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SI Materials and Methods
Tree Species Occurrence. We surveyed woody species with free-
standing stems ≥1 cm in diameter at 72 locations near the
Panama Canal (Fig. S1), each with an area <0.5 km2. Sites were
arranged to span geological formations (1) and the rainfall gra-
dient (2), but all were within 65 km of one another. Most were at
low elevation, with just two sites >600 m above sea level, with the
highest at 888 m. All were in closed-canopy forest, including
undisturbed old growth and secondary stands 60–100 y old (2).
Forty surveys were permanent census plots in which every in-
dividual tree was located, measured, and identified (3): the 50-ha
plot at Barro Colorado (4, 5), a 5.96-ha plot at Fort Sherman (6),
and 38 1-ha plots (2, 7). At 32 other sites, surveys were 1-d in-
ventories in which all tree species were noted until we could find
no more without counting individuals. Additional tree surveys
have been used in other reports (2, 8); the 72 described here are
those including soil analyses.
We identified nearly every tree, either on the spot or later, after

comparison against keys or guides (9–13) and herbarium speci-
mens (Smithsonian Tropical Research Institute and the Uni-
versity of Panama), producing a total of 890 species at the 72
sites. Of these, 779 were fully identified and 88 others were
identified to genus level; another 23 were rare individuals we
could not recognize. In the analyses of climate and soil re-
sponses, we included the 550 species that were fully identified,
native to the region, never cultivated, and had three or more
occurrences at the 72 sites.
Plots were complete censuses and included every tree species in

the defined area and diameter range. Inventories were intended
to capture every species, and the mean (±SD) of species en-
countered in inventories was close to that in plots (102.6 ± 41.4
vs. 113.9 ± 42.7), suggesting we were reasonably successful. Al-
though the area sampled at each site varied, most sites covered
1–10 ha, and the increase of species number with an area over
that range is modest (14). We thus assume a detection proba-
bility of ∼1 for each species and model species occurrence
probability per location.

Rainfall and Dry-Season Duration. We used 47 Panama Canal Au-
thority rainfall stations with 3–47 y of uninterrupted data since 1960
(daily records are available for download at http://dx.doi.org/10.
5479/data.bci.20130204) to calculate dry-season moisture avail-
ability, defined as the cumulative deficit of precipitation minus
potential evapotranspiration (PET) at its most extreme every year
(8). Evaporation data were taken from the station at Barro Col-
orado Island, because none other were available; to apply those
data to other sites, we corrected for elevation, assuming that
a 100-m increase reduced PET by 0.1 mm·d−1 (15).
Define the cumulative moisture deficit Dij between days i

and j as

Dij =
Xj

t= i

ðPt −EtÞ; [S1]

where Pt and Et are precipitation and PET on day t. Dij was
calculated for every pair of days with i ≥ 1 Sept and j ≤ 1 July
(the following year), thus spanning one December-to-March dry
season. The minimum during one season, Dm = min(Dij), is a
measure of the severity of that dry season, and the mean D̂m
was calculated across all available years at each station. The
driest rainfall gauge by this measure was at Hodges’ Hill near

the Pacific coast, with D̂m = − 606 mm. The wettest was at Es-
peranza in steep hills near the Caribbean, with D̂m = − 106 mm.
We used D̂m at the 47 rainfall stations to fit a spatial kernel,
optimizing the distance and elevation windows (16), and applied
the kernel to the 72 sample sites. Because D̂m is a negative
number, it measures moistness (the higher, the wetter); thus,
we refer to it as dry-season moisture, or just moisture for brevity.
As an independent check, we estimated soil water content gravi-
metrically throughout the dry season at 17 sites, and the mini-
mum gravimetric water correlated well with D̂m (r2 = 0.54).

