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Data. Protected areas.We considered all protected areas included in
theWorldDatabaseofProtectedAreas (WDPA)(1) situated in the
Brazilian Legal Amazon. We used spatial data from the 2010
version of the WDPA as it included the original boundaries of
protected areas that had recently been subject to downsizing as
a result of their failure to stem deforestation (2). For example, the
National Forest Bom Futuro had been significantly downsized in
2010 to exclude deforestation that had occurred between 2000 and
2010. We used 2012 data from the National Cadaster of Protected
Areas (CNUC) of the Brazilian Ministry of the Environment to
ensure that our pool of potential controls (unprotected forest
parcels) did not any contain parcels situated in recently established
protected areas or protected areas with expanded boundaries. We
excluded from the pool of potential controls all unprotected forest
parcels situated within 10-km buffers around any protected area
(both the WDPA and CNUC) to reduce the vulnerability of our
results to potential local spillover effects (3).
Deforestation.We used two different deforestation datasets to draw
on their respective strengths in detecting tropical deforestation.
The fine-grained PROgrama de Cálculo do DESflorestamento na
Amazonia (PRODES) dataset published by the Brazilian Institute
for Space Research (Instituto Nacional de Pesquisas Espaciais) is
based on ∼30-m resolution LandSat imagery and thus capable of
detecting deforestation in relatively small patches of forests (4).
However, the low temporal resolution of LandSat imagery (bi-
weekly images) hampers the detection of deforestation due to
frequent cloud cover. PRODES’ particularly high rate of error in
early years (up to 2000) prompted us to use only 2001–2005 data
for our first period of analysis. Our second deforestation measure,
the Gross Forest Cover Loss (GFCL) published by South Dakota
State University (5), is based on data from the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS).With daily return rates,
MODIS satellites are more likely to encounter cloud-free con-
ditions. However, the lower resolution of their sensors (∼250 m)
reduces their ability to detect small-scale deforestation patches
(6). We ran separate analyses with both datasets and contrasted
their respective results throughout.
Covariates. Probabilities of deforestation pressure and protection
are influenced by a number of location-specific characteristics,
most notably the suitability of a given plot for agriculture, ease of
access, and distance to markets (3, 7, 8). We use the following
covariates to control for differences in deforestation pressure:

� Agricultural suitability: Elevation and slope influence a forest
parcel’s suitability for agriculture (7). Similarly, the occurrence
of seasonal flooding has been shown to influence agricultural
suitability and the probability of forest conversion (9). We
extracted average slope and average elevation from data pro-
vided by the International Institute for Applied Systems Anal-
ysis (10) and identified seasonally flooded areas using the
GlobCover 2005 dataset based on the European Space Agency’s
Envisat platform (11).

� Forest cover: At ∼1-km resolution, low average tree cover on
a forest parcel can indicate existing forest fragmentation and
deforestation. Furthermore, the probabilities of forest conver-
sion detected by GFCL are a function of baseline tree cover
(12). We used tree cover estimates provided by the MODIS-
based Vegetation Continuous Fields (VCF) dataset (collec-
tion 3) to control for this covariate (13).

� Distance to forest edge: Strongly influencing physical accessi-
bility, the distance to the forest edge has been shown to be

strongly associated with deforestation (3). We computed dis-
tance to forest edge as the shortest Euclidian distance of
a given forest parcel to (i) parcels with less than 25% forest
cover (VCF), (ii) rivers (ESRI hydropolygons), and (iii) major
roads (14).

� Travel time to major cities: Accessibility to markets is an im-
portant predictor of deforestation patterns (7). We used the
algorithm, datasets, and assumptions of an existing travel time
dataset from the European Union’s Joint Research Center
(15) to compute our own travel time estimates using (i) im-
proved and more detailed Brazilian road data (14) and (ii)
a land cover map that reflected baseline land cover conditions
in the year 2000 (MODIS Land) (16).

� State: Brazil’s federal states can exercise considerable auton-
omy in devising state-level policies that can influence deforesta-
tion pressure and its spatial distribution. We used state bound-
aries provided by the Global Administrative Areas database
(www.gadm.org) to control for this covariate.

Wedidnot includedistance to roadsasacovariate inouranalysis.
Roads facilitatephysicalaccess to forestparcels andthe transportof
timber and agricultural products to markets. However, in the
Brazilian Amazon, roads are only one element of transport in-
frastructure, with river travel being the main means of travel and
transport in remote areas of the basin. We argue that (i) our es-
timates of travel time to major cities capture such interactions
between road and river travel better than an estimate of distance to
roads and that (ii) our estimates of distance to forest edge, with
forest edge including major roads and rivers, capture the re-
mainder of local-level variation in physical accessibility.

