Distribution of Mutations around Rearranged Heavy-Chain Antibody Variable-Region Genes

GERALD W. BOTH,¹ LINDA TAYLOR,¹ JEFFREY W. POLLARD,² AND EDWARD J. STEELE^{3*}

Laboratory of Molecular Biology, Division of Biomolecular Engineering, Commonwealth Scientific and Industrial Research Organisation, North Ryde, NSW 2113, Australia¹; Department of Developmental Biology and Cancer, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York²; Department of Biology, University of Wollongong, NSW 2500, and Division of Cell Biology, John Curtin School of Medical Research, Canberra, ACT 2600, Australia³

Received 24 May 1990/Accepted 20 July 1990

The mechanism of somatic hypermutation in the variable region of immunoglobulin genes expressed in mammalian B cells is a major unexplained phenomenon in the generation of diversity in the immune system. To evaluate possible mechanisms, the distribution of somatic mutations was examined for a group of five cloned, rearranged, somatically mutated V_H genes generated in C57BL/6j mice. These mutated V_H genes were sequenced and compared with their germ line counterparts from a point approximately 550 base pairs upstream of the transcription start site to an *Eco*RI site some 1,200 base pairs downstream of J_{H-4} . The location of the transcription start (cap) sites was also precisely determined. Most (\geq 94%) of the 118 mutations scored occurred between the transcription start site and the distal end of J_{H-4} . However, seven mutations occurred upstream of the transcribed region, and at least four were found downstream of J_{H-4} . The target region for the mutator mechanism therefore clearly extends into the 3' nontranslated and 5' nontranscribed regions. Thus, models which propose the transcribed region of the DNA as the sole substrate for the mutation process are not ruled out but are inadequate to explain the upstream distribution of somatic mutations.

The DNA sequences both within and flanking rearranged antibody variable-region genes $(V_L J_L \text{ and } V_H DJ_H)$ expressed in B lymphocytes can mutate at a very high rate (14; for recent reviews, see reference 28). This type of genetic variation is termed somatic hypermutation to distinguish it from the other more familiar processes of immunoglobulin diversification, such as junctional diversity, combinatorial recombination, and the association of fully assembled heavy and light polypeptide chains.

The mechanism of hypermutation in mammalian B cells is unknown, but several models have been proposed. These can be segregated into those models in which the DNA is the direct substrate for mutation (5, 8, 14, 17), including gene conversion (26), or those in which the DNA becomes hypermutable as a consequence of gene expression (i.e., transcription-based models [41]). In the first type of model, the DNA is mutated directly either via specific nicking and error-prone repair enzymes (8, 14), through errors introduced by misalignment of replicating DNA templates directed by inverted or direct repeat sequences (17), or via localized amplification of DNA replication which generates errors at the normal rate but in greater number in a localized region (5). Alternatively, the model invoking gene conversion envisages that sequence information donated by other related genes is incorporated by recombination into the rearranged V gene (26). However, these DNA-based models do not state how the enzymes display the specificity which limits the mutational process to the DNA within and around rearranged V genes (41). Known DNA polymerases also display a very high copying fidelity in vivo (24, 31, 32). Thus, the DNA-based models also require the presence of new enzymes with V-region specificity.

A second type of model based on gene expression ac-

counts for many of the features of the somatic hypermutation process (41; E. J. Steele, J. W. Pollard, L. Taylor, and G. W. Both, in E. J. Steele, ed., Somatic Hypermutation in V-regions, in press). In brief, RNA polymerase and reverse transcriptase create errors during the transfer of genetic information via a DNA \rightarrow RNA \rightarrow DNA copying loop. The mutated cDNA is then either integrated directly into the normal chromosomal site for that allele or first subjected to further cycles of transcription and reverse transcription on the episomal cDNA element. Whatever the mutator mechanism, long-lived memory B cells may be exposed multiple times to the mutator process in the microenvironment of a germinal center (25; A. L. M. Bothwell, W. Tao, and P. R. Blier, in E. J. Steele, ed., Somatic Hypermutation in V-Regions, in press; D. Gray, H. Skarvall, Y.-J. Lui, I. C. M. MacLennan, and T. Leanderson, in E. J. Steele, Somatic Hypermutation in V-Regions, in press).

Existing data indicate that somatic mutations appear localized to the rearranged V gene and its immediate transcribed, noncoding regions (15, 18, 20, 22, 30, 39). They are not found in constant region sequences (15) and are found rarely in unrearranged germ line V genes (44). It is important now to precisely define the distribution of somatic mutations in and around rearranged V genes, particularly in the 5' upstream region, because this will help to identify the target region of the DNA and therefore influence ideas on the type of mutational mechanism involved. In this work, we contribute to a better definition of this target region by comparing DNA sequences of related sets of hypermutated V_H genes with their germ line counterparts.

MATERIALS AND METHODS

Cloning and sequencing rearranged somatically mutated V_H genes. Genes derived from the V_H 186.2 germ line gene

^{*} Corresponding author.

family involved in the anti-(4-hydroxy-3-nitrophenyl)acetyl (NP) response in C57BL/6j mice (6) were cloned from DNA isolated from hybridomas expressing their products (33, 34). The coding region of these genes was partially sequenced from the mRNA (10). The $V_{\rm H}$ genes from A6/24 and A20/44 are involved in the anti-idiotypic response (in C57BL/6j mice) to V_H186.2-containing anti-NP antibodies. These genes are members of the V_H205.12 germ line gene family and were also cloned from the DNA of hybridomas expressing these genes and sequenced through their coding regions (34, 35). Maps of the V_H 186.2 and V_H 205.12 genes are shown in Fig. 1. V_H186.2 DNA clones 3B44, 3B62, and 40.3 were provided as 4.2-, 4.2-, and 4.6-kilobase (kb) EcoRI fragments in pUC19 (33, 40). The V_{H} 205.12 clones A20/44 and A6/24 were similarly obtained as 7.2-kb EcoRI fragments in pBR328 and λgt WES: λB vectors, respectively (33). The V_{H} 186.2 inserts were excised with *Eco*RI and subcloned into the plasmid vector Bluescribe M13(+) (Stratagene, San Diego, Calif.) in the T3 orientation. Single-stranded DNA corresponding to the complete plus strand of each clone was rescued by using helper phage M13K07 (IBI, New Haven, Conn.). Similarly, the 2.6-kb BamHI-EcoRI fragments encoding the entire VDJ regions from the $V_H 205.12$ clones A20/44 and A6/24 were subcloned into Bluescribe M13(+), and single-stranded DNA was prepared. Sequence data further upstream of the BamHI site for these clones were obtained by subcloning an overlapping 2.1-kb BglII-PstI fragment into Bluescribe M13(-). Single-stranded DNA was again rescued. All sequencing was carried out by using the dideoxy method (38) and Sequenase (U.S. Biochemicals, Cleveland, Ohio) or T7 DNA polymerase (Pharmacia, Uppsala, Sweden). Sequencing primers corresponding to newly determined sequences were made by using an Applied Biosystems model 380A synthesizer. Thus, the sequencing strategy involved walking along the clones in segments of approximately 300 to 350 bases (Fig. 1).

Amplification and cloning of germ line immunoglobulin sequences from total liver DNA. C57BL/6j DNA was prepared from the livers of several mice. Sequences that were likely to be specific for germ line genes of the $V_H 205.12$ family were identified from the consensus sequence determined by us for the A20/44 and A6/24 clones. For polymerase chain reaction (PCR) amplification of germ line DNA, the 5' primer was located 525 to 545 bases upstream and the 3' primer lay 445 to 467 bases downstream of the cap site. To facilitate cloning of amplified DNA, *Sal*I and *Eco*RI sites were also included at the 5' end of the upstream and downstream primers, respectively. The primer sequences were (upstream) 5' GCGGTCGACTCAGTATGTGACAGT GACTAG 3' and (downstream) 5' GGAATTCAGAGTCCT CAGATGGTCAGGCT 3'.

PCR amplification (37) was performed in a 25- μ l reaction mixture containing 100 ng of C57BL/6j DNA, 100 pmol of each primer, 0.2 mM of each deoxynucleoside triphosphate in 100 mM Tris hydrochloride (pH 8.3) at 25°C, 50 mM KCl, 0.01% gelatin, and 2 mM MgCl₂. Reaction mixtures were overlaid with paraffin oil and subjected to an 8-min denaturation at 95°C, followed by slow cooling to 25°C. Taq polymerase (Cetus Corp.) (2 U) was added, and amplification was performed in an IHB2024 (Cherlyn Electronics Ltd., Cambridge, United Kingdom) thermal cycler by five cycles of denaturation at 95°C for 30 s, annealing at 50°C for 30 s, and elongation at 70°C for 1 min. This was followed by 35 cycles of denaturation at 95°C for 30 s, annealing at 55°C for 30 s, and elongation at 70°C for 1 to 2 min. A further 2 U of Taq polymerase was added after 20 cycles. On completion, the paraffin oil was removed by aspiration, and the samples were extracted with ether before analysis of the amplified product by electrophoresis on 1.5% agarose gels.