Soil Chemistry. Soil was collected and analyzed from 72 tree survey
sites. In eachof the large plots (BarroColoradoandFort Sherman),
26 individual cores were collected; at each 1-ha plot, 13 were col-
lected; and at inventory sites, 5 were collected. All sampling was
done during the wet season. Cores were taken to a depth of 10 cm,
and the soilwas returned immediately to the laboratory,where roots
and small stones were removed by hand. Nitrogen was extracted
within 6 h of collection, and phosphate, cations, and pH were
determined within 24 h; prompt analysis is critical due to rapid
changes in nutrient concentrations during storage (17). Each core
was analyzed separately, and the average of all cores at a single site
was used in modeling. Deeper soils were also sampled, but below
the surface horizon, there were few fine roots (<10% of the total)
and much lower nutrient concentrations.
Nitrogen fractions (ammonium, nitrate, dissolved organic)

were determined by extraction in 0.5 M K2SO4 for 1 h; inorganic
fractions were determined by automated colorimetry on a Lachat
Quikchem 8500 (Hach Ltd.), and total dissolved nitrogen was
determined by automated combustion and gas chromatography
(TOC-VCSH organic carbon analyzer; Shimadzu). Organic ni-
trogen was calculated as the difference between total dissolved
nitrogen and total inorganic nitrogen. Soil pH was determined
with a glass electrode (Hach Ltd.) in a solution with a 1:2 ratio of
soil to water. Readily exchangeable phosphate was determined
by extraction with anion-exchange membranes (17); we refer to
this measure as plant-available or resin phosphorus. All other
inorganic nutrients were extracted in Mehlich-3 solution (0.2 M
NH4OAc, 0.25 M NH4NO3, 13 mM HNO3, 15 mM NH4F, 1.0
mM EDTA) (18): 5 g of soil on a dry-weight basis was shaken for
5 min in 50 mL of Mehlich-3 solution, centrifuged (8,000 × g for
10 min), and then analyzed for cations (aluminum, calcium,
potassium, magnesium, manganese, iron, zinc) and phosphorus
using inductively coupled plasma-optical emission spectrometry
on an Optima 2100 (PerkinElmer). Total phosphorus was de-
termined by ignition (550° C × 1 h) and acid extraction (1 M
H2SO4 × 16 h), with phosphate detected by molybdate color-
imetry (19). This procedure gave 100% recovery of phosphorus
from references soils, and at 19 sites, it produced estimates in-
distinguishable from an H2O2-H2SO4 digest (20).

Data Processing. Data from all tree plots and inventories were
condensed to the presence and absence of each species, pro-
ducing a 550 × 72 occurrence matrix I. For environmental pre-
dictors, we selected the largest set of measures from which all
pairs were weakly correlated (r2 < 0.40): dry-season moisture,
along with soil aluminum, calcium, iron, potassium, phosphorus,
zinc, and inorganic nitrogen. Magnesium, manganese, pH, and
organic nitrogen were excluded because they were highly cor-
related with calcium. Three phosphorus measures (Mehlich-3
solution, resin, and total) were highly correlated with one an-
other (Table S1); thus, we used just the resin method, which best
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matches what should be readily available to trees. Soil texture
was omitted because most sites were clays; elevation was omitted
because nearly all sites (70 of 72) were <600 m above sea level,
with the cutoff separating lowland from midelevation forests;
and total annual rainfall was omitted because it correlated
closely with dry-season moisture.
Predictors other than pH and dry-season moisture were log-

transformed, and all were then standardized by subtracting their
means and dividing by their SDs. The standardized environmental
predictors form a 72 × 8 habitat matrix X.

