
SUPPLEMENTAL FIGURE LEGENDS 
 
Suppl. Figure 1.  Essential gene inactivations stimulate microbial food aversion and developmental 
arrest (or delay) phenotypes (relevant to Figure 1; see also Table S1A-C, Movies S1-3).   

(A) Aversion phenotypes observed in pilot experiments with growth of animals on RNAi 
bacteria inactivating essential C. elegans genes.   Aversion behavior required RNAi-proficiency, and 
was abolished in two RNAi defective C. elegans mutants, sid-1(qt9) and rde-1(ne219), in response to 
tars-1 RNAi.  A key containing brief functional descriptions for each essential gene inactivation is 
shown to the right of the graph.  Statistical analyses:  *** indicates p<0.001 for pair-wise comparisons 
using the student’s t-test.   Comparisons made were between a gene inactivation and the RNAi 
control (harboring an empty dsRNA vector), or between wild type and RNAi-defective mutant animals 
in response to tars-1 RNAi. 

(B) Microbial aversion is a phenotype that develops over time.  Hatchlings were plated to RNAi 
lawns of uniform size and density and were assayed for aversion frequency at multiple time points 
during development.  Aversion behavior was unobservable in the first 24 hours of the experiment, 
but became evident by ~40 hrs of growth, and continued to increase through the termination of the 
experiment at 56hr.  Statistical analyses were performed at the 56 hour time point: ** indicates 
p<0.001, *** indicates p<0.0001.  RNAi of the essential gene cdk-1 (encoding a cyclin-dependent 
kinase) did not stimulate aversion and was indistinguishable from the RNAi control phenotypically. 

(C) A time course showing basal aversion rates for animals grown on the RNAi control strain.  
Aversion was undetectable during the first three larval stages (L1, L2 and L3), became barely 
detectable in the 4th larval stage (L4) at ~45 hrs, and started to rise as animals matured into 
reproductive adults at ~48 hrs.  Because it seemed optimal for detection of aversion phenotypes 
while keeping background levels of aversion low, the 48-58 hour frame was selected as the interval 
during which aversion would be measured in the RNAi screen of essential genes displayed in Figure 
1C,D and Table S1A.   

(D) Comparison of developmental phenotypes in aversion gene set relative to the set of 
essential and metabolic genes surveyed.  While only 19% of the set of genes screened produced a 
larval developmental arrest or delay, 85% of the aversion gene set produced arrest or delayed 
development.  For ease of description in the text, we’ve referred to the developmental “arrest” 
phenotypes resulting from essential gene RNAi treatments. However - because we did not generally 
continue to monitor the developmental progress of RNAi-treated animals beyond the 58hr time 
point, we can not establish with certainty which developmental phenotypes represent true arrests 
and which represent a general slowing of development that may ultimately culminate in adult 
maturity.  Some arrests/delays produced animal of uniform stage; others produced a heterogeneous 
developmental population (See Table S1A). 

(E) An area-proportional set diagram of overlap between aversion and developmental 
phenotypes observed in the first 58hr of RNAi exposure.  The majority of aversion phenotypes were 
coincident with developmental arrest or delay, while many developmental phenotypes (~62%) were 
not accompanied by detectable aversion phenotypes. 
 
Suppl. Figure 2. Stimulation of pathogen-associated, detoxification and other transcriptional stress 
responses by essential gene inactivations (relevant to Figure 3; see also Table S2). 
 (A) The hypodermal nlp-29::GFP reporter (induced by D. coniospora or wounding to the 
cuticle) is stimulated by inactivation of pan-1 (a leucine-rich transmembrane protein), and the nhr-23 
and nhr-25 nuclear hormone receptors, all genes required for execution of the molting program and 
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hypodermal maintenance.  Although some overlap was observed, the RNAi-mediated induction 
pattern of nlp-29::GFP was largely distinct from the three pathogen-induced reporters examined in 
Figure 3A.  See Table S2A for a complete list of gene inactivations that stimulated the nlp-29::GFP 
reporter. 

