
Supplementary Note

Software
The software preseq is available as Open Source and can be downloaded from Supplementary Software or:

http://smithlab.usc.edu/software/

The software has been tested on Linux and Mac OSX, but is written in C++ and should be easily ported. The GNU
Scientific Library (GSL) is required.

Methods

Contexts in which our model applies
We assume a sequencing experiment randomly samples molecules from the library and that the sampled molecules are
observed as sequenced reads. In general we are interested in determining when two reads give different information.
In evaluating our method, most of our applications focused on whether sequenced reads came from distinct fragments
in the library. In those applications we counted the number of distinct molecules observed as a function of the number
of reads sequenced. We required a method to identify when two reads correspond to the same or distinct molecules –
such methods have been called “unique molecular identifiers” (UMIs)14 and popular UMIs include random barcodes or
distinct mapping locations. We used distinct mapping locations as the UMI, but this method will be problematic when
the sequencing experiment is such that distinct molecules are likely to map to the same location. This happens when
sequencing very deeply (as often happens for smaller genomes), or when the nature of the experiment enriches for
reads from specific genomic locations, for example in “deep CAGE” when reads come from the 5’ ends of transcripts.

Considering the role of the identifier more abstractly is helpful to understand the broad applicability of our method.
In the terminology of capture-recapture, the identifier groups captured individuals (the sequenced reads) into classes.
This interpretation, along with the generality of the capture-recapture theory, allows our method to be used in a great
many contexts. When we examined the ChIP-seq and RNA-seq data to investigate how much additional informa-
tion would come from additional sequencing (see Fig. 2) we also counted distinct genomic windows to which reads
mapped. The identifier of a read was the genomic window containing the mapped location of the read. If one were
interested only in counting the number of distinct exons from a pre-defined set of exons, then one would associate
each mapped read with the exon to which they map. Those reads not mapping to an exon would be ignored, and in a
technical sense we would say those are “non-identifiable” reads. Ultimately, all that is required to apply our method in
a new sequencing context is some means of determining when a newly sequenced read provides additional information
when compared with those already sequenced.

The underlying physical process and potential sources of variation
We assume that in each sequencing experiment the number of reads corresponding to each unique molecule is deter-
mined by a probability associated with that molecule. We usually want those probabilities to be proportional to the
frequencies of each molecule in the original population. There are numerous potential sources of bias that alter these
probabilities. We divide all potential sources of bias into the following three groups to understand how they impact
our assumptions.
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The type of experiment Prior to sequencing there is often some specific type of experiment conducted on the
population of molecules. These experiments alter the proportions of molecules in both intended and unintended ways.
One example of intentional alterations include the ChIP step in a ChIP-seq experiment, which results in extreme
enrichment for DNA molecules interacting with some protein. Another example is the poly-A purification in RNA-
seq, which enriches for mRNA. One example of unintentional alteration to the proportions is the degradation of DNA
from bisulfite treatment in BS-seq experiments, which for some protocols appears to have different affects on different
parts of the genome.

Library preparation One hopes that the process of library preparation does not alter the proportions of molecules
too drastically, but the procedures involved in constructing libraries (e.g. adaptor ligation, amplification, etc.) can have
a major impact. These effects are captured by our method, because they are not changed if the library is sequenced
twice. We also expect that in the future the variation introduced by the library preparation process will gradually
decrease as technology improves.

The sequencing runs The prepared sequencing libraries contain multiple copies of each unique molecule from the
original biological sample. We assume that in a given sequencing run, these are sampled uniformly at random, and
this is why we refer to “library complexity” as reflected in reads produced by the sequencer. The sequencing process,
however, does not sample uniformly from the library. There are two kinds of bias we must consider. First, there is
bias that is consistent from one sequencing run to the next, the nature of which depends on the sequencing technology.
This kind of bias presents absolutely no problem for our assumptions. Second, there is bias that changes between
experiments: the technical variation in sequencing, between runs and between lanes in a given run. In theory these
forms of bias are problematic for our model. In practice, we have observed that they have virtually no impact, and when
they do have an effect it will typically be clear that a sequencing run has encountered problems. Investigations into the
technical variance of RNA-seq experiments validate this assumption6,17. Note that we are not claiming the variation
between sequencing runs will have no impact on the results of the experiment, only that this variation will have very
little impact on observed and estimated library complexity between runs when using our method. We obtained library
complexity estimates for a single library run on two different machines (in fact, one was an Illumina HiSeq and the
other a GAII, Supplementary Fig. 1). A sample of reads from the HiSeq run almost perfectly predicts the complexity
observed in the full GAII, and vice versa.

