

Hypometabolism in the supplementary and anterior cingulate cortices is related to dysphagia in Parkinson's disease: a cross-sectional and 3-year longitudinal cohort study

Journal:	BMJ Open
Manuscript ID:	bmjopen-2012-002249
Article Type:	Research
Date Submitted by the Author:	22-Oct-2012
Complete List of Authors:	Kikuchi, Akio; Tohoku University Graduate School of Medicine, Department of Neurology Baba, Toru; Tohoku University Graduate School of Medicine, Department of Neurology Hasegawa, Takafumi; Tohoku University Graduate School of Medicine, Department of Neurology Kobayashi, Michiko; Tohoku University Graduate School of Medicine, Department of Neurology Sugeno, Naoto; Tohoku University Graduate School of Medicine, Department of Neurology Konno, Masatoshi; Tohoku University Graduate School of Medicine, Department of Neurology Miura, Emiko; Tohoku University Graduate School of Medicine, Department of Neurology Hosokai, Yoshiyuki; Tohoku University Graduate School of Medicine, Department of Neurology Hosokai, Yoshiyuki; Tohoku University Graduate School of Medicine, Department of Behavioral Neurology and Cognitive Neuroscience Ishioka, Toshiyuki; Saitama Prefectural University, Department of Occupational Therapy Nishio, Yoshiyuki; Tohoku University Graduate School of Medicine, Department of Genavioral Neurology and Cognitive Neuroscience Hirayama, Kazumi; Yamagata Prefectural University of Health Sciences, Department of Occupational Therapy Suzuki, Kyoko; Yamagata University Graduate School of Medicine, Department of Clinical Neuroscience Aoki, Masashi; Tohoku University Graduate School of Medicine, Department of Neurology Takahashi; Shoki; Tohoku University Graduate School of Medicine, Department of Neurology Fukuda, Hiroshi; Tohoku University Graduate School of Medicine, Department of Diagnostic Radiology Fukuda, Hiroshi; Tohoku University, Department of Nuclear Medicine and Radiology Itoyama, Yasuto; National Center of Neurology and Psychiatry, National Center Hospital Mori, Etsuro; Tohoku University Graduate School of Medicine, Department of Behavioral Neurology and Cognitive Neuroscience Takeda, Atsushi; Tohoku University Graduate School of Medicine, Department of Behavioral Neurology and Cognitive Neuroscience Takeda, Atsushi; Tohoku University Graduate School of Medicine, Department of Neurology
Primary Subject Heading :	Neurology

Secondary Subject Heading:	Neurology
Keywords:	PARKINSON'S DISEASE, DYSPHAGIA, PET
	Manuscripts

Hypometabolism in the supplementary and anterior cingulate cortices is related to dysphagia in Parkinson's disease: a cross-sectional and 3-year longitudinal cohort study

Akio Kikuchi,¹ Toru Baba,¹ Takafumi Hasegawa,¹ Michiko Kobayashi,^{1,2} Naoto Sugeno,¹ Masatoshi Konno,¹ Emiko Miura,¹ Yoshiyuki Hosokai,³ Toshiyuki Ishioka,^{3,4} Yoshiyuki Nishio,³ Kazumi Hirayama,^{3,5} Kyoko Suzuki,^{3,6} Masashi Aoki,¹ Shoki Takahashi,⁷ Hiroshi Fukuda,⁸ Yasuto Itoyama,^{1,9} Etsuro Mori,³ Atsushi Takeda¹

¹ Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan

² Department of Neurology, Tohoku Employees' Pension Welfare Hospital, Sendai, Japan.

³ Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan

⁴ Department of Occupational Therapy, School of Health and Social Services, Saitama Prefectural University, Saitama, Japan

⁵ Department of Occupational Therapy, Yamagata Prefectural University of Health Sciences, Yamagata, Japan

⁶ Department of Clinical Neuroscience, Yamagata University Graduate School of Medicine, Yamagata, Japan

⁷ Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, Sendai, Japan

⁸ Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan

⁹ National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan

Corresponding Author: Atsushi Takeda, M.D.

Department of Neurology, Tohoku University Graduate School of Medicine 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan Phone: +81-22-717-7189 Fax: +81-22-717-7192 E-mail: atakeda@med.tohoku.ac.jp

Text word count: 2201 Abstract word count: 261 Number of references: 40 Number of tables: 1 Number of figures: 4

BMJ Open

ABSTRACT

Background: Dysphagia is one of the cardinal symptoms of Parkinson's disease (PD) and is closely related to the quality of life and longevity of PD patients.

Objective: To study the pathophysiological mechanisms responsible for dysphagia in PD.

Design: A cross-sectional and longitudinal comparative study.

Setting: Tohoku university hospital.

Participants: Eight patients with dysphagia, 15 patients without dysphagia and 10 normal control subjects.

Main Outcome Measures: The time needed for swallowing initiation and changes in brain glucose metabolism at baseline and after a 3-year follow-up period.

Results: The time needed for swallowing initiation was significantly longer in the patients with dysphagia compared with the patients without dysphagia at baseline and after the 3-year follow-up period (p<0.05). The patients with dysphagia exhibited hypometabolism in the supplementary motor area (SMA) and anterior cingulate cortex (ACC) compared with the 10 normal control subjects at baseline (uncorrected p<0.001). After the 3-year follow-up period, the number of brain areas showing hypometabolism increased, involving not only the SMA and the ACC but also the bilateral medial frontal lobes, middle cingulate cortex, thalamus and right superior, middle, inferior and orbital frontal gyri (uncorrected p<0.001). In contrast, the patients without dysphagia showed virtually no regional hypometabolism at baseline (uncorrected p<0.001) and only a small degree of hypometabolism in the SMA and ACC after the 3-year follow-up period (uncorrected p<0.001).

Conclusions: These results suggest that dysphagia in PD patients is mainly related to a difficulty in swallowing initiation that is based on a combination of poor movement planning due to SMA dysfunction and impaired cognitive processing due to ACC dysfunction.

ARTICLE SUMMARY

Article focus

• Cortical hypometabolism associated with dysphagia in PD were statistically examined at baseline and after a 3-year follow-up period.

Key messages

- The multiple cortical impairments, mainly in the SMA and ACC, might be responsible for the dysphagia in PD.
- The time needed for swallowing initiation was significantly longer in the patients with dysphagia.
- Dysphagia in PD patients is mainly related to a difficulty in swallowing initiation that is based on a combination of poor movement planning due to SMA dysfunction and impaired cognitive processing due to ACC dysfunction.

Strengths and limitations of this study

- Strength: this study is the first to statistically examine the associations between cortical hypometabolism and dysphagia in PD patients as a cross-sectional and longitudinal comparative study.
- Limitation: the findings may not be related to dysphagia alone because
 ¹⁸F-fluorodeoxyglucose-PET cannot be used for a dynamic scanning during swallowing. Weakness: the absence of videofluoroscopy as swallowing evaluation.

INTRODUCTION

Parkinson's disease (PD) is primarily characterized by motor dysfunctions, some of which, such as tremor, rigidity, and bradykinesia, respond well to dopamine replacement therapy, whereas others, such as postural instability, dysarthria, and dysphagia, remain intractable and often impair quality of life in advanced cases. The involvement of non-dopaminergic systems is implied in such dopamine-refractory symptoms; however, the detailed pathophysiological mechanisms of these systems are still elusive. In particular, dysphagia is directly associated with malnutrition and difficulty in drug taking; moreover, this symptom sometimes results in aspiration pneumonia, the main cause of death in PD patients.¹⁻³ The voluntary transport of food through the oral cavity, pharynx, and esophagus to the stomach requires sequential motor events. Deglutition occurs through five consecutive phases: anticipatory (cognitive), preparatory (masticatory), oral, pharyngeal, and esophageal. Dysphagia is associated with all of these stages.⁴⁻⁸

In general, dysphagia in PD is thought to reflect impaired function of the medullary swallowing center. The involvement of higher central nervous system areas is also implied, but remains to be elucidated. In the present study, we investigated the swallowing functions of PD patients and compared them with changes in cortical metabolism using ¹⁸F-fluorodeoxyglucose (FDG)-PET. Moreover, we investigated clinical and imaging data not only at baseline, but also after a 3-year follow-up period, making this research a longitudinal study.

METHODS

Participants

All of the 43 PD patients were diagnosed based on the United Kingdom PD Brain Bank criteria for idiopathic PD.⁹ The extent of dementia was evaluated in all of the subjects, using the clinical dementia rating (CDR). PD patients with a CDR score greater than 0.5 were excluded to minimize artifacts related to cognitive impairment. We defined a score of 0 as no dysphagia and a score of >1 as dysphagia, according to Part II of the unified Parkinson's disease rating scale (UPDRS). The UPDRS total scores, mini-mental state examination (MMSE), and PET studies were evaluated during the "on" state, i.e., with the administration of anti-parkinsonian drugs. Ten age-matched control subjects (4 women and 6 men; mean age 64.4 ± 4.12 years; mean MMSE score 28.7 ± 1.49) were collected to compare with PD patients with and without dysphagia for PET analysis. All of the procedures were approved by the Ethical Committee of Tohoku University Graduate School of Medicine. Written informed consent was obtained from each subject after a full explanation of the entire 3-year longitudinal study.

PET procedure

All of the subjects fasted for at least 5 hours prior to PET scanning. PET scans were acquired 60 minutes after intravenous injection of 185-218 MBq FDG. Dynamic PET scans were taken in three-dimensional mode using a BiographTM Duo PET scanner (Siemens Medical Systems, Inc., Iselin, NJ, USA). To minimize the effects of external stimuli during the FDG uptake period, the subjects stayed in a quiet room wearing an eye mask. The in-plane and axial resolutions of the scanner were 3.38 mm and 3.38

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

mm, respectively. Attenuation correction was performed with a computed tomography scan. Image reconstructions were performed using ordered subset expectation maximization algorithms (16 subsets x 6 iterations) using a Gaussian filter with full-width at half-maximum = 2.0 mm in a $256 \times 256 \text{ matrix}$, with a pixel size of $1.33 \times 1.33 \text{ mm}$ and a slice thickness of 2.0 mm. The FDG-PET scans acquired at the follow-up were performed in an identical manner.

Data analysis

Statistical parametric mapping (SPM) was used for group comparisons of PET images. First, all of the PET images were spatially normalized with linear and nonlinear parameters using SPM2 software (Welcome Department of Imaging Neuroscience, London, UK) implemented in MATLAB® (The MathWorks, Inc., Sherborn, MA, USA). A three-dimensional Gaussian filter of 10 mm was used to smooth each image. Next, the regional metabolic abnormalities in the PD patients with and without dysphagia at baseline and after the 3-year follow-up period were estimated by comparison with 10 age-matched control subjects using proportional scaling. The statistical threshold was p<0.001 (uncorrected) with an extent threshold of 40 voxels.

Evaluation of swallowing

We evaluated the time needed for swallowing initiation and the 30-second swallowing frequency. The index and ring finger pads of the investigator were placed on the thyroid cartilage and laryngeal prominence. The time needed for swallowing initiation was defined as the time until movement of the thyroid cartilage and laryngeal

prominence following the guidance cue to begin swallowing. The time of swallowing initiation across three trials was averaged. We also measured the swallowing frequency by asking the patients to swallow as many times as possible in 30 seconds and counting the movements of the thyroid cartilage and laryngeal prominence.^{10, 11}

The patient profiles were statistically analyzed using two-sample t-tests. For the swallowing function, the within-group differences of the patients with and without dysphagia were assessed using paired t-tests.

RESULTS

Of the 43 potentially eligible cases, 16 were excluded from the analysis because of dementia. The 27 patients who fulfilled the above entry criteria included 9 patients with dysphagia and 18 patients without dysphagia. The mean (±standard deviation) age was 68.2±3.23 years in the patients with dysphagia and 65.8±3.94 years in the patients without dysphagia. All of the patients were right-handed. Eight of 9 PD patients with dysphagia and 15 of 18 without dysphagia at baseline participated in the 3-year follow-up study. The details of the excluded patients were as follows: 2 patients without dysphagia went to other hospitals, and 1 patient without dysphagia and 1 patient with dysphagia were unable to be evaluated during the follow-up period because of the introduction of a feeding tube (figure 1).

Clinical features and medications were summarized in table 1. No significant differences were found in the age, Hoehn-Yahr stage, dosage of anti-parkinsonian agents, including L-dopa (table 1), or 30-second swallowing frequency (figure 2B), but significant differences were found between the two groups in disease duration,

BMJ Open

UPDRS motor score, and time needed for swallowing initiation at baseline (p<0.05, table 1, figure 2A). After the 3-year follow-up period, the differences in the time needed for swallowing initiation were still clear, but no significant differences became evident in the UPDRS motor scores (table 1, figure 2A). Significant differences were revealed in the swallowing frequency within 30 seconds between the two groups (p<0.05, table 1, figure 2B).

A comparison of the regional cerebral glucose of PD patients with that of normal controls demonstrated hypometabolism in the supplementary motor area (SMA) and the anterior cingulate cortex (ACC) in the patients with dysphagia at baseline (uncorrected p<0.001, figure 3A). These metabolic changes showed no significant correlations with the severity of the Hoehn-Yahr stages (uncorrected p<0.001, data not shown) or the UPDRS motor scores (uncorrected p < 0.001, data not shown). Furthermore, no regional hypermetabolism was found in the PD patients with dysphagia compared with the normal control subjects (uncorrected p<0.001, data not shown). Additionally, no relationships were observed between the changes in the regional cerebral glucose metabolism and the doses of anti-parkinsonian agents, including L-dopa (p>0.05, data not shown). After the 3-year follow-up period, the areas of hypometabolism included not only the SMA and the ACC but also the bilateral medial frontal lobes, middle cingulate cortex, thalamus and right superior, middle, inferior and orbital frontal gyri (uncorrected p < 0.001, figure 3B). In contrast, PD patients without dysphagia showed virtually no regional hypometabolism at baseline (uncorrected p<0.001, figure 4A) and only a small degree of hypometabolism in the SMA and the ACC after the 3-year follow-up period (uncorrected p<0.001,

figure 4B) compared with normal controls.