Model. The probability of occurrence of each tree species at each
survey was fitted with Gaussian logistic regression (21, 22) against
the eight standardized environmental measures, X. This model
requires 17 parameters per species: a single intercept a, eight
first-order parameters ~B, and eight more second-order parame-
ters, ~C (the arrows indicate ~B and ~C are vectors). The occurrence
probabilities ~P for a single species are then modeled as

~P= γ
�
a+ X~B+ X2~C

�
; [S2]

where γ is the inverse-logit function, γðyÞ= ey
1+ ey. Because there

were 72 sites,~P is a vector of length 72 and X is the 72 × 8 matrix
of predictors. Call the parameters for one species ~θ= ða;~B; ~CÞ,
with a vector of length 17.
Because predictors X were standardized to mean = 0 and

SD = 1, first-order parameters ~B are directly comparable across
different resources, and each bsr reveals how species s responded
to resource r. Indeed, the first-order logistic parameter, bsr, is
close to the change in the predicted occurrence of species s be-
tween r = −1 (1 SD below the mean) and r = +1 (1 SD above the
mean) relative to mean occurrence, when all other resources are
held at their means. This can be shown with the partial derivative
∂~P
∂b, or empirically with fitted results (Fig. S2). We thus define ~B
as effect sizes: the effect of resources on species occurrences
(Fig. 1).
Likewise, the second-order parameters ~C are comparable across

species and resources, revealing tendencies toward a modal re-
sponse. Estimated~C were nearly always<0, meaning local maxima,
as expected for response curves (21). The location of fittedmaxima,
however, often fell outside the observed resource gradients, and
our test for significance of a mode was based on its location (more
information is provided in the section on fitting the model).

Hierarchical Component and Hyperdistributions. We added a hier-
archical or multilevel component (23) to the model by defining
species as a group effect (24). Define θ as the 550 × 17 matrix
of parameters for all species; one row holds the parameters
~θ= ða;~B; ~CÞ for one species. The group level is defined by assuming
that θ follows a community-wide Gaussian hyperdistribution,
θ∼Nð~μ; υÞ, where ~μ is the vector of means and υ is the co-
variance matrix. In Bayesian terms, N is a prior for the pa-
rameter θ, and~μ and υ are hyperparameters.
We assumed, however, that υ had zeroes off-diagonal, and is

thus a vector of variances, equivalent to independent Gaussian
hyperdistributions for each parameter. Use ~σ for the associated
SDs (the diagonal of

ffiffiffi
υ

p
). Each σr, the SD of species responses

to resource r, is a measure of how differently species behaved
relative to r, and thus indicates whether a resource is important
in differentiating tree species (Fig. 1). The hypermeans,~μ, define
the average response of the entire community to each resource
and are outside our focus in this study.

Model Fitting. There were two stages to fitting the model’s pa-
rameters. The first stage was for individual species parameters.
Consider species s and its observed occurrences ~Is, logistic pa-
rameters ~θs = ða;~B; ~CÞ, and predicted occurrences ~Psð~θsÞ. The

likelihood of~Is depends on~θs as well as on the hyperdistribution
and its hyperparameters, Nð~μ; νÞ, as follows:

L
n
~Isj

�
~θs;~μ; υ

o
=L

n
~IsjPs

�
~θs
�o

·L
n�
~θs
�j N �

~μ; υ
�o

: [S3]

The first likelihood to the right of the equal sign is standard
occurrence modeling: the probability of observations of species
s given the logistic model’s predictions. The second likelihood on
the right is the probability of observing the logistic parameters,
given the hyperdistribution. Other than the hyperdistribution, no
prior probabilities were used for species parameters. The pa-
rameters for each species were fitted one at a time with the
likelihood of Eq. S3, with one species independent of the re-
maining species (the interdependence of species comes from the
hyperparameters).
The second stage in the model was the hierarchical aspect,

fitting the hyperparameters using the likelihood of observing the
entire matrix of species parameters θ,

L
�
θj~μ; υ�=N �

~μ; υ
�
: [S4]