(B) Other transcriptional stress reporters were stimulated by essential gene inactivations.  
gpdh-1::GFP, hsp-4::GFP, hsp-6::GFP and sod-3::GFP are characterized reporters for induction of 
osmotic, ER, mitochondrial and oxidative stress responses, respectively.  Aversion-inducing gene 
inactivations produced frequent stimulation of these stress response pathways in addition to 
pathogen and detoxification reporters. Shown: induction of gpdh-1::GFP by inactivation of osm-11 
(required for osmotic shock responses) and tars-1 (a tRNA synthetase); induction of hsp-4::GFP by 
inactivation of tkt-1 (transketolase) and vha-3 (a vacuolar ATPase subunit); induction of hsp-6::GFP by 
inactivation of atp-2 (an ATP synthase subunit) or vha-3; induction of sod-3::GFP by inactivation of 
tkt-1 and rpl-1 (a large ribosomal subunit). See Table S2B for full list of reporter inductions. 

(C) Summary and enrichment table for pathogen-associated, detoxification and general 
cellular stress responses induced by aversion-inducing gene inactivations.  Frequencies of activation 
of all reporters examined in Figure 3 and above in comparison to frequencies of reporter induction by 
a random gene set derived from the first two 96-well plates of the whole genome RNAi library.  
Depending on the reporter examined, there was anywhere between a 2-fold and 35-fold enrichment 
for reporter activation.  The level of enrichment for the hsp-4::GFP reporter was not possible to 
determine because none of the randomly selected RNAi clones were found to induce it.  Statistical 
significance was assessed by chi-squared test (p<0.0001 for all comparisons between the aversion 
gene subset and the random set tested for a given reporter). 

 
Suppl. Figure 3.  Validation and testing of tissue-restricted RNAi strains (relevant to Figure 4; See 
also Figure S4, Table S3). 
 (A) Images showing the normal expression pattern of the systemically expressed sur-
5pr::GFPNLS transgenic strain used to assess the fidelity of intestine and hypodermis-restricted RNAi 
strains.  Hypodermal, intestine (gut), head neuron and pharyngeal nuclei are all readily visible 
(labeled) when animals were raised on the RNAi control strain.   
 (B) Images of gut and hypodermal silencing of GFP when sur-5::GFPNLS animals were raised on 
E. coli expressing dsRNA targeting the gfp gene.  GFP is still visible in head neurons, pharyngeal cells 
and the nerve cord because these tissues are refractory to RNAi. 
 (C) Intestine-specific silencing of GFP in the sid-1(qt9); Is[vha-6pr::sid-1]; Is[sur-5pr::GFPNLS] 
strain in response to GFP RNAi feeding.  This strain is RNAi defective in all tissues due to the sid-1(qt9) 
mutation, but wild type sid-1 is restored to the intestine by fusion of the sid-1 coding sequence to the 
vha-6 intestine-specific promoter.  Three focal planes are shown, moving from the bottom focal plane 
(the side abutting the glass slide), through the gut layer in the middle focal plane and up to the top 
focal plane (closest to the microscope lens).  Hypodermal nuclei are easily seen in the “bottom” and 
“top” focal planes but the large intestinal nuclei that appear so prominently in control RNAi animals 
are no longer visible, indicating that GFP expression has been silenced in this tissue.  A hazy (and 
characteristic) background gut fluorescence is visible in the middle focal plane, indicating that this is 
the correct plane to view gut nuclei if the sur-5pr::GFPNLS transgene were still undergoing expression 
in this tissue.  In contrast, hypodermal nuclei, muscle nuclei, the nerve cord, head and pharyngeal 
nuclei are still GFP-labeled, indicating that GFP is not silenced in these tissues. 
 (D) Hypodermis-specific silencing of GFP in the rde-1(ne219); Is[wrt-2pr::rde-1]; Is[sur-
5pr::GFPNLS] in response to gfp RNAi.  In the multiple focal planes represented in this sample, there is 



no evidence of hypodermal GFP expression, while GFP expression is observed in the intestine, 
muscle, pharynx, neurons and nerve cord.  A DIC image showing the hypodermal layer (identifiable by 
the characteristic longitudinal alae structure) with a paired focal plane image viewed in the GFP 
fluorescence channel confirmed that GFP expression is abolished in hypodermal cells but not the 
other major cell types in this strain. 

For all samples (A-D), animals were visualized at 48-58 hrs of gfp feeding, the same time 
interval used to score aversion phenotypes, ensuring that tissue-specific gene silencing takes place in 
the necessary time frame. 

 
Suppl. Figure 4.  Gene inactivations restricted to the hypodermis or intestine stimulate aversion 
behavior (related to Figure 4; see also Table S3) 

(A) Inactivation of known intestine-specific genes, elt-2 and pept-1, in the intestine-restricted 
but not the hypodermis-restricted RNAi strain stimulated microbial aversion, confirming the absence 
of “leaky” intestinal expression of the rescuing RNAi transgene in the hypodermis-restricted RNAi 
strain. 

