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Fig. S1. The logistic model was fit with values for parameter r ranging from 2.5 to 3.9. For each value of r, we generated a 50-y time series using the ob-
servation and process noise levels described in the main text. The Markov chain Monte Carlo procedure was performed in JAGS (1) via R (2). Convergence was
checked using batch-mean plots and the Gelman–Rubin statistic (R̂< 1:2). As the true model becomes more unstable (represented by a higher Lyapunov ex-
ponent), the estimation error increases. Estimation error for parameter r is defined as jrfit − rtruej.

Fig. S2. Estimated Lyapunov exponent vs. true Lyapunov exponent for the logistic model fit with parameter r ranging from 2.5 to 3.9. For each value of r, we
generated 50 points using the observation and process noise levels described in the main text. The red line is one to one. The failure of the Bayesian fitting
routine is demonstrated for unstable values of r. The estimated model is always stable despite the true model being unstable. The Lyapunov exponent is always
poorly estimated when the true Lyapunov exponent is positive.
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Fig. S3. Example trace plot (A) and normal–normal plot (B) of 500-point batch means for the LPA model illustrating that the Markov chain Monte Carlo
routine converged. The red points denote the range of the data and the end of the first and third quantiles.

Fig. S4. Time series expected values (100 y, 100 replicates) for the stochastic vs. deterministic version of each model illustrating the similarity between the ex-
pected value of the stochastic model and deterministic models. A–D show results for the logistic, two-species, age-structured, and spatial models, respectively.
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Fig. S5. Example histograms of accepted Markov chain Monte Carlo draws (15,000 iterations) and true parameter values (red dots) for each parameter in the
logistic model. X0 is the initial condition, and Vobs is the variance of the observation error.

Fig. S6. Example trace plots (Left) and normal–normal plots of 500-point batch means (Right) for the logistic (A and B), two-species (C and D), age-structured
(E and F), and spatial (G and H) illustrating the convergence of the Markov chain Monte Carlo procedure. Despite initialization on the correct parameters, the
models often converged on incorrect best-fit parameters.
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Table S1. Model structure and model parameter values used in the simulations

Model name Process model structure* Parameter values

Logistic xt+1 =
h
xtr

�
1− xt

K

�i
expðetÞ x0 = 0.5, r = 3.7, K = 1

Two-species xt+1 =
�
xtr1

�
1− xt

K1

�
− cxtyt

�
expðetÞ x0 = 0.4, y0 = 0.4, r1 = 3.8, r2 = 3.7

yt+1 =
�
ytr2

�
1− yt

K2

�
+ cxtyt

�
expðetÞ K1 = 1, K2 = 1, c = 0.1

Age-structured x0,t = (x2,t + x3,t)f x1,0 = 0.5, x2,0 = 0.1, x3,0 = 0.1, f = 20
x1,t+1 = x0,texp(r −rx0,t + «t) r = 3.0, s1 = 0.05, s2 = 0.04
x2,t+1 = s1x1,t
x3,t+1 = s2(x2,t + x3,t)

Spatial ~xi;t = xi;texpðr − rxi;t + etÞ R0 = 5.1

xi;t+1 =
P4

j=1dij~xj;t d =

2
664
0:015 0:019 0:055 0:041
0:042 0:021 0:012 0:026
0:038 0:066 0:052 0:031
0:037 0:047 0:002 0:069

3
775

*Process noise «t is normally distributed with μ = 0 and σ = 0.005.

Table S2. Parameter values and descriptions of nonmodel parameters

Parameter Value Description

T 100 Total number of time-steps for model simulations
L 50,000 Number of iterations in the Markov chain Monte Carlo (MCMC) routine
B 5,000 Number of iterations in the MCMC burn-in
C 3 Number of MCMC chains in Geyer’s algorithm
CVJ 0.005 Initial coefficient of variation of the adaptive MCMC proposal distribution
I 500 Number of iterations between adjustment of proposal coefficient of variation

and covariance
CVP 0.5 Coefficient of variation of the prior probability distribution for each parameter

(independent truncated normal distribution with mean equal to the true
parameter value)
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