No prior probabilities were assumed on the hypermeans~μ. For
υ, models were run, including an inverse-γ prior (24), or a flat
prior >0, and results were indistinguishable.
Parameter fitting was accomplished with a Gibbs sampler using

a Metropolis update algorithm (25, 26) written in the pro-
gramming language R (27). The sampler works by updating each
of the parameters in sequence, holding other parameters fixed
while the relevant likelihood (Eq. S3 or Eq. S4) is used to locate
the target parameter’s next value. The step size used in the up-
dates was adjusted adaptively through the runs, allowing more
rapid convergence (26). To diagnose convergence of parameter
estimates, we completed four independent model runs, each
starting with different parameter values for every species and run
for 4,000 steps, where each step means one update for every
parameter (28). Parameter values from independent runs be-
came indistinguishable after step 2,000 (based on correlations of
species parameters, or hyperparameters, across separate runs);
thus, the first 2,000 steps of each chain were discarded and
postburn-in chains were combined (8,000 parameter values in
total) as estimates of Bayesian posterior distributions. The mean
of a chain was taken as the best estimate for a parameter, and
2.5th and 97.5th percentiles were taken as 95% credible inter-
vals. The first-order effect for every species and every resource,
bsr, was considered statistically significant if its credible intervals
did not overlap zero. The position of the local maximum (or
minimum) for each response was considered significant if 95%
credible intervals of bsr/2csr (the mode’s position) were inside the
observed range of resource r.

AlternativeModels.Robustness of results from the main model was
assessed by running alternative models using different combi-
nations of environmental predictors or different methods. Results
from models with one to seven predictors were compared, and
regardless of which predictors were included, dry-seasonmoisture
always had the strongest impact and provided the best model fit,
and phosphorus and calcium were the predictors with the next
strongest impact [based on hyper-SDs, Akaike Information
Criteria, or Deviance Information Criteria (29)]. Moisture-re-
sponse parameters for individual species from different models
were highly correlated (r2 > 0.96), as were phosphorus responses
(r2 > 0.83), regardless of what other predictors were included.
Parameters for calcium were altered more when moisture or
phosphorus was added to a model (r2 ∼ 0.65), and parameters for
other factors were less consistent across models.
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The R package lme4, whose function lmer fits hierarchical
models using a different method (30), produced results indis-
tinguishable from those of our Bayesian model. We also tested
models with a full covariance matrix, using Bayesian fitting or
lmer, and found results to be less reliable. Off-diagonal elements
of the matrix were poorly fitted, with very slow convergence. The
overall results, with moisture, phosphorus, and calcium being the
best predictors, still appeared, however.
We also ran models in the absence of the hierarchic framework,

with each species tested independently. The full 17-parameter
model failed to converge in more than half of the species. Species
with <10 records nearly always failed, and those with up to 25
records had 20% failure rates. Some of the species that could be
fitted had absurdly high positive responses (>108) to some re-
sources offset by similarly low negative responses to others.

Spatial Autocorrelation.We measured spatial autocorrelation (31)
using semivariograms in species composition (2), calculated as
the classic measure from the R package sgeostat (32). Semi-
variograms were estimated first for species occurrences and then
for residuals of occurrence around the model’s predictions (1 −
Pk where species k occurred, −Pk where it did not). In both cases,
we calculated the mean semivariance across species.

Simulations. Tree occurrences were simulated at 72 sample sites
using observed climate and soil measures. Two kinds of simu-
lations were performed: (i) random placement at the 72 sites,
such that species had no resource responses, and (ii) placement
based on simulated response curves using random Gaussian lo-
gistic parameters assigned to every species.
In random placement, 500 species were each assigned an

occurrence probability drawn from a logit-normal distribution
(mean = −3.2 and SD = 1.5, matching observed occurrences) and
then placed at 72 sites using random binomial draws around the
occurrence probabilities. To simulate resource responses, species
were assigned logistic parameters ~θ= ða;~B; ~CÞ (Eq. S2) using
random draws from multivariate Gaussian hyperdistributions. A
small Gaussian error was added at random to the logistic occur-
rence probability at each site (mean = 0, SD = 0.03) and binomial
random draws then determined occurrences. The hyper-SD for
each resource was varied arbitrarily from 0.1 to 1.1 to simulate
weak to strong environmental effects; strong covariances among
some parameters were also simulated. The R functions rnorm,
rbinom, and rmvnorm provided random draws (27, 33).