After electrophoresis, a gel slice containing the PCRamplified fragment was removed and the DNA was recovered by electroelution. The fragment was purified by extraction with phenol-chloroform (1:1), chloroform, and ether and recovered by precipitation with isopropanol. The amplified DNA was then digested with the appropriate restriction enzymes, repurified as described above, and ligated with bacteriophage M13 DNA at an insert-vector molar ratio of 2:1. Ligation mixtures were transformed into *Escherichia coli* JM101, and clear recombinant plaques were identified by selection on 5-bromo-4-chloro-3-indolyl- β -D-galactopyranoside–isopropyl- β -D-thiogalactopyranoside minimal plates. DNA from putative recombinants was analyzed by restriction enzyme digestion to confirm that a fragment of the appropriate size had been cloned.

Single-stranded templates prepared from recombinant plaques were sequenced by the dideoxy method (38). Upstream sequences were obtained by using a DNA primer which spanned the initiation codon of the $V_H 205.12$ genes. Sequences in the coding region were determined by using the downstream PCR primer.

Preparation of hybridoma RNA. Hybridoma cells were grown in RPMI medium supplemented with 10% fetal calf serum, 2 mM glutamine, and 5×10^{-5} M β -mercaptoethanol. A total of 2 \times 10⁸ to 4 \times 10⁸ cells were harvested by centrifugation, washed once with 5 ml of phosphate-buffered saline, and the RNA was extracted by a modification of the published method (9). Briefly, cells were homogenized in 7.5 ml of a solution consisting of 4 M guanidine isothiocynate, 100 mM sodium acetate, and 5 mM EDTA (pH 5.0). The homogenate was layered over a 4-ml cushion of a solution consisting of 5.0 M CsCl, 100 mM sodium acetate, and 5 mM EDTA (pH 5.0) and subjected to centrifugation at 110,000 \times g_{avg} for 18 h at 18°C. The RNA pellet was washed in 70% ethanol, air dried, and dissolved in 0.35 ml of sterile H_2O . RNA concentrations were determined by measurement at 260 nM.

To ensure that the RNA was recovered intact, $10-\mu g$ aliquots were subjected to 1% agarose gel electrophoresis in the presence of formaldehyde as previously described (42). The RNA was stained with ethidium bromide and visualized under short-wave UV.

Location of cap sites by primer extension. The transcription start sites for mRNAs encoding $V_H 186.2$ and $V_H 205.12$ heavy chains were identified by determining the length of cDNA transcripts synthesized, using the primers indicated in the legends to Fig. 2 and Fig. 3. Total hybridoma RNA isolated as described above was copied by avian myeloblastosis virus (AMV) reverse transcriptase primed by oligonucleotides complementary to known regions of the $V_H 186.2$ and $V_H 205.12$ mRNAs (7). The length of the cDNA products was determined by analyzing the products on a gel in parallel with DNA fragments of known size or a known nucleotide sequence. The location of the start sites are considered accurate to within one nucleotide.

RESULTS

Nucleotide sequences of related V_H genes and their germ line counterparts. The goal of this work was to define the distribution of mutations within rearranged, hypermutated V_H genes by comparing the sequences determined for related sets of genomic V_H gene clones with that of DNA

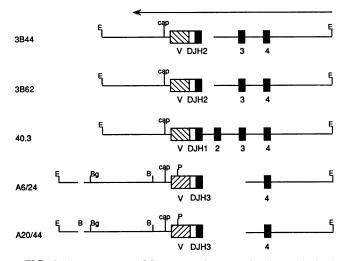


FIG. 1. Arrangement of $V_{\rm H}$ genes in genomic clones derived from hybridoma DNAs. 3B44, 3B62, and 40.3 are derived from the $V_{\rm H}$ 186.2 germ line gene. A6/24 and A20/44 are derived from the $V_{\rm H}$ 205.12 germ line gene. The clones were sequenced from the right hand *EcoRI* (E) site to a point approximately 600 nucleotides upstream of the transcription start (cap) site (see arrow). The *Bam*HI (B), *BgI*II (Bg), and *Pst*I (P) sites used for subcloning are indicated.

derived from liver. The genomic clones were isolated previously from hybridomas expressing hypermutated genes derived from the $V_{\rm H}$ 186.2 (three clones 3B44, 3B62, and 40.3) (10, 40) or the $V_{\rm H}$ 205.12 germ line genes (two clones A20/44 and A6/24 (34, 35). The origin of the clones sequenced is described in Materials and Methods and the arrangement of the genes they contain is shown in Fig. 1. For the coding and upstream regions of the $V_{\rm H}$ 186.2 set, the germ line sequence was previously determined (6, 23). For the $V_{\rm H}$ 205.12 set, the upstream region in the germ line sequence. Similarly, a 1,900-base-pair portion of the downstream, germ line region (downstream of $J_{\rm H-1}$, bases 1,121 to 2922) was amplified by PCR and sequenced.

Nucleotide changes in the 5'-flanking regions. Flanking (5') and coding sequences for the $V_{\rm H}186.2$ and $V_{\rm H}205.12$ germ line and hybridoma DNAs are shown in Fig. 2 and 3, respectively. There are many nucleotide changes throughout the coding regions which have been previously documented (10, 34, 35, 40). In addition, five changes in 3B62 fell \geq 375 base pairs upstream of the cap site (Fig. 2), and two changes in A6/24 fell 21 and 73 base pairs upstream of the cap site (Fig. 3).

The germ line counterpart of the functional V_H genes in hybridomas A6/24 and A20/44 was obtained by PCR amplification of the $V_H 205.12$ family in C57BL/6j liver DNA. A total of 24 clones were partially or completely sequenced. Of these, nine were considered to be representatives of the germ line $V_H 205.12$ gene utilized in the hybridomas (see below), but at least eight other V_H genes were obtained, some of them more than once. Clones 1 through 7 (Fig. 4) are representatives of the 5' regions of these $V_H 205.12$ -related genes. All these genes were clearly different in their coding regions (data not shown) and markedly different in their 5' noncoding regions. However, none of these germ line V_H genes carried the 5' upstream changes seen at bases 507 and 559 in A6/24. It is very likely therefore, that these represent genuine somatic mutations.

In some cases, PCR-amplified clones differed from each

other by only a single nucleotide. These changes were scattered and were predominantly A/T-to-G/C transitions. None of these occurred at base 507 or 559. We have interpreted these as Taq polymerase-induced mutations (21, 37, 43). The $V_{\rm H}205.12$ germ line sequence (Fig. 3) is the consensus from nine clones.

Nucleotide changes in the 3'-flanking regions. The downstream sequences determined for the $V_H 186.2$ and $V_H 205.12$ genes are shown in Fig. 5. The germ line sequence was not determined beyond base 2869; however, the sequences of all five clones were identical downstream of base 2,578 (Fig. 5).

In 11 clones, obtained by three independent PCR amplifications of total C57BL/6j liver DNA, two distinct sequences in the germ line were obtained at bases 2611 and 2613 (Fig. 5A). Six of the clones had the sequence AGA, shown as the germ line sequence (Fig. 5A), and five had the sequence GGG. We also observed these nucleotide differences at similar frequency in clones from DNA separately amplified by PCR from hybridoma 3D61 DNA (10) by using a primer within J_{H-4} (5') and a primer spanning the XbaI site (3') (position 2908, Fig. 5B). The sequence GGG is also found at the same location in BALB/c DNA, although in the latter other nucleotide differences from C57BL/6j are also apparent (16, 19).

Determination of transcription start sites. Transcription start sites were located by primer extension using reverse transcriptase to copy mRNA isolated from the relevant hybridoma cell lines. The size of the primer-extended cDNA was estimated by comparing it with DNA fragments of known size and sequence (Fig. 6A). To obtain an estimate accurate to within one nucleotide, the cDNAs were also run on a polyacrylamide sequencing gel adjacent to a known nucleotide sequence (Fig. 6B). The cap sites are located 48 and 53 nucleotides upstream of the ATG start codon for the $V_{\rm H}$ 186.2 and $V_{\rm H}$ 205.12 groups, respectively (Fig. 2 and 3).

Distribution of nucleotide changes. The mutational events scored from the comparison of the hybridoma DNA sequences with the appropriate germ line sequences for these two gene families totalled 118. Mutational events were defined as either single-base substitutions, single-base deletions, or complete codon deletions not attributable to N-region additions or junctional errors (nucleotide changes included in the latter category were defined as those occurring within 10 nucleotides on either side of the V-D and D-J junctions). The incidence of mutation, expressed as a percentage, is plotted against the position in the gene (Fig. 7). The cap sites represent a logical reference point about which to align the sequences to compare the incidence of mutation in transcribed and nontranscribed regions of the DNA. Clearly, there is a sharp increase (>10-fold) in mutation frequency on the 3' side of the cap site compared with that on the immediate 5' side. This elevated level of mutation ranged from 1 to 7% of bases sequenced and terminated approximately 210 bases beyond J_{H-4} (Fig. 7).

Nature of the nucleotide changes in nontranslated flanking regions. The types of nucleotide changes in nontranslated introns and 5'- and 3'-flanking regions are summarized in Table 1. Of 75 mutations scored within these regions, 50.7% were transitions, 44% were transversions, and 5.3% were single-base deletions. No base additions were observed.