(B) Inactivation of two genes with characterized hypodermal functions but no known 
intestinal functions, qua-1 and lin-41, in the hypodermis-restricted but not the intestine-restricted 
RNAi strain stimulated microbial aversion, confirming the absence of “leaky” hypodermal expression 
of the rescuing RNAi transgene in the intestine-restricted RNAi strain. 

(C-D)  Inactivation of different protein translation components in the hypodermis-restricted or 
intestine-restricted RNAi lines yielded a curious discrepancy.  (C) When ribosomal components 
(represented by rpa-0 and rpl-41) or a tRNA synthetase (tars-1) were inactivated in the hypodermis, 
aversion behavior was stimulated.  (D) When ribosomal components (rpl-1 or rpl-41) were inactivated 
in the intestine-restricted RNAi strain, aversion behavior was also stimulated.   However, inactivation 
of neither the tars-1 nor cars-1 tRNA synthetase genes (encoding threonyl and cysteinyl tRNA 
synthetases, respectively) stimulated aversion behavior in the intestine-restricted RNAi strain.  

 
Suppl. Figure 5.  Analysis of aversion behavior control by known pathogen and stress response 
signaling pathways (relevant to Figure 5.) 

(A) Left panel: Basal aversion levels of Jnk pathway mutants are low and similar to wild type 
animals.  Middle and Right panels:  kgb-1(km21) mutants exhibit partial suppression of aversion 
behavior induced by inactivation of tRNA synthetase genes (tars-1 or kars-1) or vacuolar ATPase 
subunit genes (vha-6 and vha-12), while mek-1 and mlk-1 mutants still exhibit strong suppression of 
the behavior. 

(B) The p38-like MAP kinase cascade is not required for aversion behavior.  For most gene 
inactivations tested, nsy-1, sek-1 and pmk-1 mutations did not have a significant effect on aversion 
behavior.  Examination of two mutant alleles in tir-1, encoding a Toll-related receptor and additional 
alleles of nsy-1 and pmk-1 have confirmed this result across all functional classes of gene inactivation 
tested (data not shown).  However, sek-1(qd39) (shown) and sek-1(qd4) (not shown) mutants 
exhibited a partial defect in response to inactivation of tRNA synthetases (tars-1 and kars-1), vacuolar 
ATPAse subunits (vha-6 and vha-12), and ATP synthase subunits (atp-2 and atp-4) but not other types 
of gene inactivations (proteasome components, other protein translation and mitochondrial 
components).   

(C) Analysis of fshr-1 and zip-2 pathogen defense pathways showed that these genes do not 
contribute to the aversion response.  Interpretation of fshr-1(ok778) data were complicated by a high 
basal aversion rate on RNAi control bacteria.  However the RNAi clones tested also caused larval 



arrest, and are more properly compared to stage-matched controls, which generally exhibit low or 
undetectable aversion phenotypes.   We did not conduct a developmental time course with fshr-1, so 
we cannot formally rule out the possibility that although fshr-1 itself exhibits a high aversion rate, it 
might also suppress the aversion induced by noxious RNAi treatments. 
 
Suppl. Figure 6.  The function of learning and neurosensation in control of aversion behavior 
(relevant to Figure 6). 