DISCUSSION

The present results suggested that, although several motor cortical areas control deglutition, multiple cortical impairments, mainly in the SMA and ACC, might be responsible for the dysphagia in PD. These results were in agreement with the findings of previous activation studies of normal deglutition.¹²⁻¹⁹ Impairments in these areas did not appear to be closely associated with the degree of general motor dysfunction and cognitive impairments, as no significant correlations were found between the UPDRS motor scores or the MMSE scores and the degree of hypometabolism in these areas (uncorrected p<0.001, data not shown). Moreover, although there were no significant changes in the UPDRS motor scores and the MMSE scores between baseline and 3-year follow-up (table 1), cortical hypometabolism in the medial frontal lobes was markedly extended, especially in the cases with dysphagia (figure 3). Interestingly, in the patients with dysphagia, both of the swallowing indices showed tendencies toward exacerbation during the 3-year follow-up period, although the differences were not significant (figure 2).

Major subcortical inputs to the SMA via the thalamus arise from the globus pallidus and the substantia nigra.²⁰ The SMA also receives limbic inputs from the cingulate cortex.²¹ The SMA is known to be important in mediating and preparing complex sequences of movement²² and in movement planning and execution.²³⁻²⁷ PET and functional magnetic resonance imaging studies demonstrated SMA activation during the swallowing task.^{12, 28} Activation of the SMA preceding the onset of

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 11 of 22

BMJ Open

volitional swallowing can also be demonstrated by the assessment of the Bereitschaftspotential, one of the premotor potentials that is considered to reflect the activities of the SMA.²⁹ The amplitude of the Bereitschaftspotential³⁰ was shown to be significantly lower in PD patients compared with age-matched controls.³¹ PET and single-photon emission computed tomography studies also demonstrated dysfunction of the SMA in PD.³²⁻³⁶ Therefore, the SMA dysfunction in PD patients with dysphagia is likely to be related to the impaired volitional initiation of swallowing.

The ACC is connected to both the insula³⁷ and the amygdale,³⁸ which are implicated in autonomic function and somato- and viscerosensory input. Intense stimulation of the esophagus^{8, 39} and changes in gastrointestinal motility³⁸ were shown to activate the ACC. The ACC is thought to play an important role in receiving sensory stimuli from the alimentary tract. The functions of the rostral ACC are autonomic regulation and visceromotor control.¹⁴ In fact, the rostral ACC is activated during automatic swallowing.¹⁴ In contrast, the more dorsal and caudal regions of the ACC function in skeletomotor control, including movement regulation and premotor function, response selection, attention to willed action, and nociception.²⁵ The intermediate and caudal regions of the ACC are activated during voluntary swallowing.^{14, 19, 40} As PD patients with dysphagia showed hypometabolism in the intermediate and caudal regions of the ACC, corresponding to Brodmann's area 24 as shown in figure 3A, the dysphagia in PD patients appears to be associated with difficulties in the processing of voluntary swallowing. In fact, the mean time needed to initiate swallowing was longer in cases with dysphagia (figure 2).

In this study, the time needed for swallowing initiation, which shows high

repeatability and reflects the time from the anticipatory to the pharyngeal stages of deglutition, was measured, but other stages were not evaluated. Additional evaluation, such as videofluoroscopy, is needed to understand the relationship between brain hypometabolism and dysphagia in PD patients. Interestingly, in 4 of 8 patients with dysphagia, the time needed for swallowing initiation was above average (2.35 sec), and, in fact, percutaneous endoscopic gastrostomies were performed in 2 of these 4 patients within 4 years of the baseline study. Thus, by measuring the time needed for swallowing initiation, we may be able to predict the long-term prognosis of dysphagia.

CONCLUSION

In conclusion, the data presented in this study suggested that dysphagia in PD patients was related to dysfunctions in the SMA and the ACC, resulting in poor movement planning of voluntary swallowing. The results also implied that training exercises, possibly involving tongue movements, may activate broader cortical areas, including the SMA and ACC,¹⁷ and may be useful in dysphagia rehabilitation.

Contributors: Conception and design: Akio Kikuchi, Atsushi Takeda. Analysis and interpretation of the data: Akio Kikuchi, Toru Baba, Atsushi Takeda. Drafting of the article: Akio Kikuchi, Atsushi Takeda. Collection and assembly of data: All authors. **Funding:** This study was supported by a grant for a Symposium on Catecholamine and Neurological Disorders and a Grant-in-Aid for Scientific Research (C) (23591266) from The Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: None.

Patient consent: Standardised patient consent forms were signed by all patients and controls.Ethics approval: Ethics approval was provided by the Ethical Committee of Tohoku

BMJ Open

1	
2	University Graduate School of Medicine
4	
5	Provenance and peer review: Not commissioned; externally peer reviewed.
6	Data sharing statement: No additional data are available.
8	
9	
10	
11 12	
13	
14	
15 16	
17	
18	
19	
∠∪ 21	
22	
23	
24 25	
26	
27	
28	
30	
31	
32	
34	
35	
36 37	
38	
39	
40	
41	
43	
44	
40 46	
47	
48	
49 50	
51	
52	
53 54	
55	
56	
57 58	
50	

REFERENCES

- 1. Nakashima K, Maeda M, Tabata M, et al. Prognosis of Parkinson's disease in Japan. Tottori University Parkinson's Disease Epidemiology (TUPDE) Study Group. Eur Neurol 1997;38 Suppl 2:60-3.
- 2. Hely MA, Morris JG, Traficante R, et al. The sydney multicentre study of Parkinson's disease: progression and mortality at 10 years. J Neurol Neurosurg Psychiatry 1999;67:300-7.
- 3. Fall PA, Saleh A, Fredrickson M, et al. Survival time, mortality, and cause of death in elderly patients with Parkinson's disease: a 9-year follow-up. Mov Disord 2003;18:1312-6.
- 4. Bushmann M, Dobmeyer SM, Leeker L, et al. Swallowing abnormalities and their response to treatment in Parkinson's disease. Neurology 1989;39:1309-14.
- 5. Bird MR, Woodward MC, Gibson EM, et al. Asymptomatic swallowing disorders in elderly patients with Parkinson's disease: a description of findings on clinical examination and videofluoroscopy in sixteen patients. Age Ageing 1994;23:251-4.
- 6. Leopold NA, Kagel MC. Prepharyngeal dysphagia in Parkinson's disease. Dysphagia 1996;11:14-22.
- 7. Leopold NA, Kagel MC. Pharyngo-esophageal dysphagia in Parkinson's disease. Dysphagia 1997;12:11-8; discussion 9-20.
- 8. Aziz Q, Andersson JL, Valind S, et al. Identification of human brain loci processing esophageal sensation using positron emission tomography. Gastroenterology 1997;113:50-9.
- 9. Gibb WR, Lees AJ. The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson's disease. J Neurol Neurosurg Psychiatry 1988;51:745-52.
- 10. Oguchi K, Saitoh E, Mizuno M, et al. The repetitive saliva swallowing test (RSST) as a screening test of functional dysphagia (1) normal values of RSST. Jpn J Rehabil Med 2000;37:375-82.
- 11. Tamura F, Mizukami M, Ayano R, et al. Analysis of feeding function and jaw stability in bedridden elderly. Dysphagia 2002;17:235-41.
- 12. Hamdy S, Rothwell JC, Brooks DJ, et al. Identification of the cerebral loci processing human swallowing with H2(15)O PET activation. J Neurophysiol 1999;81:1917-26.
- 13. Kern MK, Jaradeh S, Arndorfer RC, et al. Cerebral cortical representation of reflexive and volitional swallowing in humans. Am J Physiol Gastrointest Liver Physiol 2001;280:G354-60.
- 14. Martin RE, Goodyear BG, Gati JS, et al. Cerebral cortical representation of automatic and volitional swallowing in humans. J Neurophysiol 2001;85:938-50.
- 15. Martin R, Barr A, MacIntosh B, et al. Cerebral cortical processing of swallowing in older adults. Exp Brain Res 2007;176:12-22.
- 16. Mosier K, Bereznaya I. Parallel cortical networks for volitional control of swallowing in humans. Exp Brain Res 2001;140:280-9.
- 17. Martin RE, MacIntosh BJ, Smith RC, et al. Cerebral areas processing swallowing and tongue movement are overlapping but distinct: a functional magnetic resonance imaging study. J Neurophysiol 2004;92:2428-43.
- Harris ML, Julyan P, Kulkarni B, et al. Mapping metabolic brain activation during human volitional swallowing: a positron emission tomography study using [18F]fluorodeoxyglucose. J Cereb Blood Flow Metab 2005;25:520-6.
- Toogood JA, Barr AM, Stevens TK, et al. Discrete functional contributions of cerebral cortical foci in voluntary swallowing: a functional magnetic resonance imaging (fMRI) "Go, No-Go" study. Exp Brain Res 2005;161:81-90.

BMJ Open

of 22		BMJ Open
	20.	Hoover JE, Strick PL. Multiple output channels in the basal ganglia. Science 1993;259:819-21.
	21.	Tanji J. The supplementary motor area in the cerebral cortex. Neurosci Res 1994;19:251-68.
	22.	Fried I, Katz A, McCarthy G, et al. Functional organization of human supplementary motor cortex studied by electrical stimulation. J Neurosci 1991;11:3656-66.
	23.	Dum RP, Strick PL. The origin of corticospinal projections from the premotor areas in the frontal lobe. J Neurosci 1991;11:667-89.
	24.	Dum RP, Strick PL. Motor areas in the frontal lobe of the primate. Physiol Behav 2002;77:677-82.
	25.	Devinsky O, Morrell MJ, Vogt BA. Contributions of anterior cingulate cortex to behaviour. Brain 1995;118 (Pt 1):279-306.
	26.	Deiber MP, Ibanez V, Sadato N, et al. Cerebral structures participating in motor preparation in humans: a positron emission tomography study. J Neurophysiol 1996;75:233-47.
	27.	Richter W, Andersen PM, Georgopoulos AP, et al. Sequential activity in human motor areas during a delayed cued finger movement task studied by time-resolved fMRI. Neuroreport 1997;8:1257-61.
	28.	Mosier K, Patel R, Liu WC, et al. Cortical representation of swallowing in normal adults: functional implications. Laryngoscope 1999;109:1417-23.
	29.	Huckabee ML, Deecke L, Cannito MP, et al. Cortical control mechanisms in volitional swallowing: the Bereitschaftspotential. Brain Topogr 2003;16:3-17.
	30.	Kornhuber HH, Deecke L. [Changes In The Brain Potential In Voluntary Movements And Passive Movements In Man: Readiness Potential And Reafferent Potentials.]. Pflugers Arch Gesamte Physiol Menschen Tiere 1965;284:1-17.
	31.	Dick JP, Rothwell JC, Day BL, et al. The Bereitschaftspotential is abnormal in Parkinson's disease. Brain 1989;112 (Pt 1):233-44.
	32.	Playford ED, Jenkins IH, Passingham RE, et al. Impaired mesial frontal and putamen activation in Parkinson's disease: a positron emission tomography study. Ann Neurol 1992;32:151-61.
	33.	Grafton ST, Waters C, Sutton J, et al. Pallidotomy increases activity of motor association cortex in Parkinson's disease: a positron emission tomographic study. Ann Neurol 1995;37:776-83.
	34.	Jahanshahi M, Jenkins IH, Brown RG, et al. Self-initiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson's disease subjects. Brain 1995;118 (Pt 4):913-33.
	35.	Brooks DJ. PET and SPECT studies in Parkinson's disease. Baillieres Clin Neurol 1997;6:69-87.
	36.	Kikuchi A, Takeda A, Kimpara T, et al. Hypoperfusion in the supplementary motor area, dorsolateral prefrontal cortex and insular cortex in Parkinson's disease. J Neurol Sci 2001;193:29-36.
	37.	Mesulam MM, Mufson EJ. Insula of the old world monkey. III: Efferent cortical output and comments on function. J Comp Neurol 1982;212:38-52.
	38.	Pandya DN, Van Hoesen GW, Domesick VB. A cingulo-amygdaloid projection in the rhesus monkey. Brain Res 1973;61:369-73.
	39.	Kern MK, Birn RM, Jaradeh S, et al. Identification and characterization of cerebral cortical response to esophageal mucosal acid exposure and distention. Gastroenterology 1998;115:1353-62.
	40.	Paus T, Otaky N, Caramanos Z, et al. In vivo morphometry of the intrasulcal gray matter

in the human cingulate, paracingulate, and superior-rostral sulci: hemispheric asymmetries, gender differences and probability maps. J Comp Neurol 1996;376:664-73.

.xb;

	Baseline		Follo	w-up
Parameters	With dysphagia	Without dysphagia	With dysphagia	Without dysphagia
Number of patients	8	15		
Sex (M / W)	6/2	4 /11		
Age (yrs)				
Mean	67.8±3.11	65.2±4.02		
Range	63-71	60-74		
Disease duration (yrs)	6.75±3.73*	3.53±3.58		
MMSE	28.5±1.93	28.5±1.51	27.9±2.80	28.4±1.60
Hoehn-Yahr stage	2.75±0.27	2.37±0.67	3.06±0.42	2.93±0.53
UPDRS motor score	23.4±7.05*	14.8±7.49	21.0±5.93	17.4±11.1
L-dopa equivalent dose (mg/day)	400±311	267±321	590±155	514±311

Values are mean±standard deviation or number of patients.

*Significant difference p<0.05 between with dysphagia and without dysphagia.