DISCUSSION

In this work, we have systematically sequenced two groups of somatically mutated V_H genes and compared them with their germ line sequences. The sequences in this work

3B62 40.3 VH186.2 TTTGG 3B62 40.3 VH186.2 TTCCC. 3B44 3B62 40.3 VH186.2 TTCCC. 3B44 3B62 40.3 VH186.2 GTTAC. 3B44 VH186.2 TTCTT. 3B44 VH186.2 TTCTT. 3B44 VH186.2 TTCTT. 3B62 40.3 x *	10 TCATT 120 ATCAC 230 ATCCA ATCCA 340	20 TGGGTGATTT T 130 TATTCTCATC 240 TAGCCTCAAC	30 TTCGAATGTA 140 TTTCTAACCA 250 ACAAGGTTCA	40 TATGATATTG C 150 CCTGTAAATC 	50 GAAAGGCAAA 	.C60 TGTTAATTGT 170 CTGTGTCACA	70 ATGTATTGAA GT 180 GTGGGGCCAC	80 AGGAGGCTGT 190 TGTCTCAAGC	90 GACTTTTAAT 200 TGCAAATCTT	100 AAGTTAGCTG 210 TTTAGTGCAC	110 TTTTTGAGAT 220 AGGCTCTAAT
40.3 VH186.2 TTTGG 3B44 3B62 40.3 VH186.2 TTCCC 3B44 3B62 40.3 VH186.2 GTTAC 3B62 40.3 VH186.2 GTTAC 3B62 40.3 VH186.2 TTCTT 3B44 3B62 40.3 x *	10 TCATT 120 CATCAC CATCAC 230 CATCCA CATCCA 340 CCTCCA	20 TGGGTGATTT T 130 TATTCTCATC 240 TAGCCTCAAC	30 TTCGAATGTA 140 TTTCTAACCA 250 ACAAGGTTCA	40 TATGATATTG C 150 CCTGTAAATC 260 GGGATGAGGT	50 GAAAGGCAAA 	60 TGTTAATTGT 170 CTGTGTCACA	70 ATGTATTGAA GT 180 GTGGGGCCAC	80 AGGAGGCTGT 190 TGTCTCAAGC	90 GACTTTTAAT 200 TGCAAATCTT	100 AAGTTAGCTG 210 TTTAGTGCAC	110 TTTTTGAGAT 220 AGGCTCTAAT
VH186.2 TTTGG 3B44 3B62 40.3 VH186.2 TTCCC. 3B62 40.3 VH186.2 GTTAC. 3B44 VH186.2 GTTAC. 3B44 VH186.2 TTCTT. 3B44 VH186.2 TTCTT. 3B44 VH186.2 TTCTT. 3B44 VAI.86.2 TTCTT. 3B44 VH186.2 TTCTT. 3B44	10 TCATT 120 TATCAC 230 TATCCA TATCCA 340 TCCCCA	20 TGGGTGATTT T 130 TATTCTCATC 240 TAGCCTCAAC	30 TTCGAATGTA 	40 TATGATATTG C 150 CCTGTAAATC 260 GGGATGAGGT	50 GAAAGGCAAA 	60 TGTTAATTGT 	70 ATGTATTGAA GT 180 GTGGGGCCAC	80 AGGAGGCTGT 190 TGTCTCAAGC	90 GACTTTTAAT 	100 AAGTTAGCTG 210 TTTAGTGCAC	110 TTTTTGAGAT 220 AGGCTCTAAT
3B44	120 ATCAC 230 ATCCA 340	T 130 TATTCTCATC 240 TAGCCTCAAC	140 TTTCTAACCA 250 ACAAGGTTCA	C 150 CCTGTAAATC 260 GGGATGAGGT	160 CATCTGTCAA	170 CTGTGTCACA	GT 180 GTGGGGCCAC	190 TGTCTCAAGC	200 TGCAAATCTT	210 TTTAGTGCAC	220 AGGCTCTAAT
3B62 40.3 VH186.2 3B64 3B62 40.3 VH186.2 GTTAC. 3B64 40.3 VH186.2 GTTAC. 3B62 40.3 VH186.2 GTTAC. 3B62 VH186.2 TTCTT. 3B62	120 CATCAC 230 CATCCA 340 CCTCCA	T 130 TATTCTCATC 240 TAGCCTCAAC	140 TTTCTAACCA 250 ACAAGGTTCA	C150 CCTGTAAATC 260 GGGATGAGGT	160 CATCTGTCAA	170 CTGTGTCACA	GT 180 GTGGGGCCAC	190 TGTCTCAAGC	200 TGCAAATCTT	210 TTTAGTGCAC	220 AGGCTCTAAT
40.3 VH186.2 TTCCC, 3B44 3B52 40.3 VH186.2 GTTAC, 3B44 3B62 40.3 VH186.2 TTCTT, 3B44 VH186.2 TTCTT, 3B62 40.3 x *	120 ATCAC 230 ATCCA CATCCA 340	130 TATTCTCATC 240 TAGCCTCAAC	140 TTTCTAACCA 250 ACAAGGTTCA	150 CCTGTAAATC 260 GGGATGAGGT	160 CATCTGTCAA	170 CTGTGTCACA	180 GTGGGGCCAC	190 TGTCTCAAGC	200 TGCAAATCTT	210 TTTAGTGCAC	220 AGGCTCTAAT
VH186.2 TTCCC, 3B44 3B62 40.3 VH186.2 GTTAC, 3B44 3B62 40.3 VH186.2 TTCTT, 3B44 VH186.2 TTCTT, 3B44 VH186.2 TTCTT, 3B44 VAL	120 CATCAC 230 CATCCA 340 CCTCCA	130 TATTCTCATC 240 TAGCCTCAAC	140 TTTCTAACCA 250 ACAAGGTTCA	150 CCTGTAAATC 	160 CATCTGTCAA	170 CTGTGTCACA	180 GTGGGGCCAC	190 TGTCTCAAGC	200 TGCAAATCTT	210 TTTAGTGCAC	220 AGGCTCTAAT
3B44 3B62 40.3 VH186.2 GTTAC. 3B62 3B62 40.3 VH186.2 TTCTT 3B44 3B62 40.3 x *	230 230 230 230 230 230 230 230 230 230	240 TAGCCTCAAC	250 ACAAGGTTCA	260 GGGATGAGGT	•••••	•••••					
3B62 40.3 vH186.2 GTTAC. 3B44 3B62 40.3 vH186.2 TTCTT. 3B44 3B44 40.3 40.3 * *	230 CATCCA 340	240 TAGCCTCAAC	250 ACAAGGTTCA	260 GGGATGAGGT							
40.3 vh186.2 GTTAC. 3B44 3B62 40.3 vh186.2 TTCTT. 3B44 vh186.2 TTCTT. 3B42 vh186.2 TTCTT. 3B43 x *	230 ATCCA 340	240 TAGCCTCAAC	250 ACAAGGTTCA	260 GGGATGAGGT							
VH186.2 GTTAC 3B44 3B52 VH186.2 TTCTT 3B44 VH186.2 TTCTT 3B44 3B44 3B44 3B44 3B44 3B45	230 ATCCA 340	240 TAGCCTCAAC	250	260 GGGATGAGGT							
3B44 3B62 40.3 3B44 3B44 3B44 3B44 3B45 40.3 * *	340 CTCCA	•••••					290		310		
3B62 40.3 VH186.2 TTCTT 3B44 3B62 40.3 *	340 CTCCA	•••••							CAGTATCCTG		
40.3 VH186.2 TTCTT 3B44 3B62 40.3	340 CTCCA										
VH186.2 TTCTT 3B44 3B62 40.3	340 CTCCA				••••••••	•••••••	••••	•••••	•••••	•••••	•••••
3B44 3B62 40.3							400				440
3B62 40.3									AATATAGGGT		
40.3											
*											
		460							530		
VH186.2 CATGA	GATCA	CTGTTCTCTT	TACAGTTACT	GAGCACACAG	GACCTCACCA	TGGGATGGAG	CTGTATCATG	CTCTTCTTGG	CAGCAACAGC	TACAGGTAAG	GGGCTCACAG
									T		
40.3		570					620				
	200	570	200	390	600	610		630	640	650	660
									GGTCCAACTG		
3B44		• • • • • • • • • • • •	G.G					T	т		T
40.3	670	680		700	710	720	730		750		
VH186.2 TGTGA	AGCCT	GGGGCTTCAG	TGAAGCTGTC	CTGCAAGGCT	TCTGGCTACA	CCTTCACCAG	CTACTGGATG	CACTGGGTGA	AGCAGAGGCC	TGGACGAGGC	CTTGAGTGGA
									G		
									G .AX		
		790	800	810	820	830			860		
									CCCTCCAGCA		
									AT.		
	890	900	910	920			950		970		
				TATTGTGCAA							
				••••							
				• • • • • • • • • • •							
	1000						0 7000		-		CCGTCTCCTCA

FIG. 2. Nucleotide sequences of the 5' nontranslated regions and adjacent coding sequences of the active V_HDJ_H alleles from hybridomas 3B44, 3B62, and 40.3 compared with the $V_H186.2$ germ line sequence (23; also see update in the EMBL data base). The published sequence for the coding region of 3B44 (10) originally differed from our sequence at several positions. However, a recently published corrigendum (2) is in complete agreement with our data. In codon positions 43 and 49 of 3B62 and position 13 of A6/24, the sequence determined by us differs from the sequence determined by others (1, 10, 34). Symbols: ., identity with the germ line sequence; -, a gap relative to the germ line sequence; |, likely splice sites; *, transcription start or cap sites; X, an unidentified base. The start codon, ATG, plus upstream promoter elements are overlined (13, 29). The primer sequence used for cap site determinations was complementary to bases 816 to 834.

