not affect the result since these modules will
also be filtered out in our method. The reason that we apply the PA-score filtering first is
mostly because the cutoff of PA-score is more stringent than that of 1D-Map. In this case,
applying the PA-score filtering first could filter out more modules and leading to a more
efficient algorithm. For modules where the expressions are affected by markers outside
of the module, they will not be filtered since the correlation between the two genes may
be affected by markers within the module. For example, for the “GPG1-RNT1” module
discussed in the main text, the expression levels of GPG1 and RNT1 are affected by a
marker IRA2 in the 1D-Map, but their correlation is also jointly affected by two markers
SSN8 and GCR1 in the module. We thought these modules may also be meaningful. After
the two filtering steps, we model the co-expression patterns of two traits (2D traits) by a conditional
bivariate model. We perform formal statistical tests to identify modules consisting of gene pairs whose
co-expression patterns are under interactive control of two loci. In this supplement, we will first introduce
the conditional bivariate model and then describe how to calculate p-values and how to distinguish single
linkage and epistasis. We also discuss the construction of the PA-score.

Conditional bivariate model

As introduced in the Method section of the main text, the conditional bivariate model is,(
X
Y

)
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,Σ(βij , A,B)) (1)

The parameters θ = (βij , σ1, σ2) in (1) can be estimated using the maximum likelihood estimates (MLE),
where the log-likelihood function is,

l(θ) = −1

2

n∑
k=1

{log[(1− ρ2(βij , ak, bk))σ2
1σ

2
2 ] +

1

1− ρ(βij , ak, bk)
[
x2k
σ2
1

+
y2k
σ2
2

− 2ρ(βij , ak, bk)xkyk
σ1σ2

]}. (2)

Note that we set µ1 and µ2 to be 0 for simplification.
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Before analyzing the data, we applied the normal quantile transformation to the ex-
pression for each gene. The normal quantile transformation is a means to “normalize” the
sample observations so that our procedure is robust to the effects of extreme observations
and/or highly skewed distributions. Figures S1A-D show the effect of normal quantiale
transformation on two examples with outliers from the yeast data, where the correlations
estimated from the transformed data are more reasonable. For most situations, we expect
the normal quantile transformation should have little effect on the estimation of the cor-
relation compared to using original data. To examine this, we calculated the correlation
coefficients between all pairs of genes in the yeast data using both original and normal
quantile transformed expression. We can see from Figure S2 that the correlation coeffi-
cients estimated from the two groups of expression data are quite consistent (Cor = 0.99).
Hence, our methods will be relatively robust to small to mild departures from the normal
assumptions. We should note that the normal quantile transformation could not guarantee
the bi-variate normal distribution. For example, when the gene expression levels are under
the genetic control, the joint distribution of the gene expressions follows the conditional
bi-variate normal but their unconditional joint distribution will not be bi-variate normal,
which is the case for Epistasis-2D modules identified in this paper. When the genetic effects
are not large, we expect the bi-variate assumption may be a good approximation. For ex-
ample, we randomly sampled 106 pairs of genes from the yeast data which mostly could be
considered as genotype-independent gene pairs, and tested their joint distribution using the
normal quantile transformed expressions data. We used the (R) function mvShapiro.Test
within R package mvShapiroTest to perform the Shapiro-Wilk test to evaluate multivariate
normality ( [1]). The joint normal distribution assumption cannot be rejected at the 0.05
statistical significance level for 99.95% of the gene pairs.

Because we quantile normalize the data, the overall standard deviation of each expression
trait is 0.97. Therefore, one possible strategy is to fix the standard deviation at 0.97. We
have chosen to allow the variance to be estimated instead and note that this will have
minimal impact on the results as the likelihood ratio test has the same degrees of freedom
when either the standard deviation is fixed or estimated. More specifically, we took two
groups of modules to compare the performance of these two alternative strategies, one by
randomly sampling 105 modules and another by considering Epistasis-2D modules with p-
values lower than 10−10 in the LR tests. These two groups of modules represent modules
with different significant levels in LR tests. As shown Figure S3A-B, there was a good
consistency between the LR statistics using estimated variance and fixed variance for both
groups. Further more, the statistic based on estimated variance was in general larger than
that with fixed variance. The estimated standard deviations were also close to 0.97 (0.94
∼ 1) in both groups (Figure S3C-D). We used the R function nlm for the likelihood estimation in
our analysis.