, spragia. . viental State Examination; PD=Parkinson's disease; M=men; W=women; MMSE=Mini Mental State Examination;

UPDRS=unified Parkinson's disease rating scale

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

PD patients and follow-up flow diagram. 284x243mm (72 x 72 DPI)

The time needed for swallowing initiation and the 30-second swallowing frequency in PD patients with and without dysphagia at baseline and after a 3-year follow-up period.

There were significant differences between PD patients with and without dysphagia in the time needed for swallowing initiation at baseline and after a 3-year follow-up period (p<0.05) (A). In the 30-second swallowing frequency, there was no significant difference between the PD patients with and without dysphagia at baseline (p>0.05), but a significant difference between the two groups was evident after the 3year follow-up period (p<0.05) (B).

322x162mm (72 x 72 DPI)

uncorrected p<0.001, k=40

uncorrected p<0.001, k=40

Cross-sectional analyses of brain maps showing the differences between PD patients with dysphagia and normal control subjects at baseline (A) and after a 3-year follow-up period (B). Various areas showed differences in the standardized PET data, and areas with a height threshold of p<0.001 (uncorrected) and an extent threshold of 40 voxels are illustrated. A comparison of regional cerebral glucose metabolism values demonstrated hypometabolism in the SMA and ACC in the PD patients with dysphagia compared with normal control subjects at baseline (uncorrected p<0.001, threshold=40 voxels) (A). After the 3-year follow-up period, the areas of hypometabolism included not only the SMA and the ACC but also the bilateral medial frontal lobes, middle cingulate cortex, thalamus and right superior, middle, inferior, and orbital frontal gyri (uncorrected p<0.001, threshold=40 voxels) (B). 212x201mm (72 x 72 DPI)

uncorrected p<0.001, k=40

uncorrected p<0.001, k=40

Cross-sectional analyses of brain maps showing differences between PD patients without dysphagia and normal control subjects at baseline (A) and after a 3-year follow-up period (B). Various areas showed differences in the standardized PET data, and areas with a height threshold of p<0.001 (uncorrected) and an extent threshold of 40 voxels are illustrated. The PD patients without dysphagia showed virtually no hypometabolism at baseline (uncorrected p<0.001, threshold=40 voxels) (A) and only a small degree of hypometabolism in the SMA and ACC after the 3-year follow-up period (uncorrected p<0.001, threshold=40 voxels) (B) compared with normal control subjects. 212x201mm (72 x 72 DPI)

STROBE 2007 (v4) checklist of items to be included in reports of observational studies in epidemiology* Checklist for cohort, case-control, and cross-sectional studies (combined)

Section/Topic	Item #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1-2
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any pre-specified hypotheses	4
Methods			
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants	5
		(b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Case-control study—For matched studies, give matching criteria and the number of controls per case	5
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	5
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	5-7
Bias	9	Describe any efforts to address potential sources of bias	5
Study size	10	Explain how the study size was arrived at	
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	5
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	6-7
		(b) Describe any methods used to examine subgroups and interactions	5-7
		(c) Explain how missing data were addressed	5
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed Case-control study—If applicable, explain how matching of cases and controls was addressed	5

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page	23	of	22
------	----	----	----

		Cross-sectional study—If applicable, describe analytical methods taking account of sampling strategy	
		(e) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	7
		(b) Give reasons for non-participation at each stage	7
		(c) Consider use of a flow diagram	7
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	7-8
		(b) Indicate number of participants with missing data for each variable of interest	7
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	7
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	7
		Case-control study—Report numbers in each exposure category, or summary measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	7
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	
Discussion	I		
Key results	18	Summarise key results with reference to study objectives	9
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	11
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results	9-10
		from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	11
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	11

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies. **Note:** An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

Hypometabolism in the supplementary and anterior cingulate cortices is related to dysphagia in Parkinson's disease: a cross-sectional and 3-year longitudinal cohort study

Journal:	BMJ Open
Manuscript ID:	bmjopen-2012-002249.R1
Article Type:	Research
Date Submitted by the Author:	19-Dec-2012
Complete List of Authors:	Kikuchi, Akio; Tohoku University Graduate School of Medicine, Department of Neurology Baba, Toru; Tohoku University Graduate School of Medicine, Department of Neurology Hasegawa, Takafumi; Tohoku University Graduate School of Medicine, Department of Neurology Kobayashi, Michiko; Tohoku University Graduate School of Medicine, Department of Neurology Sugeno, Naoto; Tohoku University Graduate School of Medicine, Department of Neurology Konno, Masatoshi; Tohoku University Graduate School of Medicine, Department of Neurology Konno, Masatoshi; Tohoku University Graduate School of Medicine, Department of Neurology Miura, Emiko; Tohoku University Graduate School of Medicine, Department of Neurology Hosokai, Yoshiyuki; Tohoku University Graduate School of Medicine, Department of Behavioral Neurology and Cognitive Neuroscience Ishioka, Toshiyuki; Saitama Prefectural University, Department of Occupational Therapy Nishio, Yoshiyuki; Tohoku University Graduate School of Medicine, Department of Gehavioral Neurology and Cognitive Neuroscience Hirayama, Kazumi; Yamagata Prefectural University of Health Sciences, Department of Occupational Therapy Suzuki, Kyoko; Yamagata University Graduate School of Medicine, Department of Clinical Neuroscience Aoki, Masashi; Tohoku University Graduate School of Medicine, Department of Neurology Takahashi, Shoki; Tohoku University Graduate School of Medicine, Department of Neurology Itoyama, Yasuto; National Center of Neurology and Psychiatry, National Center Hospital Mori, Etsuro; Tohoku University Graduate School of Medicine, Department of Behavioral Neurology and Cognitive Neuroscience Takeda, Atsushi; Tohoku University Graduate School of Medicine, Department of Neuroirology and Cognitive Neuroscience Takeda, Atsushi; Tohoku University Graduate School of Medicine, Department of Behavioral Neurology and Cognitive Neuroscience Takeda, Atsushi; Tohoku University Graduate School of Medicine, Department of Neurology
Primary Subject Heading :	Neurology

Secondary Subject Heading:	Neurology
Keywords:	PARKINSON'S DISEASE, DYSPHAGIA, PET
	SCHOLARONE [™]
	Manuscripts

	BMJ Open
1	Hypometabolism in the supplementary and anterior cingulate cortices is related to dysphagia in Parkinson's disease: a
2	aross socional and 3 year longitudinal schort study
3 4	cross-sectional and 5-year longitudinal conort study
5	
6	Akio Kikuchi, ' Toru Baba,' Takafumi Hasegawa,' Michiko Kobayashi,' ² Naoto Sugeno,'
7	Masatoshi Konno, ¹ Emiko Miura, ¹ Yoshiyuki Hosokai, ³ Toshiyuki Ishioka, ^{3,4} Yoshiyuki
8	Nishio, ³ Kazumi Hirayama, ^{3,5} Kyoko Suzuki, ^{3,6} Masashi Aoki, ¹ Shoki Takahashi, ⁷ Hiroshi
9	Fukuda, ⁸ Yasuto Itoyama, ^{1,9} Etsuro Mori, ³ Atsushi Takeda ¹
10	
11	
12	¹ Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
13	² Department of Neurology, Tohoku Employees' Pension Welfare Hospital, Sendai, Japan.
14	³ Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of
15	Medicine, Sendai, Japan
16	⁴ Department of Occupational Therapy, School of Health and Social Services, Saitama Prefectural University,
17	Saitama, Japan
18	⁵ Department of Occupational Therapy, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
19	⁶ Department of Clinical Neuroscience, Yamagata University Graduate School of Medicine, Yamagata, Japan
20	⁷ Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, Sendai, Japan
21	⁸ Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku
22	University, Sendai, Japan
23	⁹ National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
24	
25	
26	Corresponding Author: Atsushi Takeda, M.D.
27	Lepartment of Neurology, Tonoku University Graduate School of Medicine
28 20	Phone: $+81_22_717_7189$ Fax: $+81_22_717_7192$
30	E-mail: atakeda@med tohoku ac ip
31	
32	
33	Text word count: 2201
34 35	Abstract word count: 261
36	Number of references: 40
37	Number of tables: 1
38	Number of figures: 4

BMJ Open

1	ABSTRACT
2	Background: Dysphagia is one of the cardinal symptoms of Parkinson's disease (PD) and is
3	closely related to the quality of life and longevity of PD patients.
4	Objective: To study the pathophysiological mechanisms responsible for dysphagia in PD.
5	Design: A cross-sectional and longitudinal comparative study.
6	Setting: Tohoku university hospital.
7	Participants: Eight patients with dysphagia, 15 patients without dysphagia and 10 normal
8	control subjects.
9	Main Outcome Measures: The time needed for swallowing initiation and changes in brain
10	glucose metabolism at baseline and after a 3-year follow-up period.
11	Results: The time needed for swallowing initiation was significantly longer in the patients
12	with dysphagia compared with the patients without dysphagia at baseline and after the 3-year
13	follow-up period (p<0.05). The patients with dysphagia exhibited hypometabolism in the
14	supplementary motor area (SMA) and anterior cingulate cortex (ACC) compared with the 10
15	normal control subjects at baseline (uncorrected p<0.001). After the 3-year follow-up period,
16	the number of brain areas showing hypometabolism increased, involving not only the SMA
17	and the ACC but also the bilateral medial frontal lobes, middle cingulate cortex, thalamus and
18	right superior, middle, inferior and orbital frontal gyri (uncorrected p<0.001). In contrast, the
19	patients without dysphagia showed virtually no regional hypometabolism at baseline
20	(uncorrected p<0.001) and only a small degree of hypometabolism in the SMA and ACC after
21	the 3-year follow-up period (uncorrected p<0.001).
22	Conclusions: These results suggest that dysphagia in PD patients is mainly related to a
23	difficulty in swallowing initiation that is based on a combination of poor movement planning
24	due to SMA dysfunction and impaired cognitive processing due to ACC dysfunction.
25	2

2	
3	
4	
5	
6	
7	
8	
0	
9	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
22	
23	
24	
24	
25	
26	
27	
28	
29	
30	
31	
22	
32	
33	
34	
35	
36	
37	
38	
30	
40	
40	
41	
42	
43	
44	
45	
46	
47	
-11 10	
40	
49	
50	
51	
52	
53	
54	
55	
55	
00	
5/	
58	
59	
60	

1 ARTICLE SUMMARY

Article focus

2

3

4

6

7

8

9

• Cortical hypometabolism associated with dysphagia in PD were statistically examined at baseline and after a 3-year follow-up period.

5 Key messages

- The multiple cortical impairments, mainly in the SMA and ACC, might be responsible
 - for the dysphagia in PD.
 - The time needed for swallowing initiation was significantly longer in the patients with dysphagia.
- Dysphagia in PD patients is mainly related to a difficulty in swallowing initiation that is based on a combination of poor movement planning due to SMA dysfunction and impaired cognitive processing due to ACC dysfunction.
- 13 Strengths and limitations of this study
- Strength: this study is the first to statistically examine the associations between
- 15 cortical hypometabolism and dysphagia in PD patients as a cross-sectional and
 - longitudinal comparative study.
 - Limitation: the findings may not be related to dysphagia alone because
 - ¹⁸F-fluorodeoxyglucose-PET cannot be used for a dynamic scanning during
 - swallowing. Weakness: the absence of videofluoroscopy as swallowing evaluation.

16

17

18

19

INTRODUCTION

BMJ Open

2	Parkinson's disease (PD) is primarily characterized by motor dysfunctions, some of which,
3	such as tremor, rigidity, and bradykinesia, respond well to dopamine replacement therapy,
4	whereas others, such as postural instability, dysarthria, and dysphagia, remain intractable and
5	often impair quality of life in advanced cases. The involvement of non-dopaminergic systems
6	is implied in such dopamine-refractory symptoms; however, the detailed pathophysiological
7	mechanisms of these systems are still elusive. In particular, swallowing difficulty is directly
8	associated with malnutrition and difficulty in drug taking; moreover, this symptom sometimes
9	results in aspiration pneumonia, the main cause of death in PD patients. ¹⁻³ The voluntary
10	transport of food through the oral cavity, pharynx, and esophagus to the stomach requires
11	sequential motor events. Deglutition occurs through five consecutive phases: anticipatory
12	(cognitive), preparatory (masticatory), oral, pharyngeal, and esophageal. Dysphagia is
13	associated with all of these stages. ⁴⁻⁸
14	In general, dysphagia in PD is thought to reflect impaired function of the medullary
15	swallowing center ⁹ . The involvement of higher central nervous system areas is also implied,
16	but remains to be elucidated. In the present study, we investigated the swallowing functions
17	of PD patients and compared them with changes in cortical metabolism using
18	¹⁸ F-fluorodeoxyglucose (FDG)-PET. Moreover, we investigated clinical and imaging data not
19	only at baseline, but also after a 3-year follow-up period, making this research a longitudinal
20	study.

22 METHODS

23 Participants

All of the 43 PD patients were diagnosed based on the United Kingdom PD Brain Bank

2
3
4
5
6
7
0
0
9
10
11
12
12
10
14
15
16
17
18
10
00
20
21
22
23
2/
24
25
26
27
28
20
29
30
31
32
33
24
34
35
36
37
38
20
39
40
41
42
43
11
44 45
45
46
47
48
10
73
50
51
52
53
51
04 55
55
56
57
58
50
79
nu

1

1	criteria for idiopathic PD. ¹⁰ The extent of dementia was evaluated in all of the subjects, using
2	the clinical dementia rating (CDR). PD patients with a CDR score greater than 0.5 were
3	excluded to minimize artifacts related to cognitive impairment. We defined a score of 0 as no
4	dysphagia and a score of >1 as dysphagia, according to Part II of the unified Parkinson's
5	disease rating scale (UPDRS). The UPDRS total scores, mini-mental state examination
6	(MMSE), evaluation of swallowing, and PET studies were evaluated during the "on" state,
7	i.e., with the administration of anti-parkinsonian drugs without L-dopa induced dyskinesia.
8	Ten age-matched control subjects (4 women and 6 men; mean age 64.4±4.12 years; mean
9	MMSE score 28.7±1.49) were collected to compare with PD patients with and without
10	dysphagia for PET analysis. All of the procedures were approved by the Ethical Committee
11	of Tohoku University Graduate School of Medicine. Written informed consent was obtained
12	from each subject after a full explanation of the entire 3-year longitudinal study.