(A) RNAi targeting nhx-2, kars-1, atp-2 or hsp-60 genes caused larval arrest or retarded entry 
into adulthood.  Shown are representative examples drawn from the same populations of animals 
used in the associative learning assays presented in Figure 6B. Animals were examined for evidence 
of recovery from developmental arrest after 2 days on tester plates (28 hrs after the final time point 
(20hr) for scoring aversion behavior.  All images have been magnified 40x. For the purpose of size and 
stage comparison, shown at right are wild type animals grown continuously on empty vector control 
bacteria (HT115) and sid-1(qt9) mutant animals defective for RNAi grown continuously on noxious 
kars-1 RNAi bacteria.  Both controls have been reproductively mature adults for 2 days. 
 (B) Animals were examined for behavioral aversion in response to kars-1 RNAi when 
transferred to test plates containing bacterial lawns of different microbial species.  The species tested 
B. subtilis, B. simplex and a Comamonas species are known residents of soil and decomposing 
environments and may represent more ecologically relevant food options for C. elegans.  However, 
the results of this experiment mirrored those shown in Figure 6B: animals showed similar levels of 
microbial avoidance at early time points but by 14 and 22 hours avoided the HT115 strain at 
significantly higher frequencies than the non-HT115 strains regardless of species type (*** indicates 
p<0.001).   
 (C) Developmental time course showing basal aversion frequencies of neurosensory mutants 
on RNAi control bacteria.  By adulthood (48 hr), che-2(e1033) and che-3(e1124) mutants showed 
elevated basal aversion to benign E. coli (p<0.01 by students t-test).  Other sensory mutants may 
exhibit slightly elevated aversion relative to wild type animals, although these effects were not 
statistically discernible. 
 (D-G) Mutants in chemosensation (che-2(e1033) and che-3(e1124)), mechanosensation (mec-
3(e1338), mec-4(u45), and mec-7(e1527)), thermotaxis (ttx-1(p767) and ttx-4(nj3)), 
aerotaxis/hyperoxia avoidance (gcy-35(ok769)) were evaluated for their ability to avoid E. coli in 
response to essential gene inactivations. A tax-4(p678) mutant, defective for multiple sensory 
modalities, was also tested.  Essential gene inactivated tested were: vha-6 (a vacuolar ATPase 
subunit), kars-1 (a tRNA synthetase), cco-1 (cytochrome c oxidase, an electron transport chain 
component) and elt-2 (a GATA transcription factor required for gut development).  Because 
neurosensory mutants showed some basal elevation of aversion level on control RNAi bacteria, 
aversion was evaluated and plotted in two forms for each mutant: (1) in raw form (the unadjusted 
aversion frequency – i.e. the fraction of total animals found off the lawn) and (2) in background-
normalized form, where the levels of aversion on RNAi control lawns had been subtracted from the 
raw aversion score. Of all mutants tested, only the tax-4 mutant was defective in eliciting an aversion 
response to all four essential gene inactivations.  The che-2 and che-3 chemosensory mutants were 
defective in response to two of the four gene inactivations tested (cco-1 and elt-2).  The 
mechanosensory, thermotaxis and aerotaxis mutants tested showed no deficit in any of these assays. 
 
Suppl. Figure 7.  Sensory responsiveness of animals in a microbial aversion state induced 
by essential gene inactivations (relevant to Figure 6). 



(A) Pharyngeal pumping rates have been shown to decrease in response to some microbial 
pathogens or low nutritive value of a microbial food source.  We examined the pharyngeal pumping 
rates of animals raised on 10 different gene inactivations.  Because little is known of the pharyngeal 
pumping rates of juvenile animals and our experimental samples needed to be stage-matched with 
control samples, we selected for analysis only those gene inactivations that produced gravid (egg-
producing) adults (with the exception of kars-1 RNAi, which produces L4 stage and sterile adults).  A 
list of the genes selected and brief functional descriptions are provided to the right of the graph.  
Pharyngeal pumping was measured for 45-60 seconds in a minimum of 30 animals over 2-3 
independent trials.  Results were averaged across trials.  Statistical significance was determined by 
students t-test followed by Bonferroni correction for multiple comparisons (*p<0.01, **p< 0.001 and 
***p<0.000001).  Although the effects were modest for most RNAi treatments, a statistically 
significant reduction in pumping rates were observed in nine of ten cases.  Inactivation of ftt-2 (which 
encodes a 14-3-3 protein) produced the most profound reduction in pumping (35 pumps/min 
compared to 332 pumps/min in the RNAi control.) 

(B-E) Animals were tested for their ability to respond to positive and negative olfactory, 
gustatory and mechanosensory cues following treatment with essential gene RNAi.  Olfactory 
attraction behavior was assessed by evaluating chemotaxis efficiency when animals were exposed to 
the volatile odorant isoamyl alcohol (B). Gustatory attraction was tested by measuring chemotaxis to 
the soluble attractant NH4Cl (C).  Olfactory avoidance was measured in response to the noxious 
volatile odorant, octanol.  (D). Mechanosensory defenses were measured by scoring reversal 
frequency in response to gentle body touch (E).  See Supplemental Experimental Procedures for a 
detailed description of each assay.  Statistical significance was determined using the students t-test 
(*p<0.01, ***p<0.0001). 
 