(except for the $V_{\rm H}$ 186.2 germ line sequence) were determined independently and compared with the previously published sequences for the V-D-J and flanking regions (6, 10, 23, 34, 35, 40). At all but three sites, i.e., at codons 43 and 49 of 3B62 and codon 13 of A6/24 (see the legend to Fig. 2), the sequences agree with previously published work (1, 2, 10, 35). The close agreement between these two sets of data confirms the accuracy of our data and renders negligible the number of apparent mutations ascribable to sequencing errors and cloning artifacts. In addition, there were only four positions in approximately 18,000 bases sequenced at which a base could not be identified from sequencing a single strand.

An earlier literature survey of published murine and human immunoglobulin gene sequences indicated that very few mutations occurred 5' to the region coding for the signal peptide or leader sequence (41). Of a total of 121 mutational events scored in this survey, four (or 3.3%) lay 5' to the signal peptide region (22, 36) and one (0.8%) almost certainly lay upstream of the cap site (20), i.e., \geq 96% of mutational changes occurred within the transcription unit (41). The conclusions drawn were limited by the amount of sequence data that was available for the region upstream of the leader sequence of these mutated genes (a median value of only \sim 120 bases). In the present work, we have greatly improved this situation by systematically sequencing at least 550 bases 5' to the cap site for two groups of related, somatically mutated V_H genes and by locating transcription start sites. The location of the cap sites determined for the mRNAs in this study are consistent with those determined for other immunoglobulin genes (13, 29) and for the V_H186.2 gene, which was determined independently (3).

The distribution of the 118 mutational events established here (Fig. 7) tentatively identifies the target region for hypermutation which clearly extends into the 5'- and 3'flanking regions of these V_H genes. The distribution of mutations here is similar to that described for 44 somatic mutations documented earlier for the single V_H M167 gene expressed in the phosphorylcholine-binding myeloma, MOPC167 (22). However, in this study it was not determined whether any mutations fell upstream of the transcription start site.

GERMLINE/				*****	*********	******					
VH205.12										TTTTCCACAT	
6/24										• • • • • • • • • • •	
20/44										100	
ERMLINE/	10	20	30		30	00			30	100	
/H205.12	TCATTACTTT	TCTCATTTGC	CTTCTTCCTT	ATCAACATAT	GACTAAATTC	TAATTAAGAC	ATTAAATCTT	TTTAAACTGC	ACTTAGCTAA	AGGGTATTTC	CCTCATTAT
6/24											
20/44											
	120	130	140	150	160	170	180	190	200	210	22
ERMLINE/ /H205.12	ATCACCATTA	****	~*****	*****	****	ANTCANANTO	TONACATACC	CCCAGAGTCA		TTAGGCCAAA	CACACATT
6/24											
20/44											
	230	240	250	260	270	280	290	300	310	320	33
ERMLINE/											
/H205.12 \6/24	GAGATTTGTC	CCTGTAGTTT	CAAGAATACC	AGCAGTGCAG	GGCTCACAGA	AAATGTATGG	ATCCATTTCC	TCAGAGAGTT	ATTGGATTTG	GACTAGACTA	TCCTGCTGC
20/44	•••••	• • • • • • • • • • • •	•••••	•••••	•••••	•••••	• • • • • • • • • • •	•••••	• • • • • • • • • • • •		•••••
20/44		350								430	
SERMLINE/											
VH205.12	TGACCTATGT	ACCTTTAAGT	CCTTCCTCTC	CAGCTTTTCT	TCATTCGGAT	TGGTTATTAT	ATACAAAGTC	CCCTGGTCAT	GAATATGCAA	AATACCTAAG	TCTATGGT
6/24	••••	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • •	• • • • • • • • • •	G	• • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • •	•••••
20/44	450	460	470	480	490	500	510	520	530	540	
ERMLINE /	100	100	*				••••			010	
/H205.12	CTAAAAACAG	GGATATCAAC	ACCCTGAAAA	CAACATATGT	ACAATGTCCT	CACCACAGAC	ACTGAACACA	CTGACTCTAA	CCATGGGATG	GAGCTGGATC	TTTCTCTTT
6/24										• • • • • • • • • • •	
20/44	560					610				650	
GERMLINE / VH205.12		AACTCCACCT	AACCCCCTCA		******	ANCANATOOO	****	ACTORCATO	1.0TCTCTCTCTT	TCTCTTCACA	I COTOTOCTO
A6/24											
20/44											
-	670	680	690	700	710	720	730	740	750	760	77
ERMLINE /											
/H205.12										CTGACTACTA	
6/24 20/44											
20/44	780									870	
GERMLINE /										•••	
/H205.12										AAGGCCACAT	
6/24										• • • • • • • • • • •	
20/44										980	
SERMLINE /	890	300	310		*********		330	900	370	300	
/H205.12	CAAGTCCTCC	AGCACAGCCT	ACATGGAGCT	CCGCAGCCTG	ACATCTGAGG	ACTCTGCAGT	CTATTACTGT	GCAAGAG			TACTGGGGG
6/24						.	.	CTT	AT.ACTG.	TCC.TTTG	
20/44	•••••									GTT.C	
	1000	1010	1020	1030	1040	1050	1060	1070	1080	1090	110
ERMLINE/ H205.12	AAGGGACTCT	GGTCACTGTC	TCTGCA								
6/24			El	ND JH3							
20/44											
	1110	1120									

FIG. 3. Nucleotide sequence of the 5' nontranslated regions and adjacent coding sequences of the active $V_H DJ_H$ alleles from hybridomas A6/24 and A20/44 compared with the $V_H 205.12$ germ line sequence. Asterisks indicate the primer sequences used for PCR amplification of the germ line genes. The primer sequence used for cap site determinations was complementary to bases 940 to 956. Other annotation is as described in the legend to Fig. 1.

For the $V_H 205.12$ family, 24 clones obtained by PCR amplification of genomic DNA were sequenced. Nine germ line and eight related clones were obtained, some of them more than once. However, the base changes in A6/24 which occurred 21 and 73 nucleotides upstream of the cap site (Fig.

3) were not found in any of these clones (Fig. 4). If a progenitor gene with 5' sequences identical to A6/24 existed in liver DNA, we could reasonably have expected to amplify it by PCR, given that A6/24 is very similar to the $V_{\rm H}205.12$ germ line gene and 9 of 24 clones characterized were of this

VH20512/							Ļ			_	
GERMLINE	TGACCTATGT	ACCTTTAAGT	CCTTCCTCTC	CAGCTTTTCT	TCATTCGGAT	TGGTTATTAT	ATACAAAGTC	CCCTGGTCAT	GAATATGCAA	AATACCTAAG	TCTATGGTAG
CLONE1											
CLONE2								• • • • • • • • • • •			
CLONE3 CLONE4	•••••										
CLONES		• • • • • • • • • • •						C.TG.			
CLONES				A				TC			
CLONE7				A	ст						
	450	460	470	480	490	500	510	520	530	540	550

VH20512/	Ţ		•							
GERMLINE	сталаласад	GGATATCAAC	ACCCTGAAAA	CAACATATGT	ACAATGTCCT	CACCACAGAC	ACTGAACACA	CTGACTCTAA	CCATGGGATG	GAGCTGGATC
CLONE1				G						
CLONE2	T	. A								
CLONE3										
CLONE4	Τ									
CLONE5										
CLONE6				••••						
CLONE7	Τ		λ							,
	560	570	580	590	600	610	620	630	640	650

FIG. 4. Partial nucleotide sequences for the upstream regions of $V_H 205.12$ -related germ line genes amplified by PCR from total C57BL/6j liver DNA. These sequences are compared with the germ line $V_H 205.12$ gene sequence which was the progenitor of hybridomas A6/24 and A20/44. Vertical arrows indicate the location of the two putative somatic mutations in hybridoma A6/24 (Fig. 3). Blank regions indicate where the sequence is not yet determined. Other annotations are described in the legend to Fig. 1.