SI Notes
Responses to Moisture.A sample of the responses of four species to
moisture jointly with plant-available (resin) phosphorus is shown in
Fig. S3, selected to show a range of behavior (parallel to Fig. 2).
Triplaris cumingiana had a negative response to moisture but a
positive response to phosphorus; Socratea exorrhizawas exactly the
opposite. Randia armata and Hieronyma alchorneoides offer ex-
amples of modal responses to moisture: R. armata had a positive
effect size, increasing in occurrence over the main part of the
moisture gradient but then decreasing; H. alchorneoides had an
effect size ≈0 because it showed little change in the main part of
the moisture gradient, with a mode close to mean moisture (−534
mm). H. alchorneoides was counted in Table S2 as a species with
a significant modal effect, but R. armata was not because it was
already counted as having a significant positive effect.

Responses to Calcium.A sample of the responses of four species to
calcium jointly with resin phosphorus is shown in Fig. S4, re-
peating two species whose phosphorus-moisture responses ap-
pear in the main text (Fig. 2). Cavanillesia platanifolia was always
absent where ln(P) < 0.5 and where ln(Ca) < 6; the model fitted
negative effects to both, although the effects were stronger for
phosphorus. In Eschweilera pittieri and Tetrathylacium johansenii,

phosphorus was the better predictor, and in Ghoshispora folia-
cea, calcium was better. Responses to phosphorus and calcium
were positively correlated across species (r2 = 0.33 among spe-
cies with ≥10 occurrences).

Responses to Other Resources.Amodel with Mehlich-3 phosphorus
substituted for resin phosphorus (never together due to their
high correlation) produced similar results to our main model.
Indeed, Mehlich-3 phosphorus was the stronger predictor; cal-
cium remained next in importance, regardless. Omitting calcium
to test other correlated nutrients revealed that organic nitrogen
and manganese were weaker predictors than calcium, whereas
magnesium and pH were similar to calcium.

Response of Genera and Families. The community-wide response
hyperdistributions for genera closely matched those for species,
although hyperstandard distributions were reduced by about one-
third for all predictors (Fig. S5 compared with Fig. 2). Results
were similar for families, although reduced again. There were
many genera, and fewer families, having strong associations with
wet conditions and low phosphorus but few with the opposite
associations (Fig. S6).
The weakening of responses from species to genera to families

means that at least some genera were composed of species with
varying responses to the environment, and likewise for families. A
few examples illustrate the range of species mixes found within
higher taxa.
Pouteria had 12 species that were remarkably homogeneous in

moisture response: 10 of 12 shared very strong associations with
high moisture. Their phosphorus responses were mixed however,
varying from strongly negative to weakly positive. The genus as a
whole thus had a strong moisture but negligible phosphorus re-
sponse (Fig. S6). The family Humiriaceae had consistent phos-
phorus responses: its four species, in three genera, shared a
strong association with low phosphorus but varied in moisture
responses (Fig. S6).
Examples of mixed associations include Matayba (Sapindaceae)

and Trichilia (Meliaceae). Matayba had three species partitioning
the phosphorus-moisture gradients: Matayba apetala, associated
with wet sites and low phosphorus; Matayba glaberrima, associated
with dry sites and high phosphorus; and Matayba scrobiculata, as-
sociated with dry sites and low phosphorus. Trichilia had six di-
vergent species: Four occurred preferentially at dry sites with high
phosphorus, and one was exactly the opposite. The last, Trichilia
tuberculata, was associated with high phosphorus but was moisture-
neutral. Both genera appeared to be generalists (Fig. S6).