 
SUPPLEMENTAL TABLE LEGENDS 
Suppl. Table 1. RNAi screen for aversion behavior (related to Figure 1). 
 (A) Gene inactivations that stimulated microbial aversion behavior in a screen of 4,062 
essential and metabolic genes.   Presented according to functional category, the list of 379 gene 
inactivations that induced microbial aversion after 48-56hr growth on RNAi E. coli.  Shown are 
Sequence and Gene names, mean aversion values and standard errors, animal developmental stage 
at time of scoring (L1->L4 represent the four larval stages, SA = sterile adult, GA = gravid adult), # of 
independent replicates (with 3 trials per replicate), and a brief description of gene identity/function 
according to WormBase annotations retrieved using WormMart. 

(B) Aversion-inducing genes exhibit elevated conservation with the human proteome.  
Comparison of protein conservation between C. elegans and H. sapiens for a) the 379 aversion genes, 
b) the 4,062 essential and metabolic genes screened, and c) the whole C. elegans proteome.  Shown 
are the number/percentage of genes from each group when parsed into one of eleven bins 
corresponding to increasing degrees of protein identity (0->100%).  Average C. elegans/H. sapiens 
protein conservation for each gene group is displayed at bottom. 

(C) Aversion genes associated with human disorders.  Twenty-two genes identified in the 
aversion screen cause human disease when mutated. 

 
Suppl. Table 2.  Summary data for innate immune, detoxification and stress reporter induction 
(related to Figure 3). 

(A) Innate immune/pathogen-associated and drug detoxification reporters induced in 



response to inactivation of a subset of aversion genes representing the major functional classes 
identified in the aversion screen.  Data are displayed in “heat map” format, where darker shades 
(green for innate immune reporters, purple for drug detoxification reporters) indicate qualitative 
degree of induction based on visual examination over multiple replicates.  Column heading key 
indicates identity of each reporter analyzed.   

(B) Activation of other reporters of cellular stress in response to essential gene 
inactivations.  As in (A), induction of reporters for mitochondrial stress, ER stress, osmotic stress and 
oxidative stress shown in “heat map” format, with dark blue indicating strongest induction. 
 
Suppl. Table 3.  List of aversion-associated genes with expression patterns that exclude the nervous 
system (related to Figure 4).   

At least 26 genes identified in the aversion screen are not expressed in neurons, suggesting 
that aversion behavior is a product of endocrine communication between neuronal and non-neuronal 
tissues.  The genes on this list are expressed in one or more of the following tissues: the intestine, 
hypodermis, germline, pharynx, vulva, body wall muscle and the excretory cell, suggesting that each 
of these tissues may be competent to induce aversion behavior when in distress.  vha-8 is only 
expressed in the excretory cell, suggesting that disruption of cellular processes in only a single cell 
may be sufficient to engage the aversion response.  Primary references for each gene expression 
pattern are provided. 

 
Suppl. Table 4.  C. elegans and microbial strains used in this study (related to Experimental 
Procedures).  

 
 

SUPPLEMENTAL MOVIE LEGENDS 
Movie S1. Control (-) RNAi animals rarely leave the bacterial lawn (related to Figure 1.)  

Playback speed for all movies is accelerated 40x relative to real time. Animals were filmed at 
5X magnification on lawns of fixed shape, density and size after 48-56hr of growth on RNAi or control 
RNAi lawns. 

 
Movie S2. Lawn aversion behavior in calcineurin RNAi-treated animals (related to Figure 1.)   

Aversion behavior was induced by inactivation of Y71H2AL.1, the C. elegans homolog of 
calcineurin B. 

 
Movie S3. Lawn aversion behavior in atp-2 RNAi-treated animals (related to Figure 1.) 

Aversion behavior was induced by inactivation of atp-2, an ATP synthase subunit.  Animals in 
this movie are significantly smaller than in the RNAi control due to developmental arrest at ~L3 larval 
stage. 

 
 
 
 
 
 
 

 



SUPPLEMENTAL EXPERIMENTAL PROCEDURES 
 
Detailed descriptions of experimental procedures used in this study can be found below. 
 