13

14 **PET procedure**

The FDG-PET scans were performed in all 23 PD patients and 10 age-matched control 15 subjects. All of the subjects fasted for at least 5 hours prior to PET scanning. To minimize the 16 effects of external stimuli during a 1-hour FDG uptake period after intravenous injection of 17 185-218 MBq FDG, the subjects stayed in a quiet room wearing an eye mask under resting 18 conditions. PET scans were acquired for 10 minutes under resting conditions. Dynamic PET 19 scans were taken in 3D mode using a BiographTM Duo PET scanner (Siemens Medical 20 Systems, Inc., Iselin, NJ, USA). The in-plane and axial resolutions of the scanner were 3.38 21 mm and 3.38 mm, respectively. Attenuation correction was performed with a computed 22 23 tomography scan. Image reconstructions were performed using ordered subset expectation maximization algorithms (16 subsets x 6 iterations) using a Gaussian filter with full-width at 24

f 40	BMJ Open
1	half-maximum = 2.0 mm in a 256 x 256 matrix, with a pixel size of 1.33×1.33 mm and a
2	slice thickness of 2.0 mm, and a field of view of 340 mm. The FDG-PET scans acquired at
3	the follow-up were performed in an identical manner.
4	
5	Data analysis
6	Statistical parametric mapping (SPM) was used for group comparisons of PET images. First,
7	all of the PET images were spatially normalized with linear and nonlinear parameters using
8	SPM2 software (Welcome Department of Imaging Neuroscience, London, UK) implemented
9	in MATLAB® (The MathWorks, Inc., Sherborn, MA, USA). A three-dimensional Gaussian
10	filter of 10 mm was used to smooth each image. Global normalization was performed using
11	SPM's "proportional scaling," and proportional threshold masking was set at 0.8. Next, the
12	regional metabolic abnormalities in the PD patients with and without dysphagia at baseline
13	and after the 3-year follow-up period were estimated by comparison with 10 age-matched
14	control subjects using proportional scaling. The statistical threshold was p<0.001
15	(uncorrected) with an extent threshold of 40 voxels.
16	
17	Evaluation of swallowing
18	We evaluated the time needed for swallowing initiation and the 30-second swallowing
19	frequency in all 23 PD patients and 10 healthy volunteers. The index and ring finger pads of
20	the investigator were placed on the thyroid cartilage and laryngeal prominence. The time
21	needed for swallowing initiation was defined as the time until movement of the thyroid
22	cartilage and laryngeal prominence following the verbal guidance cue to begin swallowing
23	using a timer. The time of swallowing initiation across three trials was averaged. We also
24	measured the swallowing frequency by asking the patients to swallow as many times as
	6

possible in 30 seconds and counting the movements of the thyroid cartilage and laryngeal
 prominence.^{11, 12}

The patient profiles were statistically analyzed using two-sample t-tests. For the swallowing function, the within-group differences of the patients with and without dysphagia were assessed using paired t-tests.

RESULTS

Of the 43 potentially eligible cases, 16 were excluded from the analysis because of dementia. The 27 patients who fulfilled the above entry criteria included 9 patients with dysphagia and 18 patients without dysphagia. The mean (±standard deviation) age was 68.2±3.23 years in the patients with dysphagia and 65.8 ± 3.94 years in the patients without dysphagia. All of the patients were right-handed. Eight of 9 PD patients with dysphagia and 15 of 18 without dysphagia at baseline participated in the 3-year follow-up study. The details of the excluded patients were as follows: 2 patients without dysphagia went to other hospitals, and 1 patient without dysphagia and 1 patient with dysphagia were unable to be evaluated during the follow-up period because of the introduction of a feeding tube (figure 1). Clinical features and medications were summarized in table 1. No significant differences were found in the age, Hoehn-Yahr stage, dosage of anti-parkinsonian agents, including L-dopa (table 1), or 30-second swallowing frequency (figure 2B), but significant differences were found between the two groups in disease duration, UPDRS motor score, and time needed for swallowing initiation at baseline (p < 0.05, table 1, figure 2A). After the 3-year

- follow-up period, the differences in the time needed for swallowing initiation were still clear,
- but no significant differences became evident in the UPDRS motor scores (table 1, figure 2A).
- 24 Significant differences were revealed in the swallowing frequency within 30 seconds between

Page 9 of 40

BMJ Open

1	
2	
3	
4	
т 5	
6	
0	
1	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 21	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
30	
31	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
57	
52	
ວ ວ ⊏₄	
54 	
55	
56	
57	
58	
59	
60	

1	the two groups (p<0.05, table 1, figure 2B). The time needed for swallowing initiation
2	$(1.02\pm0.36 \text{ sec})$ and the 30-second swallowing frequency (5.10 ± 2.42) in 10 healthy
3	volunteers were the almost same as those of PD without dysphagia. There was no significant
4	difference in the L-dopa equivalent dose between baseline and 3-year follow-up in PD with
5	dysphagia using paired t-test (p>0.05), while a significant difference was found in PD
6	without dysphagia (p<0.05). No significant differences were found in the UPDRS motor
7	score between baseline and 3-year follow-up within groups using paired t-tests (p>0.05).
8	A comparison of the regional cerebral glucose of PD patients with that of normal controls
9	demonstrated hypometabolism in the supplementary motor area (SMA) and the anterior
10	cingulate cortex (ACC) in the patients with dysphagia at baseline (uncorrected p<0.001,
11	figure 3A). These metabolic changes showed no significant correlations with the severity of
12	the Hoehn-Yahr stages (uncorrected p<0.001, data not shown) or the UPDRS motor scores
13	(uncorrected p<0.001, data not shown). Furthermore, no regional hypermetabolism was
14	found in the PD patients with dysphagia compared with the normal control subjects
15	(uncorrected p<0.001, data not shown). Additionally, no relationships were observed between
16	the changes in the regional cerebral glucose metabolism and the doses of anti-parkinsonian
17	agents, including L-dopa (p>0.05, data not shown). After the 3-year follow-up period, the
18	areas of hypometabolism included not only the SMA and the ACC but also the bilateral
19	medial frontal lobes, middle cingulate cortex, thalamus and right superior, middle, inferior
20	and orbital frontal gyri (uncorrected p<0.001, figure 3B). Only a small degree of
21	hypermetabolism in the left middle and right superior occipital lobes, left middle temporal
22	lobe, left supramarginal gyrus, and left calcarine cortex was found in PD patients with
23	dysphagia compared to the normal control subjects (uncorrected p<0.001, data not shown). In
24	contrast, PD patients without dysphagia showed virtually no regional hypometabolism at

baseline (uncorrected p < 0.001, figure 4A) and only a small degree of hypometabolism in the SMA and the ACC after the 3-year follow-up period (uncorrected p < 0.001, figure 4B) compared with normal controls. On the other hand, in PD patients without dysphagia, no regional hypermetabolism was found at baseline (uncorrected p < 0.001, data not shown) and only a small degree of hypermetabolism in the left supramarginal gyrus, left postcentral gyrus, and left middle and superior lobes was found after the 3-year follow-up period (uncorrected p < 0.001, data not shown). Medullary hypometabolism was not found at baseline nor after a 3-year follow-up period (uncorrected p<0.001, figures 3, 4).

DISCUSSION

The present results suggested that, although several motor cortical areas control deglutition, multiple cortical impairments, mainly in the SMA and ACC, might be responsible for the dysphagia in PD. These results were in agreement with the findings of previous activation studies of normal deglutition such as functional MRI¹³⁻¹⁸ and PET^{19, 20}. Impairments in these areas did not appear to be closely associated with the degree of general motor dysfunction and cognitive impairments, as no significant correlations were found between the UPDRS motor scores or the MMSE scores and the degree of hypometabolism in these areas (uncorrected p < 0.001, data not shown). Moreover, although there were no significant changes in the UPDRS motor scores and the MMSE scores, except for the L-dopa equivalent dose in PD without dysphagia, between baseline and 3-year follow-up in each group (table 1), cortical hypometabolism in the medial frontal lobes was markedly extended, especially in the cases with dysphagia (figure 3). Interestingly, in the patients with dysphagia, both of the swallowing indices showed tendencies toward exacerbation during the 3-year follow-up period, although the differences were not significant (figure 2). Although no significant

BMJ Open

3
4
5
6
0
1
8
9
10
11
12
12
13
14
15
16
17
18
19
20
20
∠ I 00
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
26
30
37
38
39
40
41
42
43
11
-1-1 1 E
40
46
47
48
49
50
51
52
52
03
54
55
56
57
58
59
60
00

1	difference was found in the UPDRS motor score between PD with and without dysphagia
2	after a 3-year follow-up, the time needed for swallowing initiation was worsening in PD with
3	dysphagia. Bradykinesia did not appear to be directly related to the outcome measurement
4	results for evaluation of swallowing. We could not find any compensatory mechanisms for
5	dysphagia because regional hypermetabolism was not found in PD with and without
6	dysphagia at baseline.
7	Major subcortical inputs to the SMA via the thalamus arise from the globus pallidus and
8	the substantia nigra. ²¹ The SMA also receives limbic inputs from the cingulate cortex. ²² The
9	SMA is known to be important in mediating and preparing complex sequences of
10	movement ²³ and in movement planning and execution. ²⁴⁻²⁸ PET and functional magnetic
11	resonance imaging studies demonstrated SMA activation during the swallowing task. ^{19, 29}
12	Activation of the SMA preceding the onset of volitional swallowing can also be demonstrated
13	by the assessment of the Bereitschaftspotential, one of the premotor potentials that is
14	considered to reflect the activities of the SMA. ³⁰ The amplitude of the
15	Bereitschaftspotential ³¹ was shown to be significantly lower in PD patients compared with
16	age-matched controls. ³² PET and single-photon emission computed tomography studies also
17	demonstrated dysfunction of the SMA in PD. ³³⁻³⁷ Therefore, the SMA dysfunction in PD
18	patients with dysphagia is likely to be related to the impaired volitional initiation of
19	swallowing.
20	The ACC is connected to both the insula ³⁸ and the amygdale, ³⁹ which are implicated in
21	autonomic function and somato- and viscerosensory input. Intense stimulation of the
22	esophagus ^{8, 40} and changes in gastrointestinal motility ³⁹ were shown to activate the ACC. The
23	ACC is thought to play an important role in receiving sensory stimuli from the alimentary

²⁴ tract. The functions of the rostral ACC are autonomic regulation and visceromotor control.¹⁴

2
3
1
4
5
6
7
0
0
9
10
11
40
12
13
14
15
10
16
17
18
10
19
20
21
22
~~
23
24
25
26
20
27
28
29
20
30
31
32
33
33
34
35
36
27
31
38
39
40
44
41
42
43
ΔΔ
45
45
46
47
18
40
49
50
51
52
52
53
54
55
56
00
57
58
59
55
60

1

In fact, the rostral ACC is activated during automatic swallowing.¹⁴ In contrast, the more 1 dorsal and caudal regions of the ACC function in skeletomotor control, including movement 2 regulation and premotor function, response selection, attention to willed action, and 3 nociception.²⁶ The intermediate and caudal regions of the ACC are activated during voluntary 4 swallowing.^{14, 18, 41} As PD patients with dysphagia showed hypometabolism in the 5 intermediate and caudal regions of the ACC, corresponding to Brodmann's area 24 as shown 6 7 in figure 3A, the dysphagia in PD patients appears to be associated with difficulties in the processing of voluntary swallowing. In fact, the mean time needed to initiate swallowing was 8 longer in cases with dysphagia (figure 2). 9 In this study, the time needed for swallowing initiation and swallowing frequency for 30 10 seconds showed high reproducibility. The time needed for swallowing initiation was thought 11 12 to reflect the time from the anticipatory to the pharyngeal stages of deglutition, was measured, but other stages were not evaluated. Additional evaluation, such as videofluoroscopy, is 13 needed to understand the relationship between brain hypometabolism and dysphagia in PD 14 patients. Interestingly, in 4 of 8 patients with dysphagia, the time needed for swallowing 15 initiation was above average (2.35 sec), and, in fact, percutaneous endoscopic gastrostomies 16 were performed in 2 of these 4 patients within 4 years of the baseline study. Thus, by 17 measuring the time needed for swallowing initiation, we may be able to predict the long-term 18 prognosis of swallowing difficulty. 19

20

21 CONCLUSION

In conclusion, the data presented in this study suggested that dysphagia in PD patients was related to dysfunctions in the SMA and the ACC, resulting in poor movement planning of voluntary swallowing. The results also suggest that training exercises, which can activate

e 13 of 40	BMJ Open
1	broader cortical areas including the SMA and ACC, ¹⁷ may be useful to alleviate swallowing
2	difficulty.
3	
4	Contributors: Conception and design: Akio Kikuchi, Atsushi Takeda, Analysis and
5	interpretation of the data: Akio Kikuchi, Toru Baba, Atsushi Takeda. Drafting of the article:
6	Akio Kikuchi, Atsushi Takeda. Collection and assembly of data: All authors.
7	Funding: This study was supported by a grant for a Symposium on Catecholamine and
8	Neurological Disorders and a Grant-in-Aid for Scientific Research (C) (23591266) from The
9	Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. The funders
10	had no role in study design, data collection and analysis, decision to publish, or preparation of
11	the manuscript.
12	Competing interests: None.
13	Patient consent: Standardised patient consent forms were signed by all patients and controls.
14	Ethics approval: Ethics approval was provided by the Ethical Committee of Tohoku
15	University Graduate School of Medicine.
16	Provenance and peer review: Not commissioned; externally peer reviewed.
17	Data sharing statement: No additional data are available.
18	
	12