Even when L1 and L2 interact to regulate G1 and G2, the βij are not necessarily different. In this
case, using the model above may reduce the statistical power for detecting such associations because
more parameters are used in the model. To select the best model for testing, we consider all 15 possible
parameter settings for epistatic interactions (Table S1). We can see that setting 1 corresponds to no
linkage between L1, L2 and G1, G2 (independant), settings 6 and 7 imply that the co-expression pattern
of G1 and G2 only depend on L1 or L2 (single linkage) and the other 12 settings imply epistasis. We
compare the 12 alternative models with the independant model (setting 1) to infer the presence of
epistatic effects between L1 and L2 on the co-expression patterns between G1 and G2. We used the
following likelihood ratio (LR) test:

−2l(θ̂0) + 2l(θ̂i) ∼ χ2(dfi − df0), i = 1, ..., 12 (3)
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for comparisons where θ̂0 and θ̂i represent the parameters estimated using MLE, df0 and dfi correspond
to the degrees of freedom under the null model and the alternative model. Among 12 comparisons, we
selected the most significant model to describe each module. To identify significant modules, we selected
a threshold C, and call all the modules “significant” if their p-values were less than the cutoff value. For
modules passing the cutoff, we further compared the selected model with the two single linkage models
(setting 6,7) to see whether L1 and L2 have epistatic effects. If the degrees of freedom of the selected
model were equal to 2 (as the single linkage models), we compared the single linkage models with the
independant model. If the smaller p-value of the two single linkage models also passed the cutoff C,
this module would no longer be considered as candidates for having epistatic effects. If the degrees of
freedom in the selected model were 3 or 4, we used the LR test to compare this model with the two single
linkage models. If the larger p-value of the two tests was less than 10−4, the module would be retained.
Considering that there are ∼ 3 × 103 loci in the yeast dataset, this cut-off leads to an average 0.3 false
positive results.

Filtering process

Construction of PA score
Since maximum likelihood estimates (MLEs) need to solve a numerical optimization problem, ap-

plying the tests above to all possible modules is computationally expensive. One possible solution is to
construct a simplified statistic to filter modules with low possibility of being an Epistasis-2D module. S-
ince a formal assessment is based on the LR test (3), if we could find one statistic S(A,B,X, Y ), such that

S(A,B,X, Y ) > −2l(θ̂0) + 2l(θ̂i) (4)

for any i, then if S(A,B,X, Y ) < χ2(1−p0, 1), the p-value for this module is larger than p0. To find such
statistic we first consider the full model where the variances σ1, σ2 also depend on A,B, that is,{

σ1(β1
ij , A,B) =

∑
i∈T,j∈T β

1
ijI(A = i)I(B = j)

σ2(β2
ij , A,B) =

∑
i∈T,j∈T β

2
ijI(A = i)I(B = j)

(5)

It is obvious that the likelihood of this model is larger than any of the 12 models, hence,

S(A,B,X, Y ) = −2l(θ̂0) + 2l(θ̂full) (6)

satisfying (4).

Actually, the MLE of θ̂0 under the null model can be directly calculated as,
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then we have
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For the full model, we can partition the likelihood function as,

2l(θ̂full) = −
n∑
k=1
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where Dij denotes the individuals set with genotype A = i and B = j, and

σ1,ij = σ1I(A = i)I(B = j) = β1
ij

σ2,ij = σ2I(A = i)I(B = j) = β2
ij

ρij = ρI(A = i)I(B = j) = βij

This suggests that we can estimate the parameters separately based on their genotype. We note that for
given i, j ∈ T the likelihood function is equal to the null model likelihood function. Hence, similar to (7),
we have,

σ̂1,ij =
1

nij

∑
k∈Dij

(xk − x̄ij)2

σ̂2,ij =
1

nij

∑
k∈Dij

(yk − ȳij)2

ρ̂ij =

1
nij

∑
k∈Dij

(xk − x̄ij)(yk − ȳij)
σ̂1,ij σ̂2,ij

(10)

where nij is the number of individuals with genotypes A = i, B = j, x̄ij , ȳij is the mean values of the
expression levels. Although we performed normal score transformation, the means of x̄ij , ȳij may not be
0. Then similar to (8), we have,