Approximating library yield with rational functions
Recall that we derived an unbiased estimator for the marginal yield given by Equation (2) in Online Methods:

∆̂(t) =

∞∑
j=1

(−1)j+1(t− 1)inj . (1)

We take rational function approximations of Equation (1) as our estimates for the expected marginal yield.
In the following, we shall let f(t) =

∑∞
j=0 fjt

j be an arbitrary power series. Two common implementations are
Padé approximants and truncated continued fractions. A Padé approximant to a power series centered at zero is the
unique ratio

f(t) ≈ p(t)/q(t) =
p0 + p1t+ · · ·+ pP t

P

1 + q1t+ · · ·+ qQtQ
, (2)

such that the associated power series agrees with
∑∞
j=0 fjt

j for the first P +Q+ 1 coefficients. Similarly a truncated
continued fraction approximation to a power series is of the form:

f(t) ≈
a0

1 +
a1t

1 +

...
1 + aCt
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The associated power series agrees with f(t) for the first C + 1 coefficients. We refer the values P +Q+ 1 and C + 1
as the the order of the approximations. Since Padé approximants are unique3, these two forms of optimal rational
function approximations are equivalent.

The two representations differ in the ease with which they can be estimated and evaluated. Typical methods to
calculate the Padé coefficients involve solving a system Ax = b where A is a Hankel matrix and therefore commonly
ill-conditioned10. The time complexity for computing the coefficients is Θ(Q3 + P 2)3. This complexity is not
desirable if it must be computed frequently, as when large numbers of bootstrap samples are required. Furthermore,
direct evaluation of rational functions in the usual representation as a pair of polynomials (i.e. the numerator and the
denominator of Equation (2)) can be problematic for large t and large degree because the intermediate values can grow
independently of the final value.

The coefficients {a0, . . . , aC} of the continued fraction representation, on the other hand, can be fit using recursive
algorithms like the quotient difference18 and product-difference algorithms13. Each of these takes Θ(k2) time to
approximate an order k polynomial. By avoiding the inversion of an ill-conditioned matrix the computation of the
required coefficients is also more numerically stable. Finally, evaluating the rational function when represented as a
continued fraction is more numerically stable as it can be done using Euler’s recursion with renormalization4.

If the observed coefficients of the original power series arise from moments of a measure defined on the positive
real line, then the measure is called a Stieltjes measure and the associated power series is called a series of Stieltjes.
The associated rational function approximations can be shown to converge and exhibit additional properties that make
their application useful. It can be shown that the approximations where the difference between the degrees of the
numerator and denominator is even converge from above, while if this difference is odd the convergence is from
below19 in some neighborhood of zero (Supplementary Fig. 2). If the difference is greater than or equal to −1, then
the convergence holds for all positive values. We can therefore choose to err on the conservative or liberal side when
appropriate.

Instabilities in rational function approximations
The moments of the Stieltjes measure assumed to generate Equation (1) are equal to the expectations of nj(1), j =
1, 2, . . . We are using observed estimates of the moments which take the form of random Poisson variables with mean
equal to the true moment9. By breaking up the observed coefficients into their expected values plus mean zero error
terms, we can see that the resulting series is not necessarily Stieltjes. The error terms cause the series to have positive
measure on negative values. In practice this is more likely to happen for high frequencies. We commonly observe
these as equal to zero but they actually have positive, though small, expectation. Errors in the observed coefficients
of the original power series will typically result in poles in the rational function approximation with corresponding
zeros in a neighborhood, resulting in approximate cancellation outside a small neighborhood2. This phenomenon
will be transitory as the order of the approximation changes11,12 . An additional advantage of the continued fraction
representation over the Padé approximation is that we can easily identify the locations of potential defects by using a
necessary condition on individual coefficients of the continued fraction. We can then evaluate the continued fraction
in neighborhoods of selected points to check for defects, rather than evaluating the rational function through the entire
domain. If any of these potential defects is found to actually be a defect, we immediately know the depth at which the
continued fraction should be truncated to remove that defect, so we can adjust the continued fraction, erring on the
conservative side, without refitting.