REFERENCES

Nakashima K, Maeda M, Tabata M, et al. Prognosis of Parkinson's disease in Japan. 1. Tottori University Parkinson's Disease Epidemiology (TUPDE) Study Group. Eur Neurol 1997:38 Suppl 2:60-3. 2. Hely MA, Morris JG, Traficante R, et al. The sydney multicentre study of Parkinson's disease: progression and mortality at 10 years. J Neurol Neurosurg Psychiatry 1999:67:300-7. Fall PA, Saleh A, Fredrickson M, et al. Survival time, mortality, and cause of death 3. in elderly patients with Parkinson's disease: a 9-year follow-up. Mov Disord 2003;18:1312-6. Bushmann M, Dobmeyer SM, Leeker L, et al. Swallowing abnormalities and their 4. response to treatment in Parkinson's disease. Neurology 1989;39:1309-14. Bird MR, Woodward MC, Gibson EM, et al. Asymptomatic swallowing disorders in 5. elderly patients with Parkinson's disease: a description of findings on clinical examination and videofluoroscopy in sixteen patients. Age Ageing 1994;23:251-4. Leopold NA, Kagel MC. Prepharyngeal dysphagia in Parkinson's disease. Dysphagia 6. 1996;11:14-22. Leopold NA, Kagel MC. Pharyngo-esophageal dysphagia in Parkinson's disease. 7. Dysphagia 1997;12:11-8; discussion 9-20. 8. Aziz Q, Andersson JL, Valind S, et al. Identification of human brain loci processing esophageal sensation using positron emission tomography. Gastroenterology 1997;113:50-9. Hunter PC, Crameri J, Austin S, et al. Response of parkinsonian swallowing dysfunction to dopaminergic stimulation. J Neurol Neurosurg Psychiatry 1997;63:579-83. Gibb WR, Lees AJ. The relevance of the Lewy body to the pathogenesis of 10. idiopathic Parkinson's disease. J Neurol Neurosurg Psychiatry 1988;51:745-52. Oguchi K, Saitoh E, Mizuno M, et al. The repetitive saliva swallowing test (RSST) 11. as a screening test of functional dysphagia (1) normal values of RSST. Jpn J Rehabil Med 2000;37:375-82. Tamura F, Mizukami M, Ayano R, et al. Analysis of feeding function and jaw 12. stability in bedridden elderly. Dysphagia 2002;17:235-41. 13. Kern MK, Jaradeh S, Arndorfer RC, et al. Cerebral cortical representation of reflexive and volitional swallowing in humans. Am J Physiol Gastrointest Liver Physiol 2001;280:G354-60. Martin RE, Goodyear BG, Gati JS, et al. Cerebral cortical representation of 14. automatic and volitional swallowing in humans. J Neurophysiol 2001;85:938-50. Martin R, Barr A, MacIntosh B, et al. Cerebral cortical processing of swallowing in 15. older adults. Exp Brain Res 2007;176:12-22. Mosier K, Bereznava I. Parallel cortical networks for volitional control of 16. swallowing in humans. Exp Brain Res 2001;140:280-9. Martin RE, MacIntosh BJ, Smith RC, et al. Cerebral areas processing swallowing 17. and tongue movement are overlapping but distinct: a functional magnetic resonance imaging study. J Neurophysiol 2004;92:2428-43. Toogood JA, Barr AM, Stevens TK, et al. Discrete functional contributions of 18. cerebral cortical foci in voluntary swallowing: a functional magnetic resonance imaging (fMRI) "Go, No-Go" study. Exp Brain Res 2005;161:81-90. Hamdy S, Rothwell JC, Brooks DJ, et al. Identification of the cerebral loci 19. processing human swallowing with H2(15)O PET activation. J Neurophysiol 1999;81:1917-26. 20. Harris ML, Julyan P, Kulkarni B, et al. Mapping metabolic brain activation during

BMJ Open

human volitional swallowing: a positron emission tomography study using [18F]fluorodeoxyglucose. J Cereb Blood Flow Metab 2005;25:520-6. 21. Hoover JE, Strick PL. Multiple output channels in the basal ganglia. Science 1993;259:819-21. Tanji J. The supplementary motor area in the cerebral cortex. Neurosci Res 22. 1994:19:251-68. 23. Fried I, Katz A, McCarthy G, et al. Functional organization of human supplementary motor cortex studied by electrical stimulation. J Neurosci 1991;11:3656-66. Dum RP, Strick PL. The origin of corticospinal projections from the premotor areas 24. in the frontal lobe. J Neurosci 1991;11:667-89. Dum RP, Strick PL. Motor areas in the frontal lobe of the primate. Physiol Behav 25. 2002;77:677-82. 26. Devinsky O, Morrell MJ, Vogt BA. Contributions of anterior cingulate cortex to behaviour. Brain 1995;118 (Pt 1):279-306. Deiber MP, Ibanez V, Sadato N, et al. Cerebral structures participating in motor 27. preparation in humans: a positron emission tomography study. J Neurophysiol 1996;75:233-47. Richter W, Andersen PM, Georgopoulos AP, et al. Sequential activity in human 28. motor areas during a delayed cued finger movement task studied by time-resolved fMRI. Neuroreport 1997;8:1257-61. 29. Mosier K, Patel R, Liu WC, et al. Cortical representation of swallowing in normal adults: functional implications. Laryngoscope 1999;109:1417-23. 30. Huckabee ML, Deecke L, Cannito MP, et al. Cortical control mechanisms in volitional swallowing: the Bereitschaftspotential. Brain Topogr 2003;16:3-17. 31. Kornhuber HH, Deecke L. [Changes In The Brain Potential In Voluntary] Movements And Passive Movements In Man: Readiness Potential And Reafferent Potentials.]. Pflugers Arch Gesamte Physiol Menschen Tiere 1965;284:1-17. Dick JP, Rothwell JC, Day BL, et al. The Bereitschaftspotential is abnormal in 32. Parkinson's disease. Brain 1989;112 (Pt 1):233-44. Playford ED, Jenkins IH, Passingham RE, et al. Impaired mesial frontal and putamen 33. activation in Parkinson's disease: a positron emission tomography study. Ann Neurol 1992:32:151-61. Grafton ST, Waters C, Sutton J, et al. Pallidotomy increases activity of motor 34. association cortex in Parkinson's disease: a positron emission tomographic study. Ann Neurol 1995;37:776-83. 35. Jahanshahi M, Jenkins IH, Brown RG, et al. Self-initiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson's disease subjects. Brain 1995;118 (Pt 4):913-33. Brooks DJ. PET and SPECT studies in Parkinson's disease. Baillieres Clin Neurol 36. 1997;6:69-87. 37. Kikuchi A, Takeda A, Kimpara T, et al. Hypoperfusion in the supplementary motor area, dorsolateral prefrontal cortex and insular cortex in Parkinson's disease. J Neurol Sci 2001;193:29-36. 38. Mesulam MM, Mufson EJ. Insula of the old world monkey. III: Efferent cortical output and comments on function. J Comp Neurol 1982;212:38-52. 39. Pandya DN, Van Hoesen GW, Domesick VB. A cingulo-amygdaloid projection in the rhesus monkey. Brain Res 1973;61:369-73.

Kern MK, Birn RM, Jaradeh S, et al. Identification and characterization of cerebral 40. cortical response to esophageal mucosal acid exposure and distention. Gastroenterology 1998;115:1353-62. 41. Paus T, Otaky N, Caramanos Z, et al. In vivo morphometry of the intrasulcal gray matter in the human cingulate, paracingulate, and superior-rostral sulci: hemispheric asymmetries, gender differences and probability maps. J Comp Neurol 1996;376:664-73.

	Baseline		Follo	v-up
Parameters	With dysphagia	Without dysphagia	With dysphagia	Without dysphagia
Number of patients	8	15		
Sex (M / W)	6/2	4 /11		
Age (yrs)				
Mean	67.8±3.11	65.2±4.02		
Range	63-71	60-74		
Disease duration (yrs)	6.75±3.73*	3.53±3.58		
MMSE	28.5±1.93	28.5±1.51	27.9±2.80	28.4±1.60
Hoehn-Yahr stage	2.75±0.27	2.37±0.67	3.06±0.42	2.93±0.53
UPDRS motor score	23.4±7.05*	14.8±7.49	21.0±5.93	17.4±11.1
L-dopa equivalent dose (mg/day)	400±311	267±321	590±155	514±311

Table 1Profiles of PD patients

Values are mean±standard deviation or number of patients.

*Significant difference p<0.05 between with dysphagia and without dysphagia.

PD=Parkinson's disease; M=men; W=women; MMSE=Mini Mental State Examination;

UPDRS=unified Parkinson's disease rating scale

3
1
4
5
6
7
0
0
9
10
11
40
12
13
14
15
10
10
17
18
10
20
20
21
22
22
23
24
25
26
20
21
28
29
20
30
31
32
33
24
34
35
36
37
00
38
39
40
11
41
42
43
44
15
40
46
47
48
10
49
50
51
52
52
23
54
55
56
50
э/
58
59

60

1 2

cortices is related to dysphagia in Parkinson's disease: a
cross-sectional and 3-year longitudinal cohort study
Akio Kikuchi, ¹ Toru Baba, ¹ Takafumi Hasegawa, ¹ Michiko Kobayashi, ^{1,2} Naoto Sugeno, ¹
Masatoshi Konno, ¹ Emiko Miura, ¹ Yoshiyuki Hosokai, ³ Toshiyuki Ishioka, ^{3,4} Yoshiyuki
Nishio, ³ Kazumi Hirayama, ^{3,5} Kyoko Suzuki, ^{3,6} Masashi Aoki, ¹ Shoki Takahashi, ⁷ Hiroshi
Fukuda. ⁸ Yasuto Itovama. ^{1,9} Etsuro Mori. ³ Atsushi Takeda ¹
ranaan, rabato nojanna, izbaro non, rababin randan
¹ Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
² Department of Neurology, Tohoku Employees' Pension Welfare Hospital, Sendai, Japan.
³ Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of
Medicine, Sendai, Japan
⁴ Department of Occupational Therapy, School of Health and Social Services, Saitama Prefectural University
Saitama, Japan ⁵ Department of Occurrent involutionary Venerate Defectional University of Health Sciences, Venerate Lev
⁶ Department of Clinical Neuroscience, Vamagata University Graduate School of Medicine, Vamagata, Japa
⁷ Department of Diagnostic Radiology Tohoku University Graduate School of Medicine, Sendai Japan
⁸ Department of Nuclear Medicine and Radiology. Institute of Development, Aging and Cancer, Tohoku
University, Sendai, Japan
⁹ National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
Corresponding Author: Atsushi Takeda, M.D.
Department of Neurology, Tohoku University Graduate School of Medicine
1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
Phone: $+81-22-717-7189$ FdX: $+81-22-717-7192$
E-man. alakeda@med.tonoku.ac.jp
T
Lext word count: 2201 Abstract word count: 261
Number of references: 40
Number of tables: 1
Number of figures: 4

Formatted: Numbering: Restart each page

2 3								
4								
5 6 7	1	ABSTRACT						
8 9	2	Background: Dysphagia is one of the cardinal symptoms of Parkinson's disease (PD) and is						
10 11	3	closely related to the quality of life and longevity of PD patients.						
12 13	4	Objective: To study the pathophysiological mechanisms responsible for dysphagia in PD.						
14 15	5	Design: A cross-sectional and longitudinal comparative study.						
16 17	6	Setting: Tohoku university hospital.						
18	7	Participants: Eight patients with dysphagia, 15 patients without dysphagia and 10 normal						
20	8	control subjects.						
22	9	Main Outcome Measures: The time needed for swallowing initiation and changes in brain						
.5 24 25	10	glucose metabolism at baseline and after a 3-year follow-up period.						
6	11	Results: The time needed for swallowing initiation was significantly longer in the patients						
8	12	with dysphagia compared with the patients without dysphagia at baseline and after the 3-year						
29 30	13	follow-up period (p<0.05). The patients with dysphagia exhibited hypometabolism in the						
2	14	supplementary motor area (SMA) and anterior cingulate cortex (ACC) compared with the 10						
3 4	15	normal control subjects at baseline (uncorrected p<0.001). After the 3-year follow-up period,						
5 6	16	the number of brain areas showing hypometabolism increased, involving not only the SMA						
7 8	and the ACC but also the bilateral medial frontal lobes, middle cingulate cortex, thalamus and							
9 0	18	right superior, middle, inferior and orbital frontal gyri (uncorrected p<0.001). In contrast, the						
1 2	19	patients without dysphagia showed virtually no regional hypometabolism at baseline						
3 4	20	(uncorrected p<0.001) and only a small degree of hypometabolism in the SMA and ACC after						
5 6	21	the 3-year follow-up period (uncorrected p<0.001).						
7 8	22	Conclusions: These results suggest that dysphagia in PD patients is mainly related to a						
.9 60	23	difficulty in swallowing initiation that is based on a combination of poor movement planning						
51 52	24	due to SMA dysfunction and impaired cognitive processing due to ACC dysfunction.						
53 54 55	25	2						
56 57								

2 3	
4 5	
6 7	
8 9	1
10 11	2
12 13	3
14 15	4
16 17 18	5
19 20 21	6
21 22 23	7
24 25	8
26 27	9
28 29	10
30 31	11
32 33	12
34 35 36	13
37 38	14
39 40	15
41 42	16
43 44	17
45 46	18
47 48	19
49 50	20
51 52	
53 54	
55 56	
57 58	
59 60	

ARTICLE SUMMARY

- Cortical hypometabolism associated with dysphagia in PD were statistically examined
 - at baseline and after a 3-year follow-up period.