Spatial Autocorrelation. The semivariogram in species occurrence
increased from 0 to 18 km (Fig. S7). Residuals around the full
model, however, showed no increase in the semivariance beyond
0.5 km (Fig. S7). Few of the 72 sample sites were <0.5 km apart,
but as a check of the importance of spatial autocorrelation on
estimates, we repeated the model after omitting 15 sites so that
no two were within 500 m of each other. Hyperparameters from
this reduced model were indistinguishable from those of the
model with 72 sites.

Simulations. In simulated distributions with no habitat response
(random placement), community-wide SDs σ (the hyper-SDs) as
fitted by the hierarchical logistic model were <0.17 for all 16
response parameters. For individual species, the highest magni-
tude for a fitted first-order parameter was jbj = 0.19. The model
did not report a single significant response for individual species
(of 16 × 550 = 8,800 tests).
When confronted with simulated habitat responses, the model

always accurately estimated σ whenever the response was strong,
defined as σ > 0.5 (Table S2 shows results for two simulations; three
others had similar results). In no case was a weak simulated re-
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sponse (σ < 0.3) estimated to be strong, and in no case was a strong
response (σ > 0.5) estimated to beweak. Negligible resource effects
(σ = 0.10) were overestimated, however, up to σ ≈ 0.3 (Table S2).
Covariance among species response parameters did not affect these
results. Individual species parameters were recoveredwell when the
simulated community response was strong and species had ≥10
occurrences (r2 in Table S2); in all cases in which individual species
had weak responses (b < 0.5), the model recovered the species
parameters poorly. Model estimates for real tree responses to po-
tassium and aluminum, σ ≈ 0.4, were close to false-positive results

in simulations, but real responses to moisture, phosphorus, and
calcium were well outside the range of false-positive results.

Complete Results. Location, elevation, and rainfall at the 72 sam-
pling sites are available for download (http://dx.doi.org/10.5479/
data.bci.20130204), along with a list of the 550 species in the
study, with family names and occurrences at those 72 sampling
sites (http://dx.doi.org/10.5479/data.bci.20130204). The species
response parameters and soil chemistry results will be made
available as digital tables on request.
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Fig. S1. Map of tree survey sites in the Panama Canal area. The Pacific Ocean is to the south, and the Atlantic (Caribbean) is to the north. Units on the axes are
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Fig. S3. Occurrence of four species in response to moisture and resin phosphorus (complete description is provided in legend for Fig. 2).
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Fig. S4. Occurrence of four species in response to calcium and resin phosphorus (complete description is provided in legend for Fig. 2).
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Fig. S5. Histograms of generic responses to eight environmental factors (Fig. 1). Moisture, dry-season moisture; P, plant-available (resin) phosphorus;
N, inorganic nitrogen.
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Fig. S6. Quantitative responses to dry-season moisture and resin phosphorus for individual genera (Upper) and families (Lower) (Fig. 3).
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Fig. S7. Semivariograms of species occurrence (solid line) and of model residuals of species occurrence (dashed line). Each estimate is the average semivariance
for all 550 species in 1-km distance bins (the first two bins are 0–500 m and 500–1,000 m).

Table S1. Correlations among concentrations of soil factors and dry-season moisture at 72 sites where tree species were surveyed, given
as r2, with a sign included to indicate direction

Environmental
measure Moisture Al Ca Fe K Mg Mn

P
(resin)