2l(θ̂full) = −
∑
i,j∈T

nij log[(1− ρ̂2ij)σ̂2
1,ij σ̂

2
2,ij ]− 2n (11)
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Combining (8,11) we get,

S(A,B,X, Y ) = −2l(θ̂0) + 2l(θ̂full)

= nlog[(1− ρ̂2)σ̂2
1 σ̂

2
2 ] + 2n−

∑
i,j∈T

nij log[(1− ρ̂2ij)σ̂2
1,ij σ̂

2
2,ij ]− 2n
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1 σ̂
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1,ij σ̂

2
2,ij ]
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∑
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nij log(1− ρ̂2ij) (12)

+ nlogσ̂2
1 −

∑
i,j∈T

nij logσ̂
2
1,ij (13)

+ nlogσ̂2
2 −

∑
i,j∈T

nij logσ̂
2
2,ij (14)

Now we decompose S(A,B,X, Y ) into three parts (12), (13) and (14), which reflect the variance of
ρ, σ1, σ2 for individuals having different genotypes. As discussed above, we assume that σ1, σ2 are the
same for different genotypes. Under this assumption, the expectation of (13,14) is 0. Therefore, we have
arrived at the statistic (12) and name it as “PA-score” (Potential of Association),

PA = nlog(1− ρ̂2)−
∑
i,j∈T

nij log(1− ρ̂2ij). (15)

Therefore, the expectation of PA is the upper bound of -2l(θ̂0)+2l(θ̂i). If the upper bound of LR
statistic for one module could not pass the expected cutoff of the LR tests, then this module
will not be significant in the LR test. Although it is the expectation of PA not PA that
is the upper bound, we could give a lower cutoff of PA score to ensure only few modules
that could be significant in the LR tests to be filtered out by PA score. This statistic may be
better than S(A,B,X, Y ) because it also helps to filter out modules with large variance of σ1 or σ2 but
low variance of ρ.
Sensitivity

For the yeast dataset considered in the manuscript, there are a total of 3× 1012 candidate modules.
With a statistical significance threshold values of 10−12, we expect an average of 3 false positive results.
Across the 12 alternative models considered, the numbers of degrees of freedom for the 12 models vary
from 4 to 6 whereas the null model has 3 degrees of freedom, the threshold for the likelihood ratio
statistic should at least be χ2(1 − 10−12, 4 − 3) = 50.8. To study the number of modules which
are significant in LR tests but may be filtered out by PA score, we define the sensitivity of
PA filter as the fraction of significant modules in LR tests that will not be filtered out by
PA score. We estimate the sensitivity level from the empirical data through the following
steps.

• Selecting 105 modules from the yeast dataset;

• Calculating PA-score for each module;

• Calculating LR statistic from model (3) for setting 15 in Table S1.

Then we estimated the sensitivity of our filtering process for a given level c by

Sensitivityc =
#{All modules with PA-LR>-c}

#{All modules}
(16)
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The rationale of this estimation is further discussed in the following simulation study section.
For a threshold value of c=5.8, we estimated that the sensitivity to be larger than 0.995 from the
distribution of PA-LR (Figure S8H). Hence we use a cutoff value of 50.8-5.8=45 for PA with an estimated
sensitivity level larger than 0.995. Because our procedure detected ∼ 225 modules, we estimate
that there may be 225× 0.005

0.995 ≈ 1 module missed by PA score in each condition.
Computational efficiency

To estimate how much faster the filtering process can be, we randomly selected 10000 modules and test
the computational time for calculating the PA and fiting the full model. The result showed a reduction
of 16 fold with the filtering step.
1D-map filtering

Since the PA-score does not filter associations that can be detected with 1D traits, we applied the
Wilcoxon test to the remaining modules and retained only those with non-significant (p > 0.001) marginal
signals to perform the LR tests.