Methods. Estimating deforestation pressure. Matching is a quasi-
experimental method that seeks to mimic random assignment of
treatment by identifying artificial control groups of untreated
units that differ from treated units in all relevant aspects but the
treatment itself. Matching estimators rely on the assumption that
treatment selection is on observables, i.e., that the observable
covariates used in the matching procedure account for all dif-
ferences between treatment and control units that are associated
with both the probability of treatment (protection type) and the
outcome (deforestation). Given the absence of randomly con-
trolled trials of the assignment of protection to forest parcels, an
explicit test of the validity of this assumption is not possible.
Assessments of the validity of matching estimators therefore have
to rely on (i) a sound theoretical and empirical argument for the
choice of covariates and an (ii) assessment of the extent to which
matching was able to balance covariates between control and
treatment groups.
Choice of covariates. In the section Covariates above, we list the
covariates included in our matching estimator, together with an
empirical and theoretical rationale for the inclusion of each.
Controlling for baseline forest cover, political boundaries, agri-
cultural suitability, accessibility, and distance to markets has been
considered both necessary and sufficient by a large number of
matching studies that assess the impact of protection on de-
forestation and/or forest fires (3, 7, 17–19). One study from Costa
Rica tests the sensitivity of matching estimates to using an ex-
tended set of covariates, including poverty, population density, and
immigration, and finds results to be similar (3). Although we
cannot explicitly test the extent to which matching successfully
mimics random assignment, we consider the existing theoretical
and empirical support for our choice of covariates sufficient to
trust in the extent to which our estimator successfully controls for
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the most relevant joint bias in treatment assignment and de-
forestation outcomes.
Covariate balance. Matching relies on the existence of a pool of
control units whose covariates are sufficiently similar to the pool
of treatment units to qualify as matches (statistical support).
Whether matching has been successful can be assessed by com-
paring covariate distributions between treated units and control
units both before and after matching. A commonly used indicator
to assess such similarity is the mean difference of empirical
quantile-quantile (eQQ) plots of covariates in the treatment and
control group (3). To obtain an aggregate balance indicator for
each of the 292 protected areas, we averaged the standardized
mean difference of eQQ plots across 30 repetitions and our six
continuous covariates (matching was exact for categorical co-
variates). We then examined the distributions of the 292 esti-
mates using Kernel density estimators, weighting each balance
indicator by the number of matched forest parcel pairs (Density
Estimation). We also examined distributions for each protection
type separately.
Our results indicate that matching dramatically improved co-

variate balance for all protected areas in our sample (Fig. S7).
Matching reduced the mean of our 292 balance estimates from
6.13 to 0.07. Furthermore, matching achieved similar improve-
ments in covariate balance for all protection types (Fig. S8),
suggesting that the remaining differences in covariates were not
biased toward either protection type. We therefore consider our
matching estimator to have successfully controlled for differences
in observable covariates between forest parcels in control and
treatment groups.
Dropped forest parcels. Causal inference through matching relies on
theexistenceof control units that are sufficiently comparable to the
pool of treated units to qualify as observations of counterfactual
outcomes (statistical support). We followed earlier matching
studies in removing protected forest parcels if no control parcels
could be found within 1 SD of each covariate (calipers). Calipers
retained 91.5% of forest parcels from the treated sample, dis-
tributed roughly equally among protection types (strict protection:
91.7%; sustainable use: 92.6%; indigenous lands: 90.9%). Visual
inspection of the results suggests that protected areas with a high
rate of dropped forest parcels are situated in both high- and low-
pressure areas for all three protection types. The counterfactual
outcome (deforestation pressure) cannot be observed for these
dropped parcels. However, the large percentage of retained pixels
and their distribution among protection types suggests that our
results are likely to hold for the full sample of forest parcels.
Leakage. Leakage occurs when treatment influences the outcomes
on untreated units. If protection of a given set of parcels leads to
increased (or decreased) deforestation in unprotected parcels,
a comparison of protected and unprotected units will overestimate
(or underestimate) the effects of protection.A recent study did not
find evidence for leakage occurring as the result of the creation of
protected areas in the Brazilian Amazon (20). Nevertheless, we
limited the risk of an influence of differences in local leakage on
our findings by excluding from our pool of potential control
parcels a 10-km buffer around all protected areas and military
areas that had been created up to 2010. Although protection types
may differ in the extent to which they engender leakage, the fact
that our pool of control parcels covers a vast region reduces the

probability that controls of different protection types may be
differently affected by the leakage problem. Although we cannot
rule out the possibility that leakage is occurring, we do not con-
sider its possible existence to alter our findings about the differ-
ential impacts of protection types.

Density Estimation. We used Kernel density estimators to assess
the skewness of the protection-type specific distributions of es-
timated deforestation pressure and to examine the shift in these
distributions that occurred between 2000 and 2005 as a result of
newly designated areas in all categories. We used R’s density
function with a Gaussian kernel and default bandwidth compu-
tation and weighted observations by the number of matched
forest parcels. We estimated density for each protection type
separately (Fig. S2).

Transformations. We found that distributions of original defores-
tation pressure estimates were strongly skewed toward low
levels of deforestation pressure (Fig. S2, Left). As a result, a small
number of high-pressure protected areas were able to drive the
differences in the aggregate estimates of pressure and impact (see
main text). We also observed a strongly skewed distribution of
observed deforestation rates whose variance increased with higher
estimated deforestation pressure (Fig. S3). To reduce such het-
eroskedasticity and to allow for an estimation of pressure-specific
effectiveness of protection types that would take advantage of the
full sample, we transformed both observed deforestation rates and
estimates of deforestation pressure. We did not use a logarithmic
transformation due to the existence of real zeros in both variables.
We found that a double-square-root transformation resulted in
less skewed distributions and was therefore more amenable to
subsequent regressions (Fig. S2, Right).