443 BETMACHEGUE TITTETTE COCKANE CARA 1114 1114 1114 1114 1115 1126 1126 688 TETRAGENES GOTTETTES COCKANE ARAMCHER ARAMCHER TO TOCCTORE ARATELY TANTONAN TANEDAWA TANEDAWI ACTIVENES CHARACELES 1126 <	A			*****	*******		TATTCTCACT	CTCCCC ATCT	C).CCC.).TCT	CCCACACTCT	COMPOGEOR	
ENERGINE SECTION TOCHONON MADE ALL TARES AND ALL		GGTAAGCTCGGC	TTTTTTCTTT	CCGCACAATC	CGTTCTGAAA	CGAG						
443 1220 1230 1240 1250 1240 1250 1240 1250 1240 1310												
SEMULIA: CALCULATES CALCUMATES ANTIMATES TELEVISTIC CALCULAT TARGETAL TELEVISTIC CALCULATION ANTIMATES TELEVISTIC SEMULIA: TATA TARGETS TELEVISTIC CALCULATION CALCUL							c.					
Bate		1220	1230	1240	1250	1260	1270	1280	1290	1300	1310	1320
3862												
1330 1340 1358 1360 1370 138 1390 1410 1410 1420 1430 CERLING CTUTELIN TAGETTAN TAGETTATE TOUTTET GOMERAN TOUTURE TOURTERS CATABADE ATTACHAR CTUREDED TOURTERS CATABADEA CTUREDED A CANADES 1410 1420 1430 1440 1430 1440 1430 1440 1430 1440 1430 1440 1430 1440 1430 1440 1430 1440	3B62					 .						
State Control to a control to control to conto control to a control to a control to control to	403					1370	1380	1390	1400	1410		
Bate								JH2				
BBG2												
1440 1450 1460 1470 1480 1490 1510 1520 1530 1530 GBMLINE B883 433 CATGGOADE CTOGETEGE GLAMACA TECTEGAE CECANACTE ATECTEGAE CALCALA ATTATAGO ATECTGOCA CANTECTEGAE ACTIVETATE 1350 A	3B62				.A	T T.	G	G	.G			
Best	403											
Based B	CERMI INF	CATTOGOAGO	CCTCCCTCAC	CCACHEAGAC	ATCCTCACCT	CCCATACTTC	ATCCCCACAC	ATTTATACCC	ATCCTCCCCA	CCATTCCCCC	TAGGTCCCTC	TOTTOTATO
403 1536 1566 1570 1586 1660 1610 1620 1630 1610	3B44											A
GERMLINE Base Base Base Base Base Base Base Base												. T
Bild Comparison Comparison <th></th> <th>1550</th> <th>1560</th> <th>1570</th> <th>1580</th> <th>1590</th> <th>1600</th> <th>1610</th> <th>1620</th> <th>1630</th> <th>1640</th> <th>1650</th>		1550	1560	1570	1580	1590	1600	1610	1620	1630	1640	1650
BBG2												
1660 1670 1680 1690 1710 1710 1720 1710 1740 1750 1760 GERMLINE 3840 CGGGGGCCAA GGACTCTGG TEACTGTCT TECHAGGEAG TECTAACTTE TECCATTETA ANTGOATTE GGGGGGATTE TEGGGCCAAT TECTTGCAAA 4031 A	3B62						A					
GENALINE 3443 3433 X024 CTGGGGGCAA GGGACTCTGG TCACTGTCT TCACAGTGAS TCCTAACTTC TCCACATCTA AATGCATGTT GGGGGGATTC TGGGCCTTCA GGCACAAAA TCTCCACAAAT TCTCTGCAAA X024 GERMLINE 3443 CGGGAATCAA GGACTCTGG TCACTGTCTC TCCAGGTGAS TCCTAACTTC TCCACGGCAT CTCGCCTGG TGACATAGAA ACGAGAT TCTCTGCAAA X024 CGGGAATCAA GATTCAAC CTTGTCCCA AGTTGACC ATGGGTCGG GCGGGCAT CTCGCCTGG TGACATAGAA ACGAGATT GATGAAGAT 3842 GEGMLINE 3444 CGGGCAAAC CAAACCTCAA AGTTGGCC AGGTCTGG GTCAGGCAT CTCGCCTGG TGACATAGAA ACGAGATT GATGAAGAT 3842 CGGGCAAACC CAAACCTCAA AGTTGGCC AGAATCTTGT CCAGGGCTTA TCGACAATTA GGGGCTGCAC GTGACAGGTG ACAATTCAG GGTCAGTGAC 3842 CGGCAGAAAC CAAACCTCAA AGTTGGCA GAAATCTTGT CCAGGGCTTA TCGACACTTA GGGGCTGCAC GTGACAGGTG ACAATTCAG GGTCAGTGAC ACAAA 4844 CGGCCAGAAC TGAAGCTTGA AGCTGGAAA TAGGTCACC TTGACAGGTC CAGGGGCTTC TGCACAGGCA GGGAACGGAA TGTGGAACAA TGACTGCAA ACAAA 4844 CGGCCAGAAC TGAAGCTGA AGCTGGAAT ATAGGTCACC TGAAGAGTC CAGGGGCTTC TGCACAGGCA GGGAACGGAA TGTGGAACAA TGACTGAA 4844 CGGCCAGAACGAA TGCGGACGAAA TGTGGAACAAC TGAAGTGAC 4844 CGGCAGAAA TGCGGACGAAA TGTGGAACAAC 4844 CCCCCGGAACGAA TGTGGAACAA TGACTGACACAC 4844 CCCCCGGAACGAA TGTGGAACAACAAAA 4844 CCCCCGGAACGAA TGTGGAACAACAACACAACAA 4844 CCCCCGGAACGAA TGCGGACGAACAACAACACAA 4844 CCCCCGGAACGAAA TGCGCTGAAGAAACAACAA 4844 CCCCCGGAACGAAA TGACGACAACAACAACAACAACAACAACAACAACAACAACA	403											1760
3844 A224	GERMLINE	CTGGGGCCAA	GGGACTCTGG	TCACTGTOTO	TGCAGGTGAG		TCCCATTCTA	AATGCATGTT	GGGGGGATTO	TGGGCCTTCA	GGACCAAGAT	
403 M224	3B44					. T						T
A624	403							A				
Image: 1780 Image: 1780 Image: 1800 Image: 1800 <thimage: 1800<="" th=""> <thimage: 1800<="" th=""></thimage:></thimage:>						C	X.C					
3844 4024		1//0	1/80	1/90	1800	1810	1820	1830	1840	1850	1860	1870
3862 T												
A2044 A624	3B62	Τ										
A624 1840 1890 1900 1910 1920 1930 1940 1950 1950 1970 1980 GERMLINE 3B42 CTGCCAGAAC TGAAGCTTGA AGTCTGAGGC AGAATCTTGT CCAGGGTCTA TCGGACACTT GGGACAATTA GGGGCTGACA GTGCATGGCG ACAATTACG GGTCAGCA 433 CTGCCAGAAC TGAAGCTTGA AGTCTGAGGC AGAATCTTGT CCAGGGTCTA TGGGACAATA GGGGCTGACA GTGCATGGCG ACAATTACG 434 T AC T AC T AC T T AC AC AC AC AC AC AC AC AC												
3B44 A2244 A2444 A2444 A2444 A2444	A624											
3B44 A2244 A2444 A2444 A2444 A2444				100000000000000000000000000000000000000	101100000		M AAA L A M A MM					
403 A624	3B44		T							c		
A624 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 GERMLINE 1985 TGTCTGGGTTT CTCTGAGGTG AGGCTGGAAT ATAGGTCACC TTGAAGACTA AGAGGGGTC CACGGGCTTC TGCACAGGCA GGGAACAGA TGTGGGAACAA TGACTGAAT 1985 TGTCTGGTTT CTCTGAGGTG AGGCTGGAAT ATAGGTCACC TTGAAGACTA AGAGGGGTC CACGGGCTTC TGCACAGGCA GGGAACAGAA TGTGGGAACAA TGACTGAAT 103 A2044 A A AC AC AC AC 3053 2100 2110 2120 2130 2140 2150 2160 2170 2180 2280 GERMLINE 3064 GGTTGATCT TGTGTGACAC CAGGAATTGG CATAATGTCT GAGTGGCCA GGGGTGATTC TAGTCAGACT CTGGGGTAT AGAGGAAAA TCCACTATG 3063 A C A A C A A C A A C A	403											T
1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 GERMLINE 3843 TGTCTGGTTT CTCTGAGGTG AGGCTGGAAT ATAGGTCACC TTGAAGACTA AAGAGGGCTC CAGGGGCTTC TGCACAGGA GGGAACAA TGTGGAACAA TGACTTGAAT 3843 T AC												
3B44 403 A2044 A624												
3B62												
A2044												
A624 2100 2110 2120 2130 2140 2150 2160 2170 2180 2190 2200 GERMLINE GGTGATTCT TGTGTGACAC CAGGAATTGG CATAATGTCT GAGTTGCCCA GGGGTGATTC TAGTCAGACT CTGGGGTTT TGTCGGGTAT AGAGGAAAAA TCCACTATG JB64												
GERMLINE BB44 3B62 403 A2044 A624 GGTTGATTCT TGTGTGACAC CAGGAATTGG CATAATGTCT GAGTTGCCCA GGGGTGATTC TAGTCAGACT CTGGGGTAT AGAGGAAAAA TCCATATTG A2044 A624 A A A A A A 2210 A 2220 Z230 Z240 Z250 Z260 Z270 Z280 Z290 Z300 Z310 GERMLINE 3B62 403 A2044 TGATTACTAT GCTATGGACT ACTGGGGTCA AGGAACCTCA GTCACCGTCT CCTCAGGTAA GAATGGCCTC TCCAGGTCTT TATTTTTAAC CTTTGTTATG GAGTTTCTG A AC044 TGATTACTAT GCTATGGACT ACTGGGGTCA AGGAACCTCA GTCACCGTCT CCTCAGGTAA GAATGGCCTC TCCAGGTCTT TATTTTTAAC CTTTGTTATG GAGTTTCTG A AC044 A A C A A C A C								. 				
3B44 A A 403 A A 403 A A A624 A A 621 2210 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 GERMLINE TGATTACTAT GCTATGGACT ACTGGGGTCA AGGAACCTCA GTCACCGTCT CCTCAGGTAT CACAGGTCT TATTTTTAAC CTTTGTATG GAGTTTCTG A A A C 3B62 A A A A A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A A C A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C		2100	2110	2120	2150	2140	2130	2100	2170	2180	2190	2200
3B62 A. A. 403 A. A. A624 2210 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 GERMLINE TGATTACTAT GCTATGGACT ACTGGGGTCA AGGAACCTCA GTCACCGTCT CCTCAGGTAA GAATGGCCTC TCCAGGTCT TATTTTAAC CTTTGTATG GAGTTTCTG 3B64 A.												
A2044 A624 2210 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 GERMLINE TGATTACTAT GCTATGGACT ACTGGGGTCA AGGAACCTCA GTCACCGTCT CCTCAGGTAA GAATGGCCTC TCCAGGTCTT TATTTTTAAC CTTTGTATG GAGTTTCTG 3B64	3B62					A						
2210 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 GERMLINE TGATTACTAT GCTATGGACT ACTGGGGTCA AGGAACCTCA GTCACGGTCT CCTCAGGTAA GAATGGCCTC TCCAGGTCT TATTTTTAAC CTTTGTATG GAGTTTTCTG A A C 3B62 A A A A A C A A C 403 A A A A C A A C A C A C A C A C A C A C A C A C A C C A C C A C C A C C A C C A C C A C C A C C A C C A C C A C C A C	A2044											
GERMLINE TGATTACTAT GCTATGGACT ACTGGGGTCA AGGAACCTCA GTCACCGTCT CCTCAGGTAA GAATGGCCTC TCCAGGTCTT TATTTTTAAC CTTTGTATG GAGTTTTCTG 3B44 3B62	A624			2230	2240	2250	2260	2270	2280			
3B44	GERMLINE	TGATTACTAT					CCTCAGGTAA	GAATGGCCTC	TCCAGGTCT1	TATTTTTAAC	CTTTGTTATG	GAGTTTTCTG
403 A2044	3B44					•••••		• • • • • • • • • •	A.		۰c	
A624 2320 2330 2340 2350 2360 2370 2380 2390 2400 2410 2420 GERHLINE AGCATTGCAG ACTAATCTTG GATATTTGTC CCTGAGGGAG CCGGCTGAGA GAAGTTGGGA AATAAACTGT CTAGGGATCT CAGAGCCTTT AGGACAGATT ATCTCCACAT 3B44 3B62	403											
GERMLINE AGCATTGCAG ACTAATCTTG GATATTTGC CCTGAGGGAG CCGGCTGAGA GAAGTTGGGA AATAAACTGT CTAGGGATCT CAGAGCCTTT AGGACAGATT ATCTCCACAT 3B44 3B562 403 .C. A2044 A624 CTTTGAAAAA CTAAGAATCT GTGTGATGGT GTTGGTGGATG TCCCTGGATG ATGGGATAGG GACTITGGAG GCTCATTGA AGAAGAGTGCT AAAACAATCC TATGGCTGGA GGERMLINE CTTTGAAAAA CTAAGAATCT GTGTGATGGT GTTGGTGGAGG TCCCTGGATG ATGGGATAGG GACTITGGAG GCTCATTGA AGAAGAGTGCT AAAACAATCC TATGGCTGGA 3B44 3B44 A2014 A624 A2014 A624 A2014 A624 								• • • • • • • • • • • • • • • • • • •				
3B44 3B52 403 .C. A2044 A624 2430 2440 2430 2440 2430 2440 2430 2440 2430 2440 2430 2450 2430 2440 2430 2450 2460 2470 2480 2490 2500 2510 2520 2530 # # G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G T A03 T A2044 A624									, 2570	2400	, 2410	2420
3B62 .C. .C.												
A2044 A2044 2430 2440 2450 2460 2470 2480 2490 2500 2510 2520 2530 GERMLINE CTTTGAAAAA CTAAGAATCT GTGTGGTGGTGGT GTTGGTGGTGGT GTTGGTGGTGGT GTGGTGGTGGT GTGGTGGTGGTGGT GTGGTGGTGGT GTGGTGGTGGT GTGGTGGTGGT GTGGTGGTGGT GTGGTGGTGGTGGT GTGGTGGTGGT GTGGTGGTGGT GTGGTGGTGGT GTGGTGGTGGT GTGGTGGTGGT GTGGTGGTGGT GTGGTGGTGGTGGTGGTGGT GTGGGTGGTGGT GTGGTGGTGGT	3B62											
2430 2440 2450 2460 2470 2480 2490 2500 2510 2520 2530 # # # G	A2044		••••••									
GERNLINE CTTTGANAMA CTANGANTCT GTGGTAGTGGT GTGGGTGGAG TCCCCTGGATG ATGGGATAGG GACTITGGAG GCTCATTTGA AGAAGTGCT AMAACAATCC TATGGCTGGA 3B44	A624		2440	2450	2460	2470	2480	2490) 2500) 2510	2520	
3B44	GERMITNE	CTTTGAAAAA	CTAAGAATC'				ATGGGATAG	GACTITICA		GG		TATGCCTCCA
403	3B44			т	.T	A						
A624	403			T	T	.						
2540 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640												
		2540	255	0 256	0 257	0 2580	2590	2600	2610	2620	2630	2640