Computation and evaluation of continued fraction approximations
Rational function approximations require that the coefficients of the estimated power series be non-zero in order to
obtain consistent estimates. We therefore truncate the series (1) to the lowest order zero coefficient before computing
the coefficients. In addition, we factor out a power of t − 1 so that the power series we approximate has a constant
for the lowest order term. When we do any evaluation, we shall evaluate the continued fraction approximation and
multiply by t− 1.
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We use Stieltjes fractions in our approximation, which are of the form

(t− 1)
a0

1 +
a1(t− 1)

1 +

...
1 + aC(t− 1)

. (3)

If C is even, then the equivalent Padé approximation will have numerator and denominator of equal degrees. If
C is odd, then the denominator will be one degree larger than the numerator. We recall that a continued fraction
approximation should have power series coefficients equal to the original power series. Therefore to obtain a continued
fraction with an equivalent Padé approximation with numerator d degrees larger than the denominator, we can first
take out the first d coefficients, then the remaining terms will be used to form a continued fraction of the form (3), i.e.

(t− 1)


n1 − n2 (t− 1) + . . .+ (−1)

d−1
nd (t− 1)

d−1
+ (t− 1)

d a0

1 +
a1(t− 1)

1 +

...
1 + aC−d−1(t− 1)


.

We refer to the first d coefficients as the offset coefficients and the remaining as the continued fraction coefficients.
For an approximation with equivalent Padé approximant that has numerator with degree d less than the denomina-

tor, we need to work with the reciprocal series g(t) = 1/f(t). The reciprocal of the continued fraction approximation
of g will be the continued fraction approximation to f .

In our method, we use the reciprocal series with an offset of one to approximate the marginal yield,

M∑
j=1

(−1)
j+1

(t− 1)
j
nj ≈ (t− 1)/


1

n1
+ (t− 1)

a0

1 +
a1 (t− 1)

...
1 + aM−2 (t− 1)


with M odd. This will ensure that our estimates stay stable for large values of t and are conservative, on average.
To ensure stable estimates we require a minimum continued fraction degree of 5, i.e. M ≥ 5. This implies that our
method is only applicable to initial experiments with the first five entries of the read count histogram greater than zero.
This will exclude some extremely small initial experiments.

Confidence intervals
We can treat the observed counts, n1, n2, . . . as Poisson random variables with estimated mean equal to the observed
value. Since the counts are negatively correlated, the sum of the estimated variances of the observed coefficients is an
upper bound for the true variance9. This bound is significantly larger than observed in practice and in most cases is
unreasonably large. We must therefore resort to bootstrapping to obtain useful confidence intervals.

The time complexity of bootstrapping the histogram is on the order of the number of non-zero entries in the
histogram and therefore proportional to the largest observed count. Since this may be very large for experiments such
as RNA sequencing, bootstrapping the histogram a sufficient number of times to obtain accurate quantiles (≈ 1000
times8) will take too long. There is a natural skew to the confidence intervals upward so we employ the log-normal
confidence intervals as suggested by Chao7.
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Euler’s series transformation
Euler’s series transformation is suggested by Efron & Thisted9 to improve the convergence of the power series (1) by
taking u = 2 (t− 1) / (1 + (t− 1)). The transformed series then takes the form

∞∑
k=1

ξku
k with ξk =

k∑
j=1

(
k − 1

j − 1

)
2−k (−1)

j+1
nj .

This method is particularly suited to series with exponentially decreasing coefficients. They prove that if

nj = L
Γ
(
j + α−1

)
j!Γ (α−1)

(αµ)
j

(1 + αµ)
α−1−j

(i.e. the read counts are the expected counts from a negative binomial (µ, α) distribution) with α ≥ 1, then the
coefficients ξk, k = 1, 2, . . . are all strictly positive. This implies that the radius of absolute convergence is infinite
after applying Euler’s transformation. For more complicated distributions this is not necessarily the case and the
practical application is confounded by the error introduced by estimating the true count frequencies by the observed
count frequencies.

