Supporting Information

Effects of Imidazole Deprotonation on Vibrational Spectra of High-Spin Iron(II) Porphyrinates

Chuanjiang Hu,
*, †,‡ Qian Peng, ‡ Nathan J. Silvernail,
 ‡ Alexander Barabanschikov, $^{\$}$ Jiyong

Zhao,[¶] E. Ercan Alp,[¶] Wolfgang Sturhahn,[¶] J. Timothy Sage,^{*,§} and W. Robert Scheidt^{*,‡}

Contribution from Key Laboratory of Organic Synthesis

of Jiangsu Province, College of Chemistry, Chemical Engineering

and Materials Science, Soochow University, Suzhou 215123, P.R. China,

Department of Chemistry and Biochemistry,

University of Notre Dame, Notre Dame, Indiana 46556,

Department of Physics and Center for Interdisciplinary Research on Complex Systems,

Northeastern University, Boston, Massachusetts 02115,

and Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439

[†]Soochow University

 $^{^{\}ddagger}\mathrm{University}$ of Notre Dame

[§]Northeastern University

[¶]Argonne National Laboratory

^{*}To whom correspondence should be addressed: E-mail: cjhu@suda.edu.cn (CH), jtsage@neu.edu (JTS), Scheidt.1@nd.edu (WRS)

Figure S1. Frontier β -MO's for [Fe(TPP)(2-MeHIm)] calculated with BP86/TZVP.

Figure S2. Frontier β -MO's for $[Fe(TPP)(2-MeIm^{-})]^{-}$ calculated with BP86/TZVP.

Figure S3. Frontier β -MO's for [Fe(OEP)(2-MeHIm)] calculated with BP86/TZVP.

Figure S4. Frontier β -MO's for $[Fe(OEP)(2-MeIm^{-})]^{-}$ calculated with BP86/TZVP.

Figure S5. Two DFT-predicted in-plane Fe modes contributing to the experimental feature at 224 cm⁻¹ in $[K(222)][Fe(OEP)(2-MeIm^{-})]$.

Figure S6. Other modes with significant in-plane Fe motion from the BP86 calculations on $[K(222)][Fe(OEP)(2-MeIm^{-})]$ with observed experimental features at 244 and 266 cm⁻¹.

Figure S7. The low-frequency out-of-plane Fe modes, predicted at 103 cm⁻¹, contributing to the experimental feature at 115 and 125 cm⁻¹ in $[K(222)][Fe(OEP)(2-MeIm^{-})]$.

Figure S8. The low-frequency out-of-plane Fe modes, predicted at 80, 81, and 85 cm⁻¹, contributing to the experimental feature at 103 cm^{-1} in $[\text{K}(222)][\text{Fe}(\text{TPP})(2\text{-MeIm}^{-})]$.

K(222) [Fe(OEP)(2Melm)]				K(22	K(222) [Fe(TPP)(2Melm) ⁻]			
frequency	e ² IP	е ² ор	e^{2}_{total}	frequency	e ² IP	е ² ор	e^{2}_{total}	
29.1	0.001	0.026	0.027	21.3	0.002	0.008	0.009	
34.4	0.001	0.059	0.059	23.5	0.000	0.019	0.020	
36.6	0.001	0.028	0.028	24.2	0.000	0.038	0.038	
102.2	0.002	0.017	0.020	50.6	0.012	0.001	0.013	
103.1	0.003	0.120	0.123	52.5	0.015	0.000	0.015	
115.5	0.014	0.001	0.015	53.7	0.011	0.000	0.011	
128.6	0.032	0.020	0.052	79.7	0.000	0.094	0.094	
132.5	0.006	0.005	0.010	80.5	0.001	0.050	0.050	
154.5	0.030	0.002	0.032	85.0	0.000	0.048	0.048	
158.1	0.038	0.002	0.040	114.4	0.017	0.000	0.017	
175.4	0.012	0.000	0.012	131.5	0.042	0.009	0.051	
185.5	0.056	0.000	0.057	161.1	0.010	0.002	0.012	
192.0	0.012	0.000	0.012	163.8	0.003	0.010	0.014	
193.7	0.017	0.000	0.017	176.9	0.101	0.006	0.107	
197.8	0.011	0.000	0.011	201.2	0.032	0.005	0.038	
200.8	0.012	0.000	0.012	206.9	0.107	0.010	0.117	
203.6	0.010	0.000	0.010	209.7	0.301	0.025	0.326	
207.1	0.036	0.001	0.037	211.9	0.312	0.034	0.346	
211.9	0.081	0.000	0.081	214.6	0.073	0.002	0.075	
216.0	0.358	0.003	0.361	218.5	0.132	0.001	0.134	
219.6	0.041	0.006	0.047	225.3	0.059	0.009	0.068	
226.0	0.229	0.008	0.237	229.9	0.033	0.006	0.039	
233.0	0.059	0.001	0.060	241.6	0.003	0.032	0.035	
242.6	0.007	0.007	0.014	257.7	0.036	0.097	0.133	
247.7	0.085	0.324	0.409	259.6	0.017	0.347	0.364	
250.0	0.092	0.023	0.115	271.6	0.226	0.029	0.255	
255.9	0.262	0.119	0.381	273.7	0.187	0.000	0.187	
259.6	0.099	0.019	0.119	381.1	0.002	0.015	0.017	
264.2	0.010	0.075	0.084	389.5	0.022	0.000	0.022	
270.6	0.059	0.000	0.059	391.6	0.024	0.000	0.024	
280.5	0.010	0.001	0.011	427.6	0.011	0.001	0.011	
299.0	0.010	0.001	0.011					
325.2	0.011	0.002	0.013					
338.1	0.006	0.005	0.011					