Key messages

- The multiple cortical impairments, mainly in the SMA and ACC, might be responsible for the dysphagia in PD.
- The time needed for swallowing initiation was significantly longer in the patients with dysphagia.
- Dysphagia in PD patients is mainly related to a difficulty in swallowing initiation that is based on a combination of poor movement planning due to SMA dysfunction and impaired cognitive processing due to ACC dysfunction.

13 Strengths and limitations of this study

- Strength: this study is the first to statistically examine the associations between cortical hypometabolism and dysphagia in PD patients as a cross-sectional and longitudinal comparative study.
 - Limitation: the findings may not be related to dysphagia alone because
 ¹⁸F-fluorodeoxyglucose-PET cannot be used for a dynamic scanning during swallowing. Weakness: the absence of videofluoroscopy as swallowing evaluation.

Page 2 ^r	1 of	40 BMJ Open	
I			
<u>2</u> 3			
4 5			
5 7	1	INTRODUCTION	
3)	2	Parkinson's disease (PD) is primarily characterized by motor dysfunctions, some of which,	
10 11	3	such as tremor, rigidity, and bradykinesia, respond well to dopamine replacement therapy,	
2 3	4	whereas others, such as postural instability, dysarthria, and dysphagia, remain intractable and	
4	5	often impair quality of life in advanced cases. The involvement of non-dopaminergic systems	
16 17	6	is implied in such dopamine-refractory symptoms; however, the detailed pathophysiological	
18 10	7	mechanisms of these systems are still elusive. In particular, swallowing difficultydysphagia is	
20 ;	8	directly associated with malnutrition and difficulty in drug taking; moreover, this symptom	
21 22 g	9	sometimes results in aspiration pneumonia, the main cause of death in PD patients. ¹⁻³ The	Field Code Changed
23 24 10	0	voluntary transport of food through the oral cavity, pharynx, and esophagus to the stomach	
25 26 1	1	requires sequential motor events. Deglutition occurs through five consecutive phases:	
27 28 11	2	anticipatory (cognitive), preparatory (masticatory), oral, pharyngeal, and esophageal.	
29 30 1:	3	Dysphagia is associated with all of these stages. ⁴⁻⁸	Field Code Changed
81 82 ^{1/}	4	In general, dysphagia in PD is thought to reflect impaired function of the medullary	
33 34 ^{1:}	5	swallowing center ^{$\frac{9}{2}$} . The involvement of higher central nervous system areas is also implied,	Formatted: Font color: Red
35 36 ¹⁰	6	but remains to be elucidated. In the present study, we investigated the swallowing functions	
87 88	7	of PD patients and compared them with changes in cortical metabolism using	
39 10	8	¹⁸ F-fluorodeoxyglucose (FDG)-PET. Moreover, we investigated clinical and imaging data not	
11 12	9	only at baseline, but also after a 3-year follow-up period, making this research a longitudinal	
13 ₂₀	0	study.	
15 ₂	1		
40 47 22	2	METHODS	
+0 19 2:	3	Participants	
50 51 24	4	All of the 43 PD patients were diagnosed based on the United Kingdom PD Brain Bank	
52 53	I		
54 55		4	
56 57			
58 59			
60			

2
3
4
5
5
6
7
8
9
10
11
10
12
13
14
15
16
17
10
10
19
20
21
22
23
24
27
25
26
27
28
29
30
21
31
32
33
34
35
36
27
37
38
39
40
41
42
43
11
 4 F
40
46
47
48
49
50
50
51
52
53
54
55
56
57
51
30 50
59
60

1	criteria for idiopathic PD $_{\star}^{109}$ The extent of dementia was evaluated in all of the subjects,	Field Code Changed
2	using the clinical dementia rating (CDR). PD patients with a CDR score greater than 0.5 were	
3	excluded to minimize artifacts related to cognitive impairment. We defined a score of 0 as no	
4	dysphagia and a score of >1 as dysphagia, according to Part II of the unified Parkinson's	
5	disease rating scale (UPDRS). The UPDRS total scores, mini-mental state examination	
6	(MMSE), evaluation of swallowing, and PET studies were evaluated during the "on" state,	
7	i.e., with the administration of anti-parkinsonian drugs without L-dopa induced dyskinesia.	
8	Ten age-matched control subjects (4 women and 6 men; mean age 64.4±4.12 years; mean	
9	MMSE score 28.7±1.49) were collected to compare with PD patients with and without	
10	dysphagia for PET analysis. All of the procedures were approved by the Ethical Committee	
11	of Tohoku University Graduate School of Medicine. Written informed consent was obtained	
12	from each subject after a full explanation of the entire 3-year longitudinal study.	
13		
14	PET procedure	
15	The FDG-PET scans were performed in all 23 PD patients and 10 age-matched control	
16	subjects. All of the subjects fasted for at least 5 hours prior to PET scanning. PET scans were-	
17	acquired 60 minutes after intravenous injection of 185-218 MBq FDG. Dynamic PET scans-	
18	were taken in three dimensional mode using a Biograph TM -Duo PET scanner (Siemens-	
19	Medical Systems, Inc., Iselin, NJ, USA). To minimize the effects of external stimuli during <u>a</u>	
20	<u>1-hourthe</u> FDG uptake period <u>after intravenous injection of 185-218 MBq FDG</u> , the subjects	
21	stayed in a quiet room wearing an eye mask <u>under resting conditions</u> . <u>PET scans were</u>	
22	acquired for 10 minutes under resting conditions. Dynamic PET scans were taken in 3D	Formatted: Font color: Red
23	mode using a Biograph TM Duo PET scanner (Siemens Medical Systems, Inc., Iselin, NJ,	
24	USA). The in-plane and axial resolutions of the scanner were 3.38 mm and 3.38 mm,	
	5	

BMJ Open

respectively. Attenuation correction was performed with a computed tomography scan. Image reconstructions were performed using ordered subset expectation maximization algorithms (16 subsets x 6 iterations) using a Gaussian filter with full-width at half-maximum = 2.0 mm in a 256 x 256 matrix, with a pixel size of 1.33 x 1.33 mm and a slice thickness of 2.0 mm, and a field of view of 340 mm. The FDG-PET scans acquired at the follow-up were performed in an identical manner.

8 Data analysis

Statistical parametric mapping (SPM) was used for group comparisons of PET images. First, all of the PET images were spatially normalized with linear and nonlinear parameters using SPM2 software (Welcome Department of Imaging Neuroscience, London, UK) implemented in MATLAB® (The MathWorks, Inc., Sherborn, MA, USA). A three-dimensional Gaussian filter of 10 mm was used to smooth each image. Global normalization was performed using SPM's "proportional scaling," and proportional threshold masking was set at 0.8. Next, the regional metabolic abnormalities in the PD patients with and without dysphagia at baseline and after the 3-year follow-up period were estimated by comparison with 10 age-matched control subjects using proportional scaling. The statistical threshold was p<0.001 (uncorrected) with an extent threshold of 40 voxels.

20 Evaluation of swallowing

We evaluated the time needed for swallowing initiation and the 30-second swallowing frequency in all 23 PD patients and 10 healthy volunteers. The index and ring finger pads of the investigator were placed on the thyroid cartilage and laryngeal prominence. The time needed for swallowing initiation was defined as the time until movement of the thyroid

1	cartilage and laryngeal prominence following the <u>verbal</u> guidance cue to begin swallowing_	
2	using a timer. The time of swallowing initiation across three trials was averaged. We also	
3	measured the swallowing frequency by asking the patients to swallow as many times as	
4	possible in 30 seconds and counting the movements of the thyroid cartilage and laryngeal	
5	prominence. 11, 1240, 11	Field Code Changed
6	The patient profiles were statistically analyzed using two-sample t-tests. For the	
7	swallowing function, the within-group differences of the patients with and without dysphagia	
8	were assessed using paired t-tests.	
9		
10	RESULTS	
11	Of the 43 potentially eligible cases, 16 were excluded from the analysis because of dementia.	
12	The 27 patients who fulfilled the above entry criteria included 9 patients with dysphagia and	
13	18 patients without dysphagia. The mean (±standard deviation) age was 68.2±3.23 years in	
14	the patients with dysphagia and 65.8±3.94 years in the patients without dysphagia. All of the	
15	patients were right-handed. Eight of 9 PD patients with dysphagia and 15 of 18 without	
16	dysphagia at baseline participated in the 3-year follow-up study. The details of the excluded	
17	patients were as follows: 2 patients without dysphagia went to other hospitals, and 1 patient	
18	without dysphagia and 1 patient with dysphagia were unable to be evaluated during the	
19	follow-up period because of the introduction of a feeding tube (figure 1).	
20	Clinical features and medications were summarized in table 1. No significant differences	
21	were found in the age, Hoehn-Yahr stage, dosage of anti-parkinsonian agents, including	
22	L-dopa (table 1), or 30-second swallowing frequency (figure 2B), but significant differences	
23	were found between the two groups in disease duration, UPDRS motor score, and time	
24	needed for swallowing initiation at baseline (p<0.05, table 1, figure 2A). After the 3-year	
I	7	

BMJ Open

1	follow-up period, the differences in the time needed for swallowing initiation were still clear,
2	but no significant differences became evident in the UPDRS motor scores (table 1, figure 2A).
3	Significant differences were revealed in the swallowing frequency within 30 seconds between
4	the two groups (p<0.05, table 1, figure 2B). The time needed for swallowing initiation
5	(1.02±0.36 sec) and the 30-second swallowing frequency (5.10±2.42) in 10 healthy
6	volunteers were the almost same as those of PD without dysphagia. There was no significant
7	difference in the L-dopa equivalent dose between baseline and 3-year follow-up in PD with
8	dysphagia using paired t-test (p>0.05), while a significant difference was found in PD
9	without dysphagia (p<0.05). No significant differences were found in the UPDRS motor
10	score between baseline and 3-year follow-up within groups using paired t-tests (p>0.05).
11	A comparison of the regional cerebral glucose of PD patients with that of normal controls
12	demonstrated hypometabolism in the supplementary motor area (SMA) and the anterior
13	cingulate cortex (ACC) in the patients with dysphagia at baseline (uncorrected p<0.001,
14	figure 3A). These metabolic changes showed no significant correlations with the severity of
15	the Hoehn-Yahr stages (uncorrected p<0.001, data not shown) or the UPDRS motor scores
16	(uncorrected p<0.001, data not shown). Furthermore, no regional hypermetabolism was
17	found in the PD patients with dysphagia compared with the normal control subjects
18	(uncorrected p<0.001, data not shown). Additionally, no relationships were observed between
19	the changes in the regional cerebral glucose metabolism and the doses of anti-parkinsonian
20	agents, including L-dopa (p>0.05, data not shown). After the 3-year follow-up period, the
21	areas of hypometabolism included not only the SMA and the ACC but also the bilateral
22	medial frontal lobes, middle cingulate cortex, thalamus and right superior, middle, inferior
23	and orbital frontal gyri (uncorrected p<0.001, figure 3B). Only a small degree of
24	hypermetabolism in the left middle and right superior occipital lobes, left middle temporal

lobe, left supramarginal gyrus, and left calcarine cortex was found in PD patients with					
dysphagia compared to the normal control subjects (uncorrected p<0.001, data not shown). In					
contrast, PD patients without dysphagia showed virtually no regional hypometabolism at					
baseline (uncorrected p<0.001, figure 4A) and only a small degree of hypometabolism in the					
SMA and the ACC after the 3-year follow-up period (uncorrected p<0.001, figure 4B)					
compared with normal controls. On the other hand, in PD patients without dysphagia, no					
regional hypermetabolism was found at baseline (uncorrected p<0.001, data not shown) and					
only a small degree of hypermetabolism in the left supramarginal gyrus, left postcentral gyrus,					
and left middle and superior lobes was found after the 3-year follow-up period (uncorrected					
p<0.001, data not shown). Medullary hypometabolism was not found at baseline nor after a					
3-year follow-up period (uncorrected p<0.001, figures 3, 4).					

13 DISCUSSION

The present results suggested that, although several motor cortical areas control deglutition, multiple cortical impairments, mainly in the SMA and ACC, might be responsible for the dysphagia in PD. These results were in agreement with the findings of previous activation studies of normal deglutition such as functional MRI¹³⁻¹⁸ and PET^{19, 20} 13-2012-19 Impairments in these areas did not appear to be closely associated with the degree of general motor dysfunction and cognitive impairments, as no significant correlations were found between the UPDRS motor scores or the MMSE scores and the degree of hypometabolism in these areas (uncorrected p<0.001, data not shown). Moreover, although there were no significant changes in the UPDRS motor scores and the MMSE scores, except for the L-dopa equivalent dose in PD without dysphagia, between baseline and 3-year follow-up in each group (table 1), cortical hypometabolism in the medial frontal lobes was markedly extended, especially in the

Formatted: Superscript
Formatted: Font color: Red
Field Code Changed

BMJ Open

1	cases with dysphagia (figure 3). Interestingly, in the patients with dysphagia, both of the		
2	swallowing indices showed tendencies toward exacerbation during the 3-year follow-up		
3	period, although the differences were not significant (figure 2). <u>Although no significant</u>		
4	difference was found in the UPDRS motor score between PD with and without dysphagia		
5	after a 3-year follow-up, the time needed for swallowing initiation was worsening in PD with		
6	dysphagia. Bradykinesia did not appear to be directly related to the outcome measurement		
7	results for evaluation of swallowing. We could not find any compensatory mechanisms for		
8	dysphagia because regional hypermetabolism was not found in PD with and without		
9	dysphagia at baseline.		
10	Major subcortical inputs to the SMA via the thalamus arise from the globus pallidus and		
11	the substantia nigra, $\frac{2120}{2}$ The SMA also receives limbic inputs from the cingulate cortex, $\frac{2221}{2}$	<	Field Code Changed
12	The SMA is known to be important in mediating and preparing complex sequences of		Field Code Changed
13	movement ²³²² and in movement planning and execution. ²⁴⁻²⁸²³⁻²⁷ PET and functional	<	Field Code Changed
14	magnetic resonance imaging studies demonstrated SMA activation during the swallowing		Field Code Changed
15	task. ^{19, 2912, 28} Activation of the SMA preceding the onset of volitional swallowing can also be		Field Code Changed
16	demonstrated by the assessment of the Bereitschaftspotential, one of the premotor potentials		
17	that is considered to reflect the activities of the SMA $\frac{3029}{4}$ The amplitude of the		Field Code Changed
18	Bereitschaftspotential ³¹³⁰ was shown to be significantly lower in PD patients compared with		Field Code Changed
19	age-matched controls, ³²³⁴ PET and single-photon emission computed tomography studies also		Field Code Changed
20	demonstrated dysfunction of the SMA in PD, 33-37-32-36 Therefore, the SMA dysfunction in PD		Field Code Changed
21	patients with dysphagia is likely to be related to the impaired volitional initiation of		
22	swallowing.		
23	The ACC is connected to both the insula $\frac{3837}{2}$ and the amygdale $\frac{3938}{2}$ which are implicated	<	Field Code Changed
24	in autonomic function and somato- and viscerosensory input. Intense stimulation of the		Field Code Changed
I	10		