This problem is exacerbated as more terms are used since the noise to signal ratio is significantly larger for higher
order terms. In practice this translates smaller radii of convergence as more terms are used. Recall that formula (1) is
unbiased only if all observed coefficients are used. Therefore using less terms will result in biased estimates. In the
aforementioned situation where the read counts are Negative Binomially distributed, truncating will always result in
downward bias.

In the actual application of Euler’s transformation, the choice of where to truncate is murky. Efron & Thisted
choose to truncate the number of terms to ten based upon an examination of the transformed coefficients. Since this
must be done on a case by case basis, examining the coefficients is unfeasible for our experiments. We examine the
effect of truncation upon the estimates and we observe that if less less terms are used, then the estimates tend to be
biased downward, though stable. This means that initial experiments that are small, more uniform, and have fewer
terms in the read count histogram tend to perform better with this method. This is not always the case, as we observe
both positive and negative bias in our applications (Fig. S1). There seems to be no clear pattern of dependency of the
bias upon the order of truncation, indicating the unreliability of this method.

Zero-truncated negative binomial distribution
A popular model for the distribution of read counts is the Negative Binomial distribution1,22, representing a gener-
alization of the Poisson model of read counts to account for the high variance of the counts observed in sequencing
experiments. Since we assume that the total number of true molecules contained in the library is unknown, we cannot
differentiate between molecules that are not observed due to random chance, but are contained in the library, and
molecules that are not contained in the library and will never be observed. We must make inferences only upon the
observed read counts and therefore the observed read counts are distributed according to a Zero-truncated Negative
Binomial distribution with

Pr (X = j) =
1

(1 + αµ)
α−1

− 1

Γ
(
j + α−1

)
Γ (j + 1) Γ (α−1)

(
αµ

1 + αµ

)j
.

Parameters are fit by an EM algorithm, with the unobserved zero counts as the missing data. The expected yield can
then be calculated as

∆ZTNB = D
1− (1 + αµt)

−α−1

1− (1 + αµ)
−α−1 ,

with D equal to the number of distinct reads in the initial experiment.
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Bias of parametric inference
Recall that the expected value of the yield of a larger experiment is equal to

∆(t) = L

∫ ∞
0

e−λ(1− e−λ(t−1))dµ(λ).

A parametric generalization of the Poisson model will assume a functional form of the measure µ(λ). For instance the
ZTNB model assumes that µ follows a Gamma distribution. For fixed t > 1, the function e−λ − e−λt is concave in λ.
Therefore Jensen’s inequality implies that if the assumed form of µ is not sufficiently robust to accurately model the
true distribution, then the estimated yield will be lower than the true value. Clearly the accuracy of the estimates will
then depend on the specific parametric assumptions, a problem characterized in previous studies5,23.

Results
We evaluated our method using 16 sequencing data sets from diverse experiment types (Supplementary Table 1),
divided into two groups of equal size according to prior expectations about their library complexities. For experi-
ments in group 1, which we call uniform input, the underlying population of molecules are expected to be in roughly
equal frequency (e.g. full-genome resequencing). For experiments in group 2, variable input, the relative frequencies
of molecules are heavily influenced by underlying biology. An example is RNA-seq, where libraries should contain
molecules from genes with both high and low expression (see discussion in online methods). We used uniform ran-
dom samples of reads to simulate the initial experiments. All bisulfite sequencing experiments were mapped with
RMAPBS20. All RNA-seq experiments were mapped with RMAP and Tophat21. The Ion Torrent experiment was
mapped with Bowtie215 and BWA16 in Smith-Waterman-like mode. All other experiments were mapped with RMAP
and Bowtie2. The results were similar for each library regardless of mapping software (Supplementary Tables 1,
2, and 3). We discuss the results of our method (RF), Euler’s transform applied to equation 1, and estimates based
on a Zero-truncated Negative Binomial model of observed read counts (ZTNB). We show the results for all libraries
mapped with RMAP and RMAPBS, except for the Ion Torrent library, which we show the Bowtie2 results.