D

В									
GGGATAGTT 265	G GGGCTGTAGT D 2660		AATAAAAGTA 2690	TTAGTTGTGG 2700	AATATACTTC 2710	AGGACCACCT 2720	CTGTGACAGC 2730	ATTTATACAG 2740	TATCCGATGC 2750
ATAGGGACA 276	A AGAGTGGAGT 0 2770	2790	2800	2810	2820	AACTTCATTT 2830	GTTGGAAGGA 2840	GAGCTGTCTT 2850	AGTGATTGAG 2860

TCAAGGGAG 287	A AAGGCATCTA 0 2880	CAAAAGGGTA 2900	GTTGCTGTCT 2910	AGAGAGGTCT 2920	GGTGGAGCCT 2930	GCAAAAGTCC 2940	AGCTTTCAAA 2950	GGAACACAGA 2960	AGTATGTGTA 2970
TGGAATATT 298	A GAAGATGTTG 0 2990		CCTAGGAAAA 3020	ATAGTTAAAT 3030	ACTGTGACTT 3040	TAAAATGTGA 3050	GAGGGTTTTC 3060	AAGTACTCAT 3070	TTTTTTAAAT 3080
GTCCAAAAT 309	T CTTGTCAATC 0 3100			ATTACTTAAA 3140	GTTTAACCGA 3150			TCATAACCTA 3180	TTCAGAACTG 3190
ACTTTTAAC 320	A ATAATAAATT 0 3210				TGGAGTCAAG 3260		AGAACCAGAA 3280	CACCTGCAGC 3290	AGCTGGCAGG 3300
AAGCAGGTC 331	A TGTGGCAAGG 0 3320			GGTAAACTTG 3360		TTGAAGAAGT 3380	GGTTTTGAAA 3390	CACTCTGTCC 3400	AGCCCCACCA 3410
алссдалад 342	T CCAGGCTGAG 0 3430			AAAATAAGTT 3470				ТТТТААСТТА 3510	TTGAGTTCAA 3520
ССТТТТААТ 353	T TTAGCTTGAG 0 3540		TTAAGTTTAT 3570	CGACTTCTAA 3580	AATGTATTTA 3590	GAATTC 3600			

FIG. 5. Nucleotide sequences of the 3'-flanking regions of the active $V_H DJ_H$ alleles from hybridomas 3B44, 3D62, 40.3, A20/44, and A6/24 compared with the germ line sequence. The downstream germ line sequence was determined from clones amplified by PCR from total liver DNA by using primers (*****) near J_{H-1} (bases 1121 to 1142) and across the XbaI site (base 2908, Fig. 5B). Other clones were obtained by amplification of the J_{H-4} -XbaI region. # signifies base differences which may be allelic, rather than somatic. The identity of base 2310 in the germ line sequence was ambiguous; it is assigned as G on the basis of the consensus sequence. (B) Germ line sequence was determined from PCR-amplified clones to base 2869. All hybridomas were identical in sequence from base 2641 to the 3' end.