Simulation studies

We conducted simulations to investigate the impacts of departures from our modeling
assumptions, i.e. genotype independent means and variances, on the power to detect
Epi-2D modules. We simulated 100 samples for each module (A, B, X, Y), and gener-
ated 10,000 groups of modules where each group contained one genotype-Dependent Mean
values but genotype-Independent Variances Epi-2D module (DMIVED), one genotype-
Independent Mean values but genotype-Dependent Variances Epi-2D (IMDVED) module
and one genotype-Independent Mean values and genotype-Independent Variances Epi-2D
(IMIVED) module. The three modules in each group shared the same correlation coef-
ficients for X and Y in the conditional bi-variate distributions, and only differed in their
mean values and/or variances as detailed below. We also simulated 10,000 negative con-
trols where the correlation between X and Y is the same for all samples. We considered
the following set-up in our simulations:

• For all modules, we let

A =

{
0 for sample 1-50

1 for sample 51-100
B =

{
0 for sample 1-25 and 51-75

1 for sample 26-50 and 76-100
(17)

This way there is an equal number of individuals, i.e. 25, for the four possible genotype
groups: 1-25, 26-50, 51-75, and 76-100.

• For each group of modules, we simulated the four correlation coefficients between X
and Y in each of the four joint genotype groups from a uniform [-0.9,0.9] distribution.

• For the IMDVED and IMIVED modules in each group, the mean value was set to be
0 for all four genotypes groups. For the DMIVED modules, the mean values for X
and Y in each group were simulated from a uniform [-0.5,0.5] distribution.

• For the DMIVED and IMIVED modules in each group, the standard deviation was
set to be 1 for all four genotypes groups. For the IMDVED modules, the standard
deviations for X and Y in each group were simulated from a uniform [0.5,1.5] distri-
bution.

• For negative controls, there is only one correlation coefficient in each module. We also
simulated the correlation coefficients from a uniform [-0.9,0.9] distribution.
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• The gene expression levels for the 100 individuals in each module were simulated from
their conditional bi-variate distributions defined by their joint genotypes.

• We scaled the expressions for each module using normal quantile transformation as
described in the method section of the main text to ensure the statistics calculated
below are comparable between modules.

Genotype-dependant variance assumption

To investigate the potential power loss under the genotype-independent variance assump-
tion made in this paper, we compared the statistical power for detecting IMIVED and
IMDVED modules using data simulated as described above. We compared the performance
between the full model (6) where the variances were allowed to be genotype dependent ver-
sus our proposed genotype-independent variance model (3). As clearly shown in Figures
S4A-B, although using full model (6) led to some increased power to detect IMDVED mod-
ules, it may substantially reduce the power to detect IMIVED. This is because using the full
model (6) rather than our model (3) makes use of more parameters (9 versus 3) and leads to
power loss even with the presence of mild departure from the genotype-independent vari-
ance assumption. To examine the effect of sample size, we also simulated another dataset
where the sample size was increased from 100 to 500 while the other settings were the
same. In this dataset, there was an increased power gain using the full model (6) to detect
IMDVED modules (Figure S4C), although the power to detect IMIVED was still much
lower (Figure S4D). This indicates that when more samples are available and there is some
indication of genotype-dependant variances, our model may be extended to detect more
complex modules like IMDVED modules.

We have also performed the comparison using Epistasis-2D modules with p-value lower
than 10−10 in LR tests (3) in yeast data, which could be mostly considered as IMIVED
modules in real data. As shown in Figure S5, using full model (6) indeed substantially
reduced the power as in simulated data.

Genotype-dependant mean value assumption

The main reason we assumed genotype-independent mean values is that this kind of associ-
ations can be easily identified by 1D-trait mapping and is not our interest of this paper. In
addition, assuming genotype-dependent mean values will also introduce extra parameters
into the model which may reduce the statistical power for identifying IMIVED modules.
Similar to genotype-independent variance assumption analysis, we compared the statistical
power for detecting DMIVED and IMIVED modules using simulated data to investigate
the potential power loss under the genotype-independent mean value assumption. We con-
sidered a model which assumed that the mean values in model (1) are genotype dependent
to detect DMIVED modules, that is:{

µ1(α1
ij , A,B) =

∑
i∈T,j∈T α

1
ijI(A = i)I(B = j)

µ2(α2
ij , A,B) =

∑
i∈T,j∈T α

2
ijI(A = i)I(B = j)

(18)

The parameters θmean = (α1
ij , α

2
ij , βij , σ1, σ2) in this model can be estimated using MLE where

the log-likelihood function is,

l(θmean) = − 1
2

∑n
k=1{log[(1− ρ2(βij , ak, bk))σ2

1σ
2
2 ] + 1

1−ρ(βij ,ak,bk)
[
(xk−µ1(α

1
ij ,ak,bk))

2

σ2
1

+
(yk−µ2(α

2
ij ,ak,bk))

2

σ2
2

− 2ρ(βij ,ak,bk)(xk−µ1(α
1
ij ,ak,bk))(yk−µ2(α

2
ij ,ak,bk)))

σ1σ2
]}.

