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A Multi-Disciplinary Approach to Understanding Primary Glomerular Nephropathy 

 

Statistical Methodology Supplement 

The primary analysis plan involves deriving a prediction model to rigorously evaluate and 

identify potential predictors for study endpoints. Subsequently, the overall prediction model will be 

used to assess association via odds ratios for targeted sub-group analysis. For example, specific 

phenotypic and molecular information can be utilized to determine the probability of achieving 

remission which will be helpful for prognosis and developing therapeutic strategy.  

For biomarker discovery and validation, we will randomly split the study sample into the 

Training and the Test sets at the ratio of 
�

�
n :

�

�	
�

1, 2
.  The former is used to build a prediction 

model and the latter is for internal validation. Selection of biomarkers (e.g. gene expression levels, 

or proteomic markers) will proceed in two steps. Initially, we will perform univariate screening based 

on p-values obtained from tests of association between a study endpoint and a biomarker. 

This step will enable us to determine a relatively small pool of promising biomarkers. The 

cut-off by a pre-specified false discovery rate or a fixed number of top predictors may be 

used to determine the pool size.   It is known that univariate screening may produce many 

false signals 
3
; for example, a biomarker that is not associated with disease outcome but strongly 

correlated with a predictive biomarker could be selected. To mitigate this risk, an additional step of 

joint screening for those selected biomarkers in the pool will be performed  to refine the identified 

candidate biomarkers and remove false signals using the training set. Univariate screening will be 

performed using logistic regression models. Due to the potential for a large number of candidate 

biomarkers and clinical markers, joint screening will be carried out using LASSO 4 or LARS 5  

regularized regression approach.    In the joint LASSO based screening  (e.g. Lemley et al.
6
) cross-

validation will be used to determine tuning parameters and to calibrate the prediction model in the 

Training set.  As part of calibration in the building of prediction model, we will assess the variable 
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selection stability in the LASSO-based joint screening through bootstrap samples generated 

from the training data 
7
.  

 The NEPTUNE Test dataset which is an independent NEPTUNE subcohort separated from 

the training dataset, will be used to generate the ROC curve to develop the final model based on the 

highest predictive power. Alternatively, Net Reclassification Index 8 may be used to quantify the 

change of prediction accuracy using the NEPTUNE Test cohort when choosing specific predictors to 

be included in the final model.  In addition, model calibration will be examined.  The procedure of 

choosing the tuning parameters in LASSO according to the smallest Akaike information criterion 

(AIC), the Bayes Information criterion (BIC) or cross-validation error provides one approach for 

model calibration. Other calibration measures, such as diagnostic residual plots and Hosmer-

Lemeshow test for the goodness-of-fit in logistic regression model, will be considered.  

Analysis of repeated measurements (e.g. estimated GFR) will be undertaken by the means of 

standard mixed-effects models supplemented by generalized estimating equations (GEE) models, for 

both biomarker screening and prediction model building. The resulting prediction model will enable 

us to use selected biomarkers and auxiliary clinical parameters to discriminate and predict patient’s 

longitudinal trajectories 
9
. 

To address the challenge in building the prediction model for combining molecular 

biomarkers and clinical variables, we propose to use multiple indices 10 which will allow dimension 

reduction among multiple predictors from various sources. Statistical power will be improved in such 

a model formulation because proper scaling on grouped predictors can be applied to reconcile 

differences of variables corresponding to patient characteristics. In addition, the synthesis of different 

sources of predictors provides an opportunity to further refine the selection of important predictors by 

removing redundant predictors. 

In a longitudinal cohort with the complex data collection implemented in NEPTUNE, 

missing data may be present. In the study design, we assume 10% attrition rate for the 

longitudinal cohorts. For participant dropout that is independent of the underlying disease 

mechanism (i.e. missing completely at random), a valid approach is to analyze all available 

data using  linear model or  linear mixed-effects model 
11
.  In the case that the mechanism of 

Page 27 of 29



dropout is suspected to be dependent on observed covariates, likelihood estimation and 

inference in the mixed-effects models are still valid for all available data analysis.  We will 

model the probability of missingness through a logistic model, and then incorporate estimated 

probability of missingness into the GEE estimation. Every attempt will be made to identify 

missing covariates. However, in the event that this data is unobtainable, we will invoke 

proper statistical strategies 
12
 to deal with this challenge. 

Predictors, including biomarkers and clinical parameters, established in the 

NEPTUNE cohort will require additional validation with external cohorts. To this end, the 

NEPTUNE protocol has been shared with multiple international networks to enable future 

cross validation. 
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