Regressions. Nonparametric regressions. We used locally weighted
scatterplot smoothers (LOESS, using R’s loess function, span = 1)
to nonparametrically estimate observed deforestation rates as a
function of deforestation pressure. We computed 95% confi-
dence intervals based on the SEs of the LOESS prediction. We
applied separate LOESS estimators for each protection type,
time period (2000-05 vs. 2006–10), protected area sample (es-
tablished in or before 2000 vs. in or before 2005), and defores-
tation dataset (PRODES vs. GFCL) and compared the resulting
functions (Fig. 2 and Figs. S3–S6).
Linear regressions.We used linear regressions to test the strength of
the differences in pressure-specific observed deforestation be-
tween protection types. We regressed observed deforestation
rates on estimated deforestation pressure (both transformed) and
included dummy variables for sustainable use areas and in-
digenous lands. We ran models with three distinct specifications
for each dataset and time period: (i) without interactions between
pressure and protection types, (ii) with interactions between
pressure and protection types, and (iii) with interaction be-
tween pressure and indigenous lands only (Table S1). The latter
corresponds to our nonparametric observation that deforestation
rates in indigenous lands responded differently to deforestation
pressure than deforestation rates in strictly protected and sus-
tainable use areas (see main text).
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Fig. S1. Schematic map of the Brazilian Amazon protected areas included in this analysis. Excluded areas include protected areas established after 2005,
Environmental Protection Areas, and protected areas outside the humid forest tropical biome with less than 50% tree cover or with fewer than 200 forest
parcels in 2000. Data for this figure were provided by refs. 1 and 14.
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Fig. S2. Density distributions of original (Left) and transformed (Right) deforestation pressure estimates for protected areas established in or before 2000 (Top and
Middle:2001–2005and2006–2010estimates, respectively)and2005(Bottom: 2006–2010estimates).Observationswereweightedbythenumberofmatchedforestparcels.
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Fig. S3. As in Fig. 2, but based on original data (without transformation).

Fig. S4. As in Fig. 2, but using GFCL instead of PRODES.

Fig. S5. As in Fig. 2, but without weighting protected areas by number of matched forest parcels.
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Fig. S6. As for Fig. 2 (Right) and Fig. S4 (Right), but excluding protected areas declared between 2000 and 2005 from the sample.

Fig. S7. Density distributions of mean standardized differences of eQQ plots (raw and log), averaged across 30 repetitions and six continuous covariates for
each of the 292 protected areas considered in our analysis.
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Fig. S8. Density distributions ofmean standardized differences of eQQ plots (log), averaged across 30 repetitions and six continuous covariates, by protection type.
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Table S1. Results of weighted regressions of observed deforestation rates on estimated deforestation pressure and protection types
(transformed data)

Independent variables
Without

interactions
With

interactions
Interactions with indigenous

lands only

PRODES deforestation 2001–2005, protected areas established in or before 2000
Intercept 0.086*** 0.014 0.010
Deforestation pressure (transformed) 0.233*** 0.498*** 0.515***
Sustainable use area† 0.056** 0.035 0.044*
Indigenous land 0.011 0.124*** 0.128***
Sustainable use area × pressure 0.029
Indigenous land × pressure −0.382*** −0.399***
[Adjusted R2] [0.259] [0.390] [0.394]

PRODES deforestation 2006–2010, protected areas established in or before 2005
Intercept 0.036** 0.021 −0.004
Deforestation pressure (transformed) 0.351*** 0.403*** 0.489***
Sustainable use area 0.043*** 0.009 0.050***
Indigenous land 0.011 0.046+ 0.071***
Sustainable use area × pressure 0.158+
Indigenous land × pressure −0.135+ −0.221***
[Adjusted R2] [0.351] [0.386] [0.381]

Gross Forest Cover Loss 2000–2005, protected areas established in or before 2000
Intercept 0.018 −0.014 −0.023
Deforestation pressure (transformed) 0.327*** 0.468*** 0.510***
Sustainable use area 0.051** 0.023 0.042*
Indigenous land −0.025 0.029 0.039+
Sustainable use area × pressure 0.075
Indigenous land × pressure −0.211* −0.252***
[Adjusted R2] [0.478] [0.525] [0.526]

Gross Forest Cover Loss 2005–2010, protected areas established in or before 2005
Intercept 0.011 0.009 −0.010
Deforestation pressure (transformed) 0.395*** 0.402*** 0.474***
Sustainable use area 0.037** 0.009 0.042**
Indigenous land 0.015 0.028 0.047**
Sustainable use area × pressure 0.143
Indigenous land × pressure −0.051 −0.124*
[Adjusted R2] [0.423] [0.434] [0.431]

***P < 0.001, **P < 0.01, *P < 0.05, +P < 0.1. Bracketed values indicate sample sizes.
†Protection types are dummy variables. The omitted protection type is strict protection.
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