RNAi avoidance assays 
RNAi bacterial clones were picked or stamped in 96-well format from -80°C glycerol stocks to 
rectangular LB/Tet/Amp plates and grown at 37°C o/n prior to amplification in culture.  Rectangular 
plates could be kept at 4°C for up to 2-3 weeks prior to experimental use.  More extended 4°C storage 
can lead to loss of efficacy for some clones.  Bacteria were inoculated into 7 mls liquid volume 
LB/carbenicillin (50ug/ml) in 10ml x 24-well rectangular plates (Promega Cat# V6831 or Dot Scientific 
Cat# SC74324-NS7), sealed with Breathe-Easy strips (USA Scientific Cat# 9123-6100), and grown in a 
37°C shaker to near saturation (20-24hr).  Bacteria were pelleted and resuspended in 150 ul 30-40X 
LB/carb.  Three 50ul aliquots per RNAi clone were dropped to the center of each well on 6-well RNAi 
plates, taking care not to splatter bacteria, puncture agar surface, or agitate wet bacteria and dried. 
Only circular lawns of uniform size and density (approximate) were used for aversion assays. Dried 
plates were kept at RT for 16-24hr prior to experiment to allow IPTG induction of dsRNA. On the day 
prior to setting up overnight RNAi cultures, animals (2,000-3,000) were chunked or washed from 
freshly starved plates (L1/L2s) to 10ml NGM plates containing 20X concentrated HB101 and grown on 
bench top (23-24°C) for 2dy or until gravid adults, harvested for embryos by hypochlorite treatment 
(Hope, 1999), and hatched overnight (~12-16hr) in S Basal. Egg preps should be performed on the 
same day as RNAi assay plate preparation. On the following day, synchronized hatchlings (~60 
animals in 5-15 ul liquid volume) were serially aliquoted to the center of each bacterial lawn using a 
repeat pipettor.  Aversion assays were typically scored at 48-58hr (on bench top at 23-24°C), although 
occasionally animals were incubated with RNAi for up to 64 hr before robust aversion.  Control RNAi 
plates become unreliable >56-58hr due to depletion of bacteria and loss of distinct lawn boundary 
caused by animal locomotion.  Animals were scored for aversion using a Nikon SMZ800 microscope. 
The number of animals located off the RNAi lawn (Noff) and the total number of animals per well 
(Ntotal) were counted. For the RNAi screen, wells were visually inspected prior to counting, and only 
samples appearing to be aversion candidates were scored.  Aversion = Noff/Ntotal and was averaged 
across 3 replicates. Positives were confirmed by independent replicates (usually>3) and sequence-
verification of the RNAi clone.  Approximate developmental stage was recorded for all RNAi clones 
tested.  
 
Toxin avoidance assays  
OP50 cultures were grown at 37°C and concentrated 10-20X in S Basal. Aliquots (50ul) of 
concentrated OP50 were dropped to 6-well NGM assay plates similar to above; 250-350 ul were 
dropped to pre-assay growth plates.  Synchronized L1s were reared on OP50 growth plates until the 
desired developmental stage (we tested drug responses in both L3 and L4/adult stage animals), 
washed in S Basal and transferred to assay lawns containing toxin or solvent control. Assay plates 
were prepared by adding solvent +/- drug directly to the OP50 lawn ~1hr prior to beginning an 
experiment.  For initial experiments, a drug dilution series was used, and aversion was measured in 2 
hr increments for the first 12 hours, concluding with terminal time points as late as 24hr. All assays 
were performed in triplicate and were independently replicated >3 times, usually with 2-3 different 
drug concentrations, as drug potency seemed somewhat variable between days.  Most drugs are not 
water soluble, and in organic solvents they precipitate to varying degrees once dropped to bacterial 
lawns.  DMSO was usually the most effective solvent, but it was also the most likely to produce black 



precipitates upon plating.  Though drugs were less soluble in EtOH and MeOH than in DMSO, 
precipitation upon plating was less of a problem, so these solvents were used wherever possible.   
Solvents often had weak aversion effects on their own, so minimal solvent volumes were used to 
achieve effective doses of drug. All drug treatments required same-volume solvent controls. 
 
Drugs, solvents, peak time points, and final drug concentrations (calculated according to total agar 
volume) used in lawn aversion experiments: 
Antimycin A (EtOH, 4-8hr): 25 ug/ml  
Bortezomib (DMSO, 6-8hr): 60 ug/ml 
Concanamycin A (MeOH, 8-12hr): 500 ng/ml 
Geneticin (water, 3-6hr): 250 ug/ml 
Paraquat (water, 6-8hr): 250 ug/ml 
Tunicamycin (MeOH, 24hr): 50 ug/ml 
Zeocin* (water, 10-16hr): 400 ug/ml 
 
*Zeocin is salt-labile and is rapidly inactivated on NGM plates.  Maximal induction of aversion was 
achieved by ~30-60min pre-incubation of worms with Zeocin in 0.5X S Basal or HBSS low salt buffer 
prior to addition of animals to Zeocin-supplemented OP50 lawns. 
 