As expected, the ET method is extremely accurate at small extrapolations; otherwise the method diverges (Sup-
plementary Table 2, Figs. S2 and S3). The point of divergence and the direction of the divergence is impossible
to predict, but convergence is guaranteed up to 2X (fold) extrapolations. We observe that ET tends to stay stable for
initial experiments with smaller histograms, i.e. small initial experiments in the uniform input case. We can truncate
the histogram of the larger and more variable experiments at a lower depth to obtain convergent estimates. These es-
timates will be biased, and as discussed above, the direction of the bias is unknown. Furthermore, convergence is not
guaranteed so that this strategy is not advisable and can be seen from estimates which remain stable but have massive
confidence intervals (i.e. Fig. S2c).

In every case examined, the RF method outperforms the ZTNB (Figs. S2, S3, and S4). For estimates at 50X of the
initial experiment size, on uniform input data sets the RF method is found to be always within 10% of the true value,
with a mean error of 5%. In contrast, the ZTNB method has an average error of over 40%. Interestingly, the ZTNB
performs worse with more data (Fig. S4, 1M vs 5M initial experiments one-sided t-test, p = 4.558e − 6, n = 18).
This is a consequence of the penalty of misspecifying the degree of bias, indicating that the ZTNB is not sufficiently
robust for accurate predictions.

Due to the larger variance natural to the variable input libraries, all methods are less accurate. The RF shows
similar performance to ET, when the latter converges, and still significantly outperforms the ZTNB method (14%
average error vs. 63% at 50X extrapolation). The ZTNB method tends to predict saturation of the distinct molecules,
with little variance in the predictions. The RF do not predict the saturation of the estimates, but tend to be accurate
(< 10% error) for estimates only in the range of 20 to 30X extrapolations. For far ranging extrapolations, the RF
method underestimates the distinct molecules with large variation. This is a direct consequence of the larger variation
in the variable input experiments. In only one case out of the 48 total simulations does the observed complexity
curve lie outside the computed confidence interval, which is expected by pure chance (2.4 expected by chance, 91%
probability at least one observed curve lies outside the 95% confidence interval).
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Minimum initial experiment size and maximum extrapolation
For all experiments, a minimum sample size of one million mapped reads ensured that the histogram met the criteria for
our method. We noted that smaller sample sizes, particularly in the Exome-seq and DNA-seq experiments, resulted in
some initial experiments that were not sufficiently diverse for our method. This was not a problem for the variable input
libraries, though we did notice that they require a larger initial experiment to accurately estimate the complexity. We
believe this is due to an inability to accurately observe the biases in these experiments without a sufficient number of
observations. We therefore suggest initial experiment sizes of at least 1M mapped reads for uniform input experiments
and 4M reads for variable input experiments. More may be required if the UMI includes random barcodes or both
ends of concordantly mapped read for a paired end experiment.

With these suggested minimum initial experiment sizes we have found that our method is accurate to within 10%
for extrapolations up to 100 fold of the initial sample size for the uniform input experiments. The natural variance
of the variable input experiments imply that our estimates will be much more uncertain. We find that our method is
accurate to within 10% for up to 30 fold extrapolation.

Effect of UMI choice on accuracy of our predictions
To demonstrate that our method can accurately predict yield from larger sequencing experiments when a different form
of UMI is used we analyzed the data from Kivioja et al.14, specifically the RNA-seq data from Drosophila S2 cells
(ENA accession ERR048992). We mapped the data to the entire dm3 assembly using Bowtie2 with default settings,
resulting in 59,953,425 uniquely mappable reads.

We conducted two separate experiments. In the first experiment, we sampled 2M reads uniformly at random (the
initial experiment), and counted the frequencies of distinct molecules based on random barcodes. We then extrapolated
the complexity curve and also produced the true complexity curve based on the full set of 60M mapped reads (Fig.
S5a).