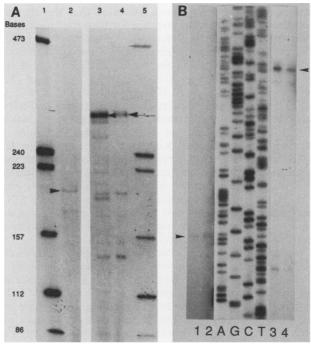


FIG. 6. Determination of the 5' termini of mRNAs from hybridomas expressing V_H186.2 and V_H205.12 genes. Total RNA was isolated from the following hybridoma cell lines: B1-8, which expresses mRNA for an unmutated V_H186.2 gene rearranged to J_{H-2} (6); A6/24, expressing mRNA representing the V_H205.12 gene, and A20/44, also expressing mRNA of V_H205.12. Primers which had been used for sequence determinations were radiolabeled with $[\gamma^{-32}P]$ ATP at their 5' ends and used to initiate cDNA synthesis by avian myeloblastosis virus reverse transcriptase, using the total hybridoma RNA as the template. Primers used for V_H genes are indicated in the legends to Figs. 2 and 3. cDNAs were analyzed by electrophoresis on 3% polyacrylamide gels containing 7.0 M urea (7), using denatured DNA fragments derived from a plasmid of known sequence as markers. (A) Marker fragments of indicated sizes (tracks 1 and 5); cDNAs copied from B1-8 (track 2), A20/44, (track 3) and A6/24 (track 4) RNAs, respectively. Arrowheads

type. Therefore, these changes almost certainly represent genuine somatic mutations. For the V_H186.2 group, the 3B62 gene possesses a cluster of five base changes beginning 375 nucleotides upstream of the cap site. One of these creates a RsaI site, and we are using this fact together with PCR techniques to investigate their origin. The region of DNA corresponding to bases 11 to 1011 (Fig. 2) was amplified from total liver DNA (C57BL/6j) and from hybridoma 3B44 and 3B62 DNAs. When these amplified DNAs were digested with RsaI, 3B62 DNA was cut, whereas the germ line and 3B44 DNAs were not (H. Rothenfluh, L. Taylor, G. Both and E. Steele, unpublished results). These preliminary results therefore suggest that the upstream changes in 3B62 are also somatic mutations since they appear not to be present in the germ line DNA typical of the region encoding V_H 186.2related sequences. However, we cannot rule out the unlikely possibility that progenitor sequences for 3B62 (and A6/24) exist elsewhere in the genome in related sequences which were not amplified by the PCR primers used here. Thus, the 5' boundary of mutation remains to be established but mutations clearly occur upstream of the cap site in the nontranscribed flanking region. Sequencing of this region in a larger set of mutated $V_{\rm H}$ 186.2 genes should define the 5' boundary of mutation. This has been initiated.

The 3' boundary for hypermutation clearly extends beyond J_{H-4} , but we are uncertain of its precise location. We have placed the boundary at a region about 210 bases downstream of J_{H-4} in Fig. 7. This takes in a cluster of nine recurrent mutations (Fig. 5A, bases 2559 to 2577), i.e., mutations to the same base in the same position in independently arising somatically mutated genes. However, it is not certain that these are genuine somatic mutations, given the

indicate the full-length cDNA product in each case. (B) cDNAs synthesized in panel A were analyzed by electrophoresis on a 5% sequencing gel next to a known nucleotide sequence derived from a rotavirus VP7 gene (4). Separate photographic exposures of the same gel were aligned to form the figure. Arrowheads indicate the position of the cDNAs which were loaded twice. Tracks 1 and 2, cDNA from track 2 of panel A; tracks 3 and 4, cDNA from track 3 of panel A.

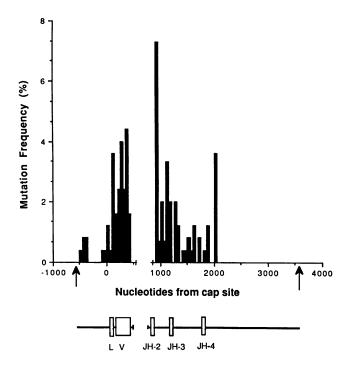


FIG. 7. Distribution of mutations within and around somatically mutated $V_H DJ_H$ loci. Mutation frequency (%) is the number of mutational events per 100 bases sequenced. The sequences were determined in the region between the arrows. The data, grouped at 50-base-pair intervals, were derived from Fig. 2, 3, and 5, and encompass 118 mutational events. A mutational event is defined as either a single-base substitution, a single-base deletion, or a complete codon deletion. The four bases which could not be determined (labeled X in Figs. 2, 3, and 5) were not scored. The sets of sequences have been aligned first by the nucleotide specifying the initiation of RNA synthesis (cap site [*], in Fig. 2, 3, and 6). The first nine 50-base-pair intervals downstream of the cap take in most of the V region to position 1001 in V_H 186.2 (Fig. 2) and base 1029 in V_H 205.12 (Fig. 3) which are 29 and 31 nucleotides, respectively, from the 3' end of the V-region sequence. The discontinuity takes in the V-D junction through to the end of J_{H-2}. Thus, any differences in the V-D junction, which might include potential N-region additions were not scored (e.g., the two mutations in A6/24 at positions 1047 and 1057 in Fig. 3 are not included in this histogram). The discontinuity is also present because only one sequence (40.3) was available through the region. Between J_{H-2} and J_{H-3} , the data are based on sequences of only three genes (3B44, 3B62, and 40.3); for all other downstream regions, the data are derived from all five genes which have been aligned at the end of the J_{H-3} region (position 1794 in Fig. 5A).

nearby sequence polymorphisms at bases 2611 and 2613. Our present interpretation is that these GGG-to-AGA changes may represent allelic differences in C57BL/6j mice. Alternatively, since these changes arose in two independent PCR amplifications of this region (in liver and hybridoma 3D61 DNAs), there might be a hot spot for Taq polymerase-induced mutations at these sites. If the recurrent base changes do not represent genuine somatic mutations, then the boundary contracts to a region about 60 base pairs 3' to J_{H-4} . Sequencing of this region in a larger set of $V_H 186.2$ genes will better define the 3' boundary of mutation.

Mutations occurring in the nontranslated introns and 5'and 3'-flanking regions of V_H genes should not be subjected to antigenic selection. Thus, the types of mutations in these regions may represent the error specificity of the enzymes involved in the somatic mutation process (M. Kaartinen, S.

TABLE 1. Types of nucleotide changes in the nontranslated regions of immunoglobulin V_H genes

Type of	No. of mutation
nucleotide change	(n = 75)
Transitions	
$A \rightarrow G$. 7
$T \rightarrow C$	
$G \rightarrow A$	
$C \rightarrow T$	
Single-base deletions	. 4
Transversions	
$C \rightarrow G$. 1
$G \rightarrow C$. 2
$A \rightarrow C$	
$T \rightarrow G$. 2
$A \to T$	
$T \rightarrow A$. 5
$C \rightarrow A$	
$G \rightarrow T$	

Kulp, and O. Makela, in E. J. Steele, ed., Somatic Hypermutation in V-Regions, in press; T. A. Kunkel, in E. J. Steele, ed., Somatic Hypermutation in V-Regions, in press). Analysis of the types of mutation within the nontranslated flanking regions of V_H genes indicates that the mutator mechanism may have a preference for base transitions over transversions (Table 1). A ratio of 1:2 respectively would be evident if transitions and transversions occurred at an equal frequency. In addition, among the transversions, there is a bias towards $A \rightarrow T$, $T \rightarrow A$, $\tilde{A} \rightarrow C$, and $G \rightarrow T$ (25 of 75 or 33%) over $T \rightarrow G$, $C \rightarrow A$, $C \rightarrow G$, and $G \rightarrow C$ (8 of 75 or 9%). These proportions and pattern of transitions and transversions are broadly consistent with the recent larger survey of 234 "selection-free," or silent, somatic mutations in immunoglobulin V genes (Kaartinen et al., in press). The biased pattern amongst transversions is also consistent with the ability of AMV reverse transcriptase to extend from the corresponding mismatched bases (27). These results may indicate that reverse transcriptase or a low-fidelity DNA polymerase lacking the 3'-5' exonuclease proofreading activity may operate during somatic hypermutation in immunoglobulin V_H genes (Kunkel, in press).

We have critically evaluated elsewhere the various mechanisms proposed to explain somatic hypermutation (Steele et al., in press). These mechanisms are either DNA-based e.g., site-directed error-prone repair, gene conversion (8, 14, 26) or gene expression-based (e.g., involving error-prone reverse transcription) (41). The present data do not rule out models which propose the transcribed region of the DNA as the primary target for the mutation process. However, this type of model is insufficient to fully account for the observed distribution of mutations in the 5' nontranscribed region unless various ad hoc processes are proposed to explain their origin, e.g., the use of minor upstream transcription initiation sites in hypermutating B cells. Transcription from 5' upstream start sites was proposed to explain the appearance of hygromycin-resistant cells after transfection with promoter-negative retroviral vectors carrying the hygromycin resistance gene (11, 12).

In summary, the data suggest that the transcribed region is the primary target for the mutational mechanism, but the mutations which fall outside this region require other explanations, e.g., gene conversion or heteroduplex-induced gene mutagenesis (26; Steele et al., in press). Thus, the real mechanism of somatic hypermutation may turn out to be a combination of the various published models.