1	esophagus $\frac{8, 408, 39}{4}$ and changes in gastrointestinal motility were shown to activate the ACC.	Field Code Changed
2	The ACC is thought to play an important role in receiving sensory stimuli from the	Field Code Changed
3	alimentary tract. The functions of the rostral ACC are autonomic regulation and visceromotor	
4	control. ¹⁴ In fact, the rostral ACC is activated during automatic swallowing. ¹⁴ In contrast, the	Field Code Changed
5	more dorsal and caudal regions of the ACC function in skeletomotor control, including	Field Code Changed
6	movement regulation and premotor function, response selection, attention to willed action,	
7	and nociception, ²⁶²⁵ The intermediate and caudal regions of the ACC are activated during	Field Code Changed
8	voluntary swallowing. ^{14, 18, 4114, 19, 40} As PD patients with dysphagia showed hypometabolism	Field Code Changed
9	in the intermediate and caudal regions of the ACC, corresponding to Brodmann's area 24 as	
10	shown in figure 3A, the dysphagia in PD patients appears to be associated with difficulties in	
11	the processing of voluntary swallowing. In fact, the mean time needed to initiate swallowing	
12	was longer in cases with dysphagia (figure 2).	
13	In this study, the time needed for swallowing initiation and swallowing frequency for 30	
14	seconds showed high reproducibility. the The time needed for swallowing initiation was	
15	thought to, which shows high repeatability and reflects the time from the anticipatory to the	
16	pharyngeal stages of deglutition, was measured, but other stages were not evaluated.	
17	Additional evaluation, such as videofluoroscopy, is needed to understand the relationship	
18	between brain hypometabolism and dysphagia in PD patients. Interestingly, in 4 of 8 patients	
19	with dysphagia, the time needed for swallowing initiation was above average (2.35 sec), and,	
20	in fact, percutaneous endoscopic gastrostomies were performed in 2 of these 4 patients within	
21	4 years of the baseline study. Thus, by measuring the time needed for swallowing initiation,	
22	we may be able to predict the long-term prognosis of swallowing difficultydysphagia.	
23		
24	CONCLUSION	
I	11	
	11	

BMJ Open

3
4
5
6
7
0
8
9
10
11
12
13
14
15
16
17
17
18
19
20
21
22
23
24
2- 1 25
20
26
27
28
29
30
31
32
22
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
10
43 50
50
51
52
53
54
55
56
50
ວ/ 50
58
59
60

1	In conclusion, the data presented in this study suggested that dysphagia in PD patients was	
2	related to dysfunctions in the SMA and the ACC, resulting in poor movement planning of	
3	voluntary swallowing. The results also suggest that training exercises, which can activate	
4	broader cortical areas including the SMA and ACC, ¹⁷ may be useful to alleviate swallowing	
5	difficulty. The results also implied that training exercises, possibly involving tongue	
6	movements, may activate broader cortical areas, including the SMA and ACC, ¹⁷ and may be	Field Code Changed
7	useful in dysphagia rehabilitation.	
8		
0	Contributors: Conception and design: Akio Kikuchi, Atsushi Takeda, Analysis and	
10	interpretation of the data: Akio Kikuchi Toru Baba Atsushi Takeda Drafting of the article:	
11	Akio Kikuchi Atsushi Takeda Collection and assembly of data: All authors	
12	Funding: This study was supported by a grant for a Symposium on Catecholamine and	
13	Neurological Disorders and a Grant-in-Aid for Scientific Research (C) (23591266) from The	
14	Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, The funders	
15	had no role in study design, data collection and analysis, decision to publish, or preparation of	
16	the manuscript.	
17	Competing interests: None.	
18	Patient consent: Standardised patient consent forms were signed by all patients and controls.	
19	Ethics approval: Ethics approval was provided by the Ethical Committee of Tohoku	
20	University Graduate School of Medicine.	
21	Provenance and peer review: Not commissioned; externally peer reviewed.	
22	Data sharing statement: No additional data are available.	
23		
	12	
I		

REFERENCES 1

8	2	1. Nakashima K, Maeda M, Tabata M, et al. Prognosis of Parkinson's disease in Japan.	Formatted: Font: 12 pt
9	3	Tottori University Parkinson's Disease Epidemiology (TUPDE) Study Group. Eur Neurol	Formatted: Indent: Left: 0", First line: 0"
10	4	<u>1997;38 Suppl 2:60-3.</u>	
11	5	2. Hely MA, Morris JG, Traficante R, et al. The sydney multicentre study of	
12	6	Parkinson's disease: progression and mortality at 10 years. J Neurol Neurosurg Psychiatry	
13	7	<u>1999;67:300-7.</u>	
14	8	3. Fall PA, Saleh A, Fredrickson M, et al. Survival time, mortality, and cause of death	
15	9	in elderly patients with Parkinson's disease: a 9-year follow-up. Mov Disord 2003;18:1312-6.	
16	10	4. Bushmann M, Dobmeyer SM, Leeker L, et al. Swallowing abnormalities and their	
17	11	response to treatment in Parkinson's disease. Neurology 1989;39:1309-14.	
18	12	5. Bird MR, Woodward MC, Gibson EM, et al. Asymptomatic swallowing disorders in	
19	13	elderly patients with Parkinson's disease: a description of findings on clinical examination	
20	14	and videofluoroscopy in sixteen patients. Age Ageing 1994;23:251-4.	
21	15	6. Leopold NA, Kagel MC. Prepharyngeal dysphagia in Parkinson's disease. Dysphagia	
22	16	<u>1996;11:14-22.</u>	
23	17	7. Leopold NA, Kagel MC. Pharyngo-esophageal dysphagia in Parkinson's disease.	
24	18	<u>Dysphagia 1997;12:11-8; discussion 9-20.</u>	
25	19	8. Aziz Q, Andersson JL, Valind S, et al. Identification of human brain loci processing	
26	20	esophageal sensation using positron emission tomography. Gastroenterology 1997;113:50-9.	
27	21	9. Hunter PC, Crameri J, Austin S, et al. Response of parkinsonian swallowing	
28	22	dysfunction to dopaminergic stimulation. J Neurol Neurosurg Psychiatry 1997;63:579-83.	
29	23	10. Gibb WR, Lees AJ. The relevance of the Lewy body to the pathogenesis of	
30	24	idiopathic Parkinson's disease. J Neurol Neurosurg Psychiatry 1988;51:745-52.	
31	25	11. Oguchi K, Saitoh E, Mizuno M, et al. The repetitive saliva swallowing test (RSST)	
32	26	as a screening test of functional dysphagia (1) normal values of RSS1. Jpn J Rehabil Med	
33	27	$\frac{2000;37:375-82}{12}$	
34	28	12. I amura F, Mizukami M, Ayano K, et al. Analysis of feeding function and jaw	
35	29	stability in bedridden elderly. Dysphagia 2002;17:235-41.	
36	30	15. Kelli MK, Jaradell S, Allidollel KC, et al. Celebral contraintegresentation of reflexive and valitional guallowing in humans. Am L Dhugial Costraintegr Liver Dhugial	
37	31	2001-280-C254 60	
38	32 22	14 Martin RE, Goodwaar RG, Gati IS, et al. Carabral cortical representation of	
39	24	automatic and volitional swallowing in humans. I Neurophysiol 2001;85:038-50	
40	35	15 Martin R Barr A MacIntosh B et al. Cerebral cortical processing of swallowing in	
41	36	older adults. Exp Brain Res 2007:176:12-22	
42	37	16 Mosier K. Bereznava I. Parallel cortical networks for volitional control of	
43	38	swallowing in humans. Exp Brain Res 2001:140:280-9	
44	39	17. Martin RE, MacIntosh BJ, Smith RC, et al. Cerebral areas processing swallowing	
45	40	and tongue movement are overlapping but distinct: a functional magnetic resonance imaging	
46	41	study. J Neurophysiol 2004;92:2428-43.	
47	42	18. Toogood JA, Barr AM, Stevens TK, et al. Discrete functional contributions of	
48	43	cerebral cortical foci in voluntary swallowing: a functional magnetic resonance imaging	
49	44	(fMRI) "Go, No-Go" study. Exp Brain Res 2005;161:81-90.	
50	45	19. Hamdy S, Rothwell JC, Brooks DJ, et al. Identification of the cerebral loci	
51	46	processing human swallowing with H2(15)O PET activation. J Neurophysiol	
52	47	<u>1999;81:1917-26.</u>	
53	48	20. Harris ML, Julyan P, Kulkarni B, et al. Mapping metabolic brain activation during	
54		13	
55			
56			
57			
58			
59			
60			

BMJ Open

1		
2		
3		
4		
5		
6	i	
7	1	human volitional swallowing: a positron emission tomography study using
8	2	[18F]fluorodeoxyglucose. J Cereb Blood Flow Metab 2005;25:520-6.
9	3	21. Hoover JE, Strick PL. Multiple output channels in the basal ganglia. Science
10	4	<u>1993;259:819-21.</u>
11	5	<u>22. Tanji J. The supplementary motor area in the cerebral cortex. Neurosci Res</u>
12	6	<u>1994;19:251-68.</u>
13	7	23. Fried I, Katz A, McCarthy G, et al. Functional organization of human supplementary
14	8	motor cortex studied by electrical stimulation. J Neurosci 1991;11:3656-66.
15	9	24. Dum RP, Strick PL. The origin of corticospinal projections from the premotor areas
16	10	in the frontal lobe. J Neurosci 1991;11:66/-89.
17	11	25. Dum RP, Strick PL. Motor areas in the frontal lobe of the primate. Physiol Behav
18	12	$\frac{2002;77:677-82}{2002;77:677-82}$
10	13	26. Devinsky O, Morrell MJ, Vogt BA. Contributions of anterior cingulate cortex to
20	14	behaviour. Brain 1995;118 (Pt 1):2/9-306.
20	15	27. Deiber MP, Ibanez V, Sadato N, et al. Cerebral structures participating in motor
21	16	preparation in humans: a positron emission tomography study. J Neurophysiol
22	17	$\frac{1996; 75:233-47}{1996; 75:233-47}$
23	18	28. Richter W, Andersen PM, Georgopoulos AP, et al. Sequential activity in human
24	19	motor areas during a delayed cued finger movement task studied by time-resolved fMRI.
25	20	Neuroreport 1997;8:1257-61.
26	21	29. Mosier K, Patel K, Liu WC, et al. Cortical representation of swallowing in normal
27	22	adults: functional implications. Laryngoscope 1999;109:1417-23.
28	23	30. Huckabee ML, Deecke L, Cannito MP, et al. Cortical control mechanisms in
29	24	volitional swallowing: the Bereitschaftspotential. Brain Topogr 2003;16:3-17.
30	25	31. Komnuber HH, Deecke L. [Changes In The Brain Potential In Voluniary]
31	26	Novements And Passive Movements in Man. Readiness Potential And Realient
32	27	Polentials. J. Flugers Arch Desaline Flysion Menscheil Tiefe 1905,264,1-17.
33	28	<u>52.</u> Dick Jr, Kolliwell JC, Day DL, et al. The Defense antispotential is donormal in Darkingon's disease. Proin 1080:112 (Dt 1):222 44
34	29	Playford ED Janking III Desgingham DE at al Impaired magial frontal and nutaman
35	30 21	<u>55. Flayfold ED, Jenkins III, Fassingham KE, et al. Impared mesha nontal and putation</u>
36	22	activation in Farkinson's disease, a position emission tomography study. Ann Neutor
37	32 22	<u>1772, 32, 131-01.</u> 34 Grafton ST Waters C. Sutton L et al. Pallidotomy increases activity of motor
38	23 24	<u>34. Oration 51, waters C, Sutton J, et al. Famotolony increases activity of motor</u>
39	25	1005-37-776-83
40	26	35 Jahanshahi M. Jenkins IH. Brown RG, et al. Self-initiated versus externally triggered
41	37	movements I. An investigation using measurement of regional cerebral blood flow with PFT
42	38	and movement-related notentials in normal and Parkinson's disease subjects. Brain 1995:118
43	30	$(Pt 4) \cdot 913.33$
44	40	36 Brooks DL PET and SPECT studies in Parkinson's disease Baillieres Clin Neurol
45	40	1997.6.69-87
46	42	37 Kikuchi A. Takeda A. Kimpara T. et al. Hypoperfusion in the supplementary motor
47	43	area dorsolateral prefrontal cortex and insular cortex in Parkinson's disease. I Neurol Sci
48	43	2001.193.29-36
49	45	38 Mesulam MM, Mufson FL Insula of the old world monkey. III: Efferent cortical
50	46	output and comments on function. I Comp Neurol 1982:212:38-52
51	40	39 Pandya DN Van Hoesen GW Domesick VB A cingulo-amygdaloid projection in
52	48	the rhesus monkey. Brain Res 1973:61:369-73
53	10	<u>are medie montej. Drum red 1770,01.007 70.</u>
54		14
55		