GFP reporter experiments 
Transgenic strains for visualization of innate immunity, detoxification and stress responses carried 
integrated high-copy arrays containing the promoter elements of genes of interest fused to GFP.  Full 
genotypes, strain sources and original publications describing use of each strain are provided in the 
Supplemental Strain Table.  For reporter induction experiments, ~30-50 animals were serially 
aliquoted to 12 or 24-well RNAi plates that had been seeded with 200-300ul unconcentrated o/n 
RNAi cultures and dried 3-4hr in hood on previous day.  RNAi plates were either grown at RT (23-
24°C) for 2dy or 20°C for 3dy prior to scoring (after confirming reproducibility of results between 
growth conditions.)  Each RNAi clone was tested in duplicate on a given day, and results were 
reproduced in 2-3 independent replicates.   
 
Imaging 

A Zeiss Axioplan2 fluorescent compound microscope connected to a Hamamatsu ORCA-ER 
black & white camera and camera controller and a MacIntosh computer equipped with OpenLab5.0.1 
imaging software was used to collect images for the following transgenes:  F35E12.5::GFP, irg-1::GFP, 
clec-60::GFP, cyp-35B1::GFP, nlp-29::GFP, sur-5::GFPNLS, sur-5::GFPNLS, sid-1(qt9); vha-6::sid-1; sur-
5::GFPNLS, and rde-1(ne219); vha-6::rde-1; sur-5::GFPNLS.  GFP and DIC images were captured at 16X 
magnification (16X/40X for tissue-specific lines) using fixed exposure settings.  False color was applied 
to pathogen and detoxification reporter images. 

A Zeiss Discovery.V12 Stereo Microscope connected to a Zeiss Axiocam HSc color camera and 
Dell computer equipped with Zeiss Axiovision 4.5 imaging software was used to collect GFP 
fluorescent images of animals on worm plates for gst-4::GFP, sod-3::GFP, gpdh-1::GFP, hsp-6::GFP 
transgenic lines, and for figures showing lawn aversion behavior.   
 
Tissue-restricted RNAi experiments 
Construction of hypodermis and intestine-specific RNAi strains:  



Hypodermis-restricted RNAi (constructed/validated in collaboration with John Kim and Vishal 
Khivanasara): A wrt-2 promoter fragment shown to drive expression in the syncytial hypodermis and 
seam cells was fused to a full-length genomic fragment encoding rde-1. The wrt-2::RDE-1 construct 
was injected into rde-1(ne219) mutant animals with a myo2::RFP3 selection marker and pBluescript 
carrier to a final DNA concentration of 100 ng/ul.  The extrachromasomal array was integrated by UV 
irradiation and tested for tissue-specificity of rescue (below and shown in Figure S3). Once validated 
for specificity, the wrt-2::RDE-1 line was subsequently backcrossed 10X to N2 and re-crossed into rde-
1(ne219) for use in hypodermally-restricted RNAi experiments.  

Intestine-restricted RNAi (constructed/validated in collaboration with Alex Soukas): a sid-1 
genomic fragment was fused to a 900 bp fragment of the vha-6 promoter shown to confer 
intestinally-restricted expression (H.Y. Mak and E. O’Rourke, personal communication) and a 
synthetic intron, and preceding coding sequences for SL2-GFP (providing co-expression of GFP under 
the same vha-6 promoter).   
Validation of tissue-restricted RNAi activity:  

To confirm the accuracy of tissue-restricted RNAi lines, a sur-5::SUR-5-GFPNLS integrated 
transgene (expressed systemically throughout the soma) was crossed into the each of the rescued 
RNAi strains (restoring RNAi to hypodermis or intestine).  Animals were fed dsRNA corresponding to 
GFP and examined for GFP expression in major bodily tissues (hypodermis, muscle, neurons, and 
intestine.)  If GFP expression was eliminated in the desired tissue without disruption of GFP 
expression in other tissues, the strain was used for tissue-restricted RNAi experiments.  Images of 
tissue-restricted GFP silencing and additional functional validation are shown in Suppl. Figure 3. 
 