In the second experiment, we similarly sampled 2M reads uniformly at random, but this time we ignored the ran-
dom barcodes and distinguished unique reads based only on mapping position. We used the frequencies to extrapolate
a complexity curve, and also produced the true complexity curve that would have resulted from using the same UMI
method (i.e. mapping locations) on the entire set of 60M reads (Fig. S5b).

Use of random barcodes is of course expected to increase the number of distinct molecules that can be observed.
We can see that the random barcodes permit roughly 39M distinct molecules to be identified, and our prediction is
virtually perfect (Fig. S5a). This is an easy case for our method, because the complexity is very high, and the curve
almost linear.

When only distinct mapping locations are used, there is an inherent ceiling of approximately 168.7M molecules
that can be distinguished, since that is the size of the dm3 Drosophila genome assembly (including the chrU and
chrUextra chromosomes with the download available from the UCSC Genome Bioinformatics FTP site). Moreover,
since this is RNA-seq data, and most of the reads will reflect the most abundant RNA species, the actual ceiling based
on mapping location might be far lower. The true complexity curve using this UMI method is somewhat linear through
the 2M range of the initial experiment, but then shows saturation. Considering the range of the 60M mapped reads,
only 1.26M distinct locations are mapped. Our predicted complexity curve again follows the true curve quite closely,
despite the saturating behavior.

There are two conclusions to be drawn from this study. First, if there is reason to expect the reads in a given
experiment will saturate the reference to which they are being mapped, then random barcodes are really necessary to
get the most from the data (as was shown by Kivioja et al.14). In general we expect the optimal UMI methods will be
application-specific, but in many cases when saturation is not an issue the mapping locations will be sufficient.

The second conclusion to be drawn is that our method is able to accurately predict the yield in either case, and so
can be used regardless of the chosen UMI method.
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Supplementary Fig. S 1: Divergence when using Euler’s transform. Estimated yield for the human sperm BS-seq
library using Euler’s transform applied to Equation (2) in Online Methods truncated at 2, 7, 17, 27, 37 and 57 terms.
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Supplementary Fig. S 2: Detailed comparison of methods predicting complexity of uniform input libraries. In
each graph the observed complexity curve is plotted (solid black) along with the estimated complexity curve (dashed
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reads are presented for each of the three methods: rational function (RF), zero-truncated negative binomial (ZTNB) and
Euler’s transform (ET). (a) IMRiPSC90 BS-seq, (b) FFiPSC1911 BS-seq, (c) HumanSperm BS-seq, (d) ChimpSperm
BS-seq, (e) HumanBCell BS-seq, (f) IonTorrent DNA-seq, (g) ExomeSeqHapMap, and (h) ExomeSeqCCAtumor4.
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Supplementary Fig. S 3: Detailed comparison of methods predicting complexity of variable input libraries. In
each graph the observed complexity curve is plotted (solid black) along with the estimated complexity curve (dashed
red) and the corresponding confidence interval. For each data set, initial experiment sizes of 1M, 5M and 20M
sampled reads are presented for each of the three methods: rational function (RF), zero-truncated negative binomial
(ZTNB) and Euler’s transform (ET). All experiments were mapped with RMAP, except for IonTorrent which is mapped
with Bowtie2. (a) CaptureSeq, (b) FootRNAseq, (c) AdiposeRNAseq, (d) ADS mRNAseq, (e) iPSC mRNAseq, (f)
ChIPMouseBCell, (g) HumanChIPseq1, and (h) HumanChIPseq2.
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Supplementary Fig. S 4: Comparison of the average relative error for the RF, ZTNB, and ET methods on
negative log scale. If the estimates diverged, the contribution was set to zero. (a) 1M read initial experiments taken
from the uniform input libraries. (b) 5M read initial experiments taken from the uniform input libraries. (c) 1M read
initial experiments taken from the variable input libraries. (d) 5M read initial experiments taken from the variable
input libraries.
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Supplementary Fig. S 5: Effect of different UMI methods. Predicted and actual complexity curves for the fly
RNA-seq data from Kivioja et al. (2012). (a) Using random barcodes and unique mapping locations as UMIs. (b)
Using only unique mapping locations as UMIs. Initial experiment size (between vertical dashed lines) was 2M reads.