1998·1	15·1353-62	
<u>1770,1</u> 41	Paus T. Otaky N. Caramanos Z. et al. In vivo morphometry of the intrasulcal grav	
matter	in the human cingulate paracingulate and superior-rostral sulci hemispheric	
asvmn	hetries, gender differences and probability maps. J Comp Neurol 1996:376:664-73.	
1.	Nakashima K, Maeda M, Tabata M, et al. Prognosis of Parkinson's disease in Japan.	Formatted: Indent: Left: 0"
	Tottori University Parkinson's Disease Epidemiology (TUPDE) Study Group. Eur-	0.5"
	Neurol 1997;38 Suppl 2:60 3.	
2	Hely MA, Morris JG, Traficante R, et al. The sydney multicentre study of Parkinson's-	
	disease: progression and mortality at 10 years. J Neurol Neurosurg Psychiatry-	
_	1999;67:300 7.	
3	Fall PA, Saleh A, Fredrickson M, et al. Survival time, mortality, and cause of death in	
	elderly patients with Parkinson's disease: a 9-year follow up. Mov Disord-	
4	2003;18:1312 6.	
4.	Busineann M, Dobmeyer SM, Leeker L, et al. Swallowing abnormalities and their	
5	Fesponse to treatment in Parkinson's disease. Neurology 1989;39:1309-14.	
).	alderly notients with Perkinson's diseases a description of findings on aligical	
	evamination and videofluoroscopy in sixteen patients. Age Ageing 1004:23:251.4	
5	Leonold NA_Kagel MC_Prenharvngeal dysphagia in Parkinson's disease Dysphagia	
0.	<u>1996-11-14-22</u>	
7	Leopold NA, Kagel MC, Pharvngo esophageal dysphagia in Parkinson's disease.	
	Dysphagia 1997;12:11 8; discussion 9-20.	
8.	Aziz Q, Andersson JL, Valind S, et al. Identification of human brain loci processing	
	esophageal sensation using positron emission tomography. Gastroenterology-	
	1997;113:50-9.	
9	Gibb WR, Lees AJ. The relevance of the Lewy body to the pathogenesis of idiopathic	
	Parkinson's disease. J Neurol Neurosurg Psychiatry 1988;51:745-52.	
10.	Oguchi K, Saitoh E, Mizuno M, et al. The repetitive saliva swallowing test (RSST) as-	
	a screening test of functional dysphagia (1) normal values of RSST. Jpn J Rehabil	
1.1	Med 2000;57:575-82.	
11.	tamura F, Mizukami M, Ayano K, et al. Analysis of feeding function and jaw-	
12	Stability in beanagen eldeny. Dysphagia 2002;17:255-41.	
iź.	human swallowing with H2(15) OPET activation. I Neurophysiol 1000(21)1017 26	
13	Kern MK Jaradeh S. Arndorfer RC et al. Cerebral cortical representation of reflexive	
1.5.	and volitional swallowing in humans Am J Physiol Gastrointest Liver Physiol	
	2001:280:G354-60.	
14.	Martin RE. Goodyear BG. Gati JS. et al. Cerebral cortical representation of automatic	
	and volitional swallowing in humans. J Neurophysiol 2001;85:938-50.	
15.	Martin R, Barr A, MacIntosh B, et al. Cerebral cortical processing of swallowing in	
	older adults. Exp Brain Res 2007;176:12-22.	
16.	Mosier K, Bereznaya I. Parallel cortical networks for volitional control of swallowing	
	in humans. Exp Brain Res 2001;140:280-9.	
17.	Martin RE, MacIntosh BJ, Smith RC, et al. Cerebral areas processing swallowing and	
	tongue movement are overlapping but distinct: a functional magnetic resonance-	

	imaging study. J Neurophysiol 2004;92:2428-43.	
18.	Harris ML, Julyan P, Kulkarni B, et al. Mapping metabolic brain activation during-	
	human volitional swallowing: a positron emission tomography study using-	
	[18F]fluorodeoxyglucose. J Cereb Blood Flow Metab 2005;25:520-6.	
19.	Toogood JA, Barr AM, Stevens TK, et al. Discrete functional contributions of	
	cerebral cortical foci in voluntary swallowing: a functional magnetic resonance-	
	imaging (fMRI) "Go, No Go" study. Exp Brain Res 2005;161:81-90.	
20.	Hoover JE, Strick PL. Multiple output channels in the basal ganglia. Science 1993;259:819-21.	
21.	Tanji J. The supplementary motor area in the cerebral cortex. Neurosci Res-	
<u> </u>	Fried I. Katz A. McCarthy G. et al. Functional organization of human supplementary	
22.	motor cortex studied by electrical stimulation. I Neurosci 1001:11:3656.66	
23	Dum RP. Strick PL. The origin of corticospinal projections from the premotor areas in	
25.	the frontal lobe. I Neurosci 1001:11:667.80	
24	Dum DD. Strick DL. Motor group in the frontel lobe of the primete. Dhysical Debay	
24 .	2002;77:677-82.	
25.	 Devinsky O, Morrell MJ, Vogt BA. Contributions of anterior cingulate cortex to- 	
	behaviour. Brain 1995;118 (Pt 1):279 306.	
26.	Deiber MP, Ibanez V, Sadato N, et al. Cerebral structures participating in motor-	
	preparation in humans: a positron emission tomography study. J Neurophysiol-	
	1996;75:233-47.	
27. 	Richter W, Andersen PM, Georgopoulos AP, et al. Sequential activity in human-	
	motor areas during a delayed cued finger movement task studied by time resolved	
	fMRI. Neuroreport 1997;8:1257-61.	
28.	Mosier K, Patel R, Liu WC, et al. Cortical representation of swallowing in normal	
	adults: functional implications. Laryngoscope 1999;109:1417-23.	
29.	Huckabee ML, Deecke L, Cannito MP, et al. Cortical control mechanisms in-	
	volitional swallowing: the Bereitschaftspotential. Brain Topogr 2003;16:3-17.	
30.	Kornhuber HH, Deecke L. [Changes In The Brain Potential In Voluntary Movements-	
	And Passive Movements In Man: Readiness Potential And Reafferent Potentials.].	
	Pflugers Arch Gesamte Physiol Menschen Tiere 1965;284:1 17.	
31.	Dick JP, Rothwell JC, Day BL, et al. The Bereitschaftspotential is abnormal in-	
	Parkinson's disease. Brain 1989:112 (Pt 1):233-44.	
32	Playford ED. Jenkins IH. Passingham RE, et al. Impaired mesial frontal and nutamen	
	activation in Parkinson's disease: a positron emission tomography study. Ann Neurol	
	1992:32:151-61.	
33	Grafton ST. Waters C. Sutton J. et al. Pallidotomy increases activity of motor	
	association cortex in Parkinson's disease: a positron emission tomographic study Ann	
	Neurol 1995:37:776-83.	
34	Jahanshahi M. Jenkins IH. Brown RG. et al. Self initiated versus externally triggered.	
51.	movements. I. An investigation using measurement of regional cerebral blood flow	
	with PET and movement related notentials in normal and Parkinson's disease	
	subjects Brain 1005:118 (Pt A):013-33	
35	Brooks DI PET and SPECT studies in Parkinson's disease Reillieres Clin Neural	
55.	1007.6.60. 87	
26	1997, 0.09-07. Kilalahi A. Takada A. Kimpara T. at al. Humanarfusian in the supplementary motor	
30.	area dorsolateral prefrontal cortex and insular cortex in Darkinson's disease. I Neural	
	area, aorsonaterar premontar cortex and insular cortex in Farkinson's disease. J Neuror	
	16	
	10	

2	
2	
3	
4	
Э	
6	
7	
,	
8	
9	
10	
44	
11	
12	
13	
4.4	
14	
15	
16	
17	
17	
18	
19	
20	
20	
21	
22	
23	
23	
24	
25	
26	
20	
27	
28	
20	
29	
30	
31	
22	
32	
33	
34	
25	
30	
36	
37	
20	
38	
39	
40	
14	
41	
42	
43	
11	
44	
45	
46	
17	
4/	
48	
49	
50	
50	
51	
52	
52	
53	
54	
55	
56	
90	
57	
58	
50	
28	
60	

	Sci 2001;193:29-36.
37.	Mesulam MM, Mutson EJ. Insula of the old world monkey. III: Efferent cortical
20	output and comments on function. J Comp Neurol 1982;212:38-52.
38.	- Pandya DN, Van Hoesen GW, Domesick VB. A cingulo-amygdaloid projection in the
20	rnesus monkey. Brain Kes 1973;61:369-73.
39 .	- Kern MK, Birn KM, Jaraden S, et al. Identification and characterization of cerebral
	Contrical response to esophageal mucosal acid exposure and distention.
40	Gastroenterology 1998;115:1353-62.
40.	Paus 1, Otaky N, Caramanos Z, et al. in vivo morphometry of the intrastical gray
	matter in the numan cingulate, paracingulate, and superior rosital suici, nemispheric
	asymmetries, genuer unreferees and probability maps. J Comp Neuron
	1990,370.004-73.
	17
	1 /

Table 1Profiles of PD patients

	Baseline		Follow-up	
Parameters	With dysphagia	Without dysphagia	With dysphagia	Without dysphagia
Number of patients	8	15		
Sex (M / W)	6/2	4 /11		
Age (yrs)				
Mean	67.8±3.11	65.2±4.02		
Range	63-71	60-74		
Disease duration (yrs)	6.75±3.73*	3.53±3.58		
MMSE	28.5±1.93	28.5±1.51	27.9±2.80	28.4±1.60
Hoehn-Yahr stage	2.75±0.27	2.37±0.67	3.06±0.42	2.93±0.53
UPDRS motor score	23.4±7.05*	14.8±7.49	21.0±5.93	17.4±11.1
L-dopa equivalent dose (mg/day)	400±311	267±321	590±155	514±311

Values are mean±standard deviation or number of patients.

*Significant difference p<0.05 between with dysphagia and without dysphagia.

iphagιa . MSE=Mini Νιε... e PD=Parkinson's disease; M=men; W=women; MMSE=Mini Mental State Examination;

UPDRS=unified Parkinson's disease rating scale

Formatted: Indent: Left: 0", First line: 0"

PD patients and follow-up flow diagram. 105x90mm (300 x 300 DPI)

The time needed for swallowing initiation and the 30-second swallowing frequency in PD patients with and without dysphagia at baseline and after a 3-year follow-up period.

There were significant differences between PD patients with and without dysphagia in the time needed for swallowing initiation at baseline and after a 3-year follow-up period (p<0.05) (A). In the 30-second swallowing frequency, there was no significant difference between the PD patients with and without dysphagia at baseline (p>0.05), but a significant difference between the two groups was evident after the 3year follow-up period (p<0.05) (B).

178x90mm (300 x 300 DPI)

uncorrected p<0.001, k=40

uncorrected p<0.001, k=40

Cross-sectional analyses of brain maps showing the differences between PD patients with dysphagia and normal control subjects at baseline (A) and after a 3-year follow-up period (B). Various areas showed differences in the standardized PET data, and areas with a height threshold of p<0.001 (uncorrected) and an extent threshold of 40 voxels are illustrated. A comparison of regional cerebral glucose metabolism values demonstrated hypometabolism in the SMA and ACC in the PD patients with dysphagia compared with normal control subjects at baseline (uncorrected p<0.001, threshold=40 voxels) (A). After the 3-year follow-up period, the areas of hypometabolism included not only the SMA and the ACC but also the bilateral medial frontal lobes, middle cingulate cortex, thalamus and right superior, middle, inferior, and orbital frontal gyri (uncorrected p<0.001, threshold=40 voxels) (B). 95x90mm (300 x 300 DPI)

uncorrected p<0.001, k=40

uncorrected p<0.001, k=40

Cross-sectional analyses of brain maps showing differences between PD patients without dysphagia and normal control subjects at baseline (A) and after a 3-year follow-up period (B). Various areas showed differences in the standardized PET data, and areas with a height threshold of p<0.001 (uncorrected) and an extent threshold of 40 voxels are illustrated. The PD patients without dysphagia showed virtually no hypometabolism at baseline (uncorrected p<0.001, threshold=40 voxels) (A) and only a small degree of hypometabolism in the SMA and ACC after the 3-year follow-up period (uncorrected p<0.001, threshold=40 voxels) (B) compared with normal control subjects. 95x90mm (300 x 300 DPI)

Checklist for cohort, case-control, and cross-sectional studies (combined)				
Section/Topic	Item #	Recommendation	Reported on page #	
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1-2	
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2	
Introduction				
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4	
Objectives	3	State specific objectives, including any pre-specified hypotheses	4	
Methods				
Study design	4	Present key elements of study design early in the paper	5	
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5	
Participants	6	 (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants 	5	
		(b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Case-control study—For matched studies, give matching criteria and the number of controls per case	5	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	5	
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	5-7	
Bias	9	Describe any efforts to address potential sources of bias	5	
Study size	10	Explain how the study size was arrived at		
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	5	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	6-7	
		(b) Describe any methods used to examine subgroups and interactions	5-7	
		(c) Explain how missing data were addressed	5	
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed Case-control study—If applicable, explain how matching of cases and controls was addressed	5	

STROBE 2007 (v4) checklist of items to be included in reports of observational studies in epidemiology*

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

		Cross-sectional study—If applicable, describe analytical methods taking account of sampling strategy	
		(e) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	7
		(b) Give reasons for non-participation at each stage	7
		(c) Consider use of a flow diagram	7
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	7-8
		(b) Indicate number of participants with missing data for each variable of interest	7
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	7
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	7
		Case-control study—Report numbers in each exposure category, or summary measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	7
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	9
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	11
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results	9-10
		from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	11
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	11

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies. **Note:** An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.