P
(Mehlich) Total P Zn pH NH4 NO3

N
(Inorg) DON

Moisture 0.039 −0.016 0.036 −0.043 −0.044 −0.003 −0.304 −0.271 −0.187 −0.046 −0.041 0.012 −0.035 −0.018 0.140
Al 0.039 −0.168 0.027 −0.187 −0.115 −0.102 −0.194 −0.054 −0.060 −0.027 −0.163 0.060 −0.139 −0.038 0.170
Ca −0.016 −0.168 −0.145 0.383 0.753 0.465 0.385 0.222 0.420 0.296 0.811 0.011 0.108 0.107 −0.462
Fe 0.036 0.027 −0.145 −0.045 −0.138 −0.145 −0.091 −0.276 −0.118 −0.105 −0.107 0.061 −0.009 0.005 0.003
K −0.043 −0.187 0.383 −0.045 0.450 0.240 0.329 0.214 0.241 0.155 0.363 0.007 0.079 0.063 −0.296
Mg −0.044 −0.115 0.753 −0.138 0.450 0.462 0.258 0.159 0.240 0.395 0.603 0.008 0.015 0.025 −0.394
Mn −0.003 −0.102 0.465 −0.145 0.240 0.462 0.069 0.033 0.097 0.214 0.402 0.031 0.075 0.101 −0.096
P(resin) −0.304 −0.194 0.385 −0.091 0.329 0.258 0.069 0.638 0.730 0.209 0.401 −0.030 0.135 0.057 −0.470
P(Mehlich) −0.271 −0.054 0.222 −0.276 0.214 0.159 0.033 0.638 0.615 0.138 0.204 −0.052 0.089 0.018 −0.208
Total P −0.187 −0.060 0.420 −0.118 0.241 0.240 0.097 0.730 0.615 0.193 0.391 −0.002 0.101 0.076 −0.295
Zn −0.046 −0.027 0.296 −0.105 0.155 0.395 0.214 0.209 0.138 0.193 0.294 −0.001 0.010 0.005 −0.179
pH −0.041 −0.163 0.811 −0.107 0.363 0.603 0.402 0.401 0.204 0.391 0.294 0.006 0.092 0.073 −0.543
NH4 0.012 0.060 0.011 0.061 0.007 0.008 0.031 −0.030 −0.052 −0.002 −0.001 0.006 0.004 0.347 −0.001
NO3 −0.035 −0.139 0.108 −0.009 0.079 0.015 0.075 0.135 0.089 0.101 0.010 0.092 0.004 0.654 −0.087
N(Inorg) −0.018 −0.038 0.107 0.005 0.063 0.025 0.101 0.057 0.018 0.076 0.005 0.073 0.347 0.654 −0.076
DON 0.140 0.170 −0.462 0.003 −0.296 −0.394 −0.096 −0.470 −0.208 −0.295 −0.179 −0.543 −0.001 −0.087 −0.076

Statistically significant correlations are in boldface. DON, dissolved organic nitrogen; Mehlich, Mehlich-3 solution.
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Table S2. Hyper-SDs assigned for each resource to simulate
species’ responses (true σ) compared with the hyper-SDs
returned by the model (fitted σ)

Parameter

Simulation 1 Simulation 2

True σ Fitted σ r2 True σ Fitted σ r2

Dry-season moisture 1.38 1.353 0.89 1.38 1.343 0.84
Aluminum 0.10 0.227 0.00 0.20 0.200 0.15
Calcium 0.66 0.608 0.59 0.40 0.408 0.30
Iron 0.10 0.195 0.08 0.30 0.316 0.31
Potassium 0.10 0.251 0.01 0.10 0.217 0.18
Resin phosphorus 0.97 0.952 0.74 0.85 0.830 0.68
Zinc 0.10 0.208 0.01 0.20 0.318 0.22
Inorganic nitrogen 0.10 0.260 0.00 0.10 0.270 0.01

Also given is the r2 between the assigned species’ responses (their first-
order logistic parameters) and the responses returned by the model, calcu-
lated using species with ≥10 occurrences. For σ ≥ 0.8, r2 remained >0.7, in-
cluding species down to 6 occurrences. In the first simulation, there was no
covariance among species’ responses to different predictors; in the second
simulation, species’ responses to calcium and phosphorus were positively cor-
related (r2 = 0.83) and moisture and Fe were negatively correlated (r2 = 0.22).
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