ACKNOWLEDGMENTS

We thank K. Rajewsky and his group for the clones of the various V_H genes, hybridomas, and C57BL/6j DNA. We are grateful to R. V. Blanden, H. M. Temin, C. Kocks, and K. Rajewsky for critical discussions both on the work and manuscript.

This research was supported by funds from a University of Wollongong-Commonwealth Scientific and Industrial Research Organization collaborative research grant, an NHMRC (Australia) project grant and a Medical Research Council (United Kingdom) grant to J.W.P.

LITERATURE CITED

- Allen, D., T. Simon, F. Sablitzky, K. Rajewsky, and A. Cumano. 1988. Antibody engineering for the analysis of affinity maturation of an anti-hapten response. EMBO J. 7:1995–2001.
- Allen, D., T. Simon, F. Sablitzky, K. Rajewsky, and A. Cumano. 1989. Antibody engineering for the analysis of affinity maturation of an anti-hapten response (Corrigendum). EMBO J. 8:2444.
- 3. Ballard, D. W., and A. L. M. Bothwell. 1986. Mutational analysis of the immunoglobulin heavy chain promoter region. Proc. Natl. Acad. Sci. USA 83:9626–9630.
- Both, G. W., J. S. Mattick, and A. R. Bellamy. 1983. Serotypespecific glycoprotein of simian 11 rotavirus: coding assignment and gene sequence. Proc. Natl. Acad. Sci. USA 80: 3091–3095.
- Bothwell, A. L. M. 1984. The genes encoding anti-NP antibodies in inbred strains of mice, p. 19–34. *In M. I. Greene and A.* Nisonoff (ed.), The biology of idiotypes. Plenum Publishing Corp., New York.
- Bothwell, A. L. M., M. Paskind, M. Reth, T. Imanishi-Kari, K. Rajewsky, and D. Baltimore. 1981. Heavy chain variable region contribution to the NPb family of antibodies: somatic mutation evident in a 2a variable region. Cell 24:625–637.
- Boyle, D. B., B. E. H. Coupar, A. J. Gibbs, L. J. Siegman, and G. W. Both. 1987. Fowlpox thymidine kinase: nucleotide sequence and relationships to other thymidine kinases. Virology 156:355-365.
- 8. Brenner, S., and C. Milstein. 1966. Origin of antibody variation. Nature (London) 211:242-243.
- Chirgwin, J. M., A. E. Przybula, R. J. MacDonald, and W. J. Rutter. 1979. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18: 5294-5299.
- 10. Cumano, A., and K. Rajewsky. 1986. Clonal recruitment and somatic mutation in the generation of immunological memory to the hapten NP. EMBO J. 5:2459–2468.
- Dornburg, R., and H. M. Temin. 1988. Retroviral vector system for study of cDNA gene formation. Mol. Cell. Biol. 8: 2328-2334.
- 12. Dougherty, J. P., and H. M. Temin. 1987. A promoterless retroviral vector indicates that there are sequences in U3 required for 3' RNA processing. Proc. Natl. Acad. Sci. USA 84:1197-1201.
- Falkner, F. G., and H. G. Zachau. 1984. Correct transcription of an immunoglobulin K gene requires an upstream fragment containing conserved sequence elements. Nature (London) 310: 71-74.
- 14. Gearhart, P. J. 1982. Generation of immunoglobulin variable gene diversity. Immunol. Today 3:107-112.
- Gearhart, P. J., and D. F. Bogenhagen. 1983. Clusters of point mutations are found exclusively around rearranged antibody variable genes. Proc. Natl. Acad. Sci. USA 80:3439–3443.
- Gillies, S. D., S. L. Morrison, V. T. Oi, and S. Tonegawa. 1983. A tissue-specific transcription enhancer element is located in the major intron of a rearranged immunoglobulin heavy chain gene. Cell 33:717–728.

- Golding, G. B., P. J. Gearhart, and B. W. Glickman. 1987. Patterns of somatic mutations in immunoglobulin variable genes. Genetics 115:169–176.
- Gorski, J., P. Rollini, and B. Mach. 1983. Somatic mutations of immunoglobulin variable genes are restricted to the rearranged V gene. Science 220:1179–1180.
- Gough, N. M., and O. Bernard. 1981. Sequences of the joining region genes for immunoglobulin heavy chains and their role in the generation of antibody diversity. Proc. Natl. Acad. Sci. USA 78:509-513.
- Kataoka, T., T. Nikaido, T. Miyata, and T. Honjo. 1982. The nucleotide sequences of rearranged and germline immunoglobulin V_H genes in the mouse. J. Biol. Chem. 257:277-285.
 Keohavong, P., and W. G. Thilly. 1989. Fidelity of DNA
- Keohavong, P., and W. G. Thilly. 1989. Fidelity of DNA polymerases in DNA amplification. Proc. Natl. Acad. Sci. USA 86:9253-9257.
- Kim, S., M. Davis, E. Sinn, P. Patten, and L. Hood. 1981. Antibody diversity: somatic hypermutation of rearranged V_H genes. Cell 27:573-581.
- Krawinkel, U., G. Zoebelein, and A. L. M. Bothwell. 1986. Palindromic sequences are associated with sites of DNA breakage during gene conversion. Nucleic Acids Res. 14:3871–3882.
- 24. Kunkel, T. A. 1988. Exonucleolytic proofreading. Cell 53: 837-840.
- Lui, Y.-J., D. E. Joshua, G. T. Williams, C. A. Smith, J. Gordon, and I. C. M. MacLennan. 1989. Mechanism of antigendriven selection in germinal centers. Nature (London) 342: 929–931.
- Maizels, N. 1989. Might gene conversion be the mechanism of somatic hypermutation of mammalian immunoglobulin genes? Trends Genet. 5:4-8.
- Mendelman, L. V., J. Petruska, and M. F. Goodman. 1990. Base misrepair extension kinetics. J. Biol. Chem. 265:2338-2346.
- Moller, G. (ed.). 1987. Role of somatic mutation in generation of lymphocyte diversity. Immunological Reviews, vol. 96.
- Parslow, T. G., D. L. Blair, W. J. Murphy, and D. K. Granner. 1984. Structure of the 5' ends of immunoglobulin genes: a novel conserved sequence. Proc. Natl. Acad. Sci. USA 81:2650– 2654.
- Pech, M., J. Hochtl, H. Schnell, and H. G. Zachau. 1981. Differences between germline and rearranged immunoglobulin V_K coding sequences suggest a localized mutation mechanism. Nature (London) 291:668–670.
- Reanney, D. C. 1984. Genetic noise in evolution? Nature (London) 307:318-319.
- 32. Reanney, D. C. 1986. Genetic error and genome design. Trends Genet. 2:41-46.
- Roes, J., K. Huppi, K. Rajewsky, and F. Sablitzky. 1989. V gene rearrangement is required to fully activate the hypermutation mechanism in B cells. J. Immunol. 142:1022–1026.
- 34. Sablitzky, F., and K. Rajewsky. 1984. Molecular basis of an isogenic anti-idiotypic response. EMBO J. 3:3005-3012.
- 35. Sablitzky, F., G. Wildner, and K. Rajewsky. 1985. Somatic mutation and clonal expansion of B cells in an antigen-driven immune response. EMBO J. 4:345-350.
- 36. Sakano, H., R. Maki, Y. Kurosawa, W. Roeder, and S. Tonegawa. 1980. Two types of somatic recombination are necessary for the generation of complete immunoglobulin heavy-chain genes. Nature (London) 286:676-683.
- 37. Saiki, R. K., D. H. Gelfand, S. Stoffel, S. J. Scharf, R. Higuchi, G. T. Horn, K. B. Mullis, and H. A. Erlich. 1988. Primerdirected enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487-491.
- Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463-5467.
- Selsing, E., and U. Storb. 1981. Somatic mutation of immunoglobulin light-chain variable-region genes. Cell 25:47-58.
- Siekevitz, M., C. Kocks, K. Rajewsky, and R. Dildrop. 1987. Analysis of somatic mutation and class switching in naive and memory B cells generating adoptive primary and secondary responses. Cell 48:757-770.
- 41. Steele, E. J., and J. W. Pollard. 1987. Hypothesis: somatic

hypermutation by gene conversion via the error prone DNA \rightarrow RNA \rightarrow DNA information loop. Mol. Immunol. 24:667-673.

- Thurston, C. F., C. R. Perry, and J. W. Pollard. 1988. Electrophoresis of RNA denatured with glyoxal or formaldehyde, p. 13-25. *In J.* Walker (ed.), Methods in molecular biology. The Humana Press, Clifton, N.J.
- 43. Tindall, K. R., and T. A. Kunkel. 1988. Fidelity of DNA synthesis by the *Thermus aquaticus* DNA polymerase. Biochemistry 27:6008-6013.
- 44. Weiss, S., and G. E. Wu. 1987. Somatic point mutations in unrearranged immunoglobulin gene segments encoding the variable region of lambda light chains. EMBO J. 6:927-932.