Associative learning assays 
Synchronized wild type (N2) or sid-1(qt9) hatchlings were reared for ~54hr on growth plates 
containing control or noxious RNAi bacteria.  Animals were washed from growth plates, then washed 
2-3x in S Basal prior to transfer to test plates.  Test plates were prepared as described above, and 
animals were transferred to one of four 6 cm assay plates containing control RNAi (HT115), noxious 
RNAi (HT115 with a dsRNA targeting an essential C. elegans gene), HB101 or OP50 E. coli.  Aversion 
was measured at the intervals specified in text.  Learning assays presented in Figure S5 included 
additional bacterial species: B. subtilis, B. simplex and Comamonas. 
 
Chemotaxis assays 
Chemotaxis assays for volatile and soluble attractants and repellents were performed and the data 
were analyzed essentially as described in (Hart, 2006) and (Bargmann et al., 1993). Synchronized L1s 
were grown on aversion-inducing RNAi bacteria or control RNAi bacteria for 48-54 hr prior to 
conducting behavioral assays.  Animals were tested for attraction to a spot of 1 ul isoamyl alcohol on 
fresh 10cm NGM plates.  Animals were tested for attraction to 20 mM NH4Cl by a quadrant assay on 
freshly poured 2% agar 5mM KPO4 buffered 10cm 4-quadrant Petri plates (VWR Cat#25384-308) after 
washing 3X with CTX buffer.  Assays of repulsion to undiluted 1-octanol were performed on fresh 
NGM in 6 cm square plates.  Chemotaxis was measured after one hour and calculated using the 
standard formula (CI= (# of animals on odorant-# of animals on control)/(total number of animals)).  
All assays were performed in triplicate in at least 3 independent trials.  Approximately 50-100 animals 
were tested per assay plate. 
 
 
 



Mechanosensation assay 
Animals were tested for touch avoidance after 48-54 hrs of growth on RNAi or control bacteria.  
Touch avoidance was measured directly on growth plates by performing 6 alternating light taps to the 
head or tail, and counting the number of times a tap resulted in locomotory reversal of 2 or more 
body bends.  At least 20 animals were tested in at least 3 independent trials for each RNAi treatment. 
 
Pharyngeal pumping assays 
Animals were raised on RNAi or control bacteria for 50-60hr prior to measurement of feeding rates.  
With the exception of kars-1 RNAi treated animals (which were L4/sterile adults) only gravid adults 
were assayed for pumping to ensure so all samples would be stage-matched with the RNAi control.  
(The influence of developmental stage on pharyngeal pumping rates is unknown.)  Individual animals 
were filmed for a minimum of 60 seconds each using a Sony video camera mounted on a Zeiss M2 
microscope.  Apple iMovie was used for video recording and analysis.  RNAi control animals were 
filmed at the beginning and end of each experiment to ensure that room conditions were stable 
through the experiment.  Movies were subsequently examined at 25-50% replay speed in order to 
accurately count pharyngeal contractions.  The number of contractions over intervals of 40-60 sec 
was counted for each animal and have been reported as pharyngeal contractions/min.  At least 10 
animals were tested per RNAi treatment within an experiment, and results were averaged in 2 
independent trials. 
 
Statistical Methods 
The student’s t-test and chi-squared tests were used to validate behavioral results as stated in figure 
legends.  Bonferroni correction for multiple comparisons was applied to p-value calculations in 
learning and pharyngeal pumping assays. Multiple comparison adjustments were not performed if 
results were independently verified with multiple alleles or gene inactivations, and the p-values were 
sufficiently low (p<0.01).  Standard error of the mean (SEM) was reported for all aversion-inducing 
RNAi clones in Table S1. DAVID enrichment analysis provided statistical significance for functional 
categories identified in the screen, and p-values from DAVID analysis were Benjamini method-
corrected for multiple comparisons. For more information about the DAVID tool, visit: 
http://david.abcc.ncifcrf.gov/home.jsp. 
 
Statistical Notes on Figures 4B-D, 5B-D, 6C, S4A-D, S5A-B: 
P-values were generated by student’s t-test from pooled data for each functional class in an 
experiment.  
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Supplemental Figure 5. Analysis of aversion behavior control by known pathogen and 

stress response pathways (relevant to Figure 5)
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Supplemental Figure 6. The function of learning and neurosensation in control of aversion 

behavior (relevant to Figure 6)
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Supplemental Figure 7. Sensory responsiveness of animals in a microbial aversion state 
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