(19)



8

Then we can use the following LR test:

−2l(θ̂0) + 2l(θ̂mean) (20)

for comparison.
As shown in Figures S6A-B, using the above model (20) led to increased power to detect
DMIVED modules, but it also substantially reduces the power to identify IMIVED. We
also simulated another dataset with 500 samples while the other settings were the same. As
expected, there was a significant increased power gain using model (20) to detect DMIVED
modules (Figure S6C), although its power to detect IMIVED was still much lower (Figure
S6D).

Similar to genotype dependent variance analysis, we have also performed the comparison
using Epistasis-2D modules with p-value lower than 10−10 in LR tests (3) in yeast data. We
also found that using model (20) reduced the power as illustrated in the simulated data
(Figure S7).

Evaluating PA score and sensitivity estimation

To evaluate the efficiency of using the PA score as a filtering criterion, we investigated
the relationship between the PA and LR scores. As expected, for the IMIVED modules,
the PA scores and LR scores were highly correlated (cor = 0.99, Figure S8A). Hence, we
could give a lower cutoff of the PA score to minimize the number of modules that could
be significant in the LR tests to be filtered out by the PA score. More formally, we could
choose c so that LR − PA < c for most modules. Then for a given cutoff C, most modules
with PA < C − c will have LR < C. For IMDVED modules, DMIVED modules and negative
controls, the PA scores and LR scores were also correlated, but the correlation was lower
(cor = 0.97, cor = 0.95, cor = 0.74, Figures S8B-D). We also sampled 10,000 modules from
the yeast dataset and calculated their PA and LR scores. Their LR-PA plot resembled
more of that of the negative controls (Figure S8E), because the correlations between X and
Y in most modules were expected to be independent of the genotypes. In fact, we could
consider the modules from the real data as a mixture of different types of modules. If we
want to estimate the sensitivity (how many modules that could be significant in LR test
would pass the PA filter) from the empirical data, we need to know its properties across
different types of modules. First, for a given type of modules, the difference between LR
and PA should be independent of the value of the LR score. That is,

#{IMIVED modules with LR>C, PA-LR>-c}
#{IMIVED modules with LR>C}

≈ #{IMIVED modules with PA-LR>-c}
#{All IMIVED modules}

(21)

This is because their difference mainly depends on the variance terms (13,14) which is not
related to the LR level. This conclusion is supported by the simulated data (Figure S8F).
Hence we could use all the data without regarding their LR level to estimate the sensitivity.
Second, since the correlations between PA and LR are higher for IMIVED modules, the
difference between PA and LR should be smaller. Specially, we should have

#{IMIVED modules with PA-LR>-c}
#{All IMIVED modules}

≥ #{All modules with PA-LR>-c}
#{All modules}

(22)

for a positive number c. This is also supported by the simulated data (Figure S8G). Con-
sideration of the above observations led to the following conservative method to estimate
sensitivity from the empirical data for IMIVED modules: assuming the cutoff for LR score
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and PA score is C and C-c, respectively, then:

Sensitivityc =
#{IMIVED modules with LR>C, PA>C-c}

#{IMIVED modules with LR>C}

≥ #{IMIVED modules with LR>C, PA-LR>-c}
#{IMIVED modules with LR>C}

(21) ≈ #{IMIVED modules with PA-LR>-c}
#{All IMIVED modules}

(22) ≥ #{All modules with PA-LR>-c}
#{All modules}

(23)

which was used in our estimation above.

False discovery rate estimation

Finally, we estimated the FDR through the permutation test described in the method section of the main
text. The results for the ten permutations in each condition are listed in Table S2. The FDR is defined as

FDRc =
#of unique traits in Epi-2D modules with p-value<C in permutated dataset

#of unique traits in Epi-2D modules with p-value<C in real dataset
(24)

Table S3 lists the FDRs under different cutoffs for each condition. We adopted 10−12 as the cutoff value
so that the FDR was < 0.2 for both conditions, and a total of 225 and 224 significant 2D-traits were
identified.
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