Table S1. Predicted frequencies and e^2_{Fe} values for Two CalculatedImidazolate Derivatives.^a

a. All predicted frequencies are expressed in cm⁻¹

[Fe(OEP)(2MeIm ⁻)] ⁻	[Fe(TPP)(2MeIm ⁻)] ⁻
Fe 0.015199 -0.015002 0.222481	Fe 0.012942 -0.009073 0.134660
N -1.705727 -1.013176 -0.519914	N -0.771678 -1.904087 -0.332700
N -0.967490 1.785192 -0.404225	N -1.891498 0.802550 -0.274134
N 1.822469 1.062364 0.027436	N 0.802674 1.909415 -0.415252
N 1.100735 -1.779455 -0.169842	N 1.929150 -0.765265 -0.362955
C -1.844349 -2.388712 -0.600771	C 1.188393 -0.002446 4.180886
C -2.946284 -0.480576 -0.804437	H 1.905661 0.041685 5.004590
C -2.311598 1.948129 -0.671693	N 0.191918 -0.041734 2.171232
C -0.431536 3.057330 -0.314363	N -0.173485 -0.117031 4.423795
C 1.985313 2.432636 0.018470	C -0.728540 -0.135849 3.198194
C 3.087351 0.516755 0.119650	C 1.422595 0.038501 2.817348
C 2.465970 -1.927020 -0.050320	H 2.348925 0.127687 2.249149
C 0.576853 -3.044771 -0.326481	C -2.210094 -0.254145 2.982687
C -3.233131 -2.740989 -0.903159	H -2.698509 -0.372483 3.964281
C -3.920597 -1.548185 -1.040775	H -2.470091 -1.125241 2.352292
C -2.648586 3.365833 -0.747481	H -2.632029 0.639200 2.484398
C -1.470323 4.060063 -0.515905	C -3.191469 -1.323506 -0.479640
C 3.401766 2.777891 0.134229	C -1.321678 3.223907 -0.325138
C 4.092785 1.580285 0.201596	C 3.238318 1.344141 -0.463832
C 2.829060 -3.338766 -0.126285	C 1.359192 -3.196027 -0.340333
C 1.641861 -4.038986 -0.303211	C -0.058948 -3.090883 -0.319941
C -3.225111 0.892492 -0.864036	C -2.110460 -2.247625 -0.403976
H -4.259899 1.176128 -1.086653	C -3.065344 0.085891 -0.466156
C 0.930385 3.348004 -0.100955	C -2.227740 2.141774 -0.399118
H 1.196991 4.410549 -0.056609	C 0.095288 3.095325 -0.287996
C 3.374652 -0.859183 0.105178	C 2.144012 2.250922 -0.370356
H 4.432270 -1.134048 0.192578	C 3.117116 -0.063690 -0.489347
C -0.795526 -3.314905 -0.491415	C 2.264042 -2.112323 -0.407346
H -1.071415 -4.371280 -0.591217	C -0.972203 -4.211637 -0.364602
C -3.772816 -4.142669 -1.018623	H -0.684387 -5.263049 -0.366707
H -3.064293 -4.773278 -1.592121	C -2.246366 -3.688939 -0.406623
H -4.711724 -4.131616 -1.606459	H -3.188543 -4.236396 -0.428881
C -4.043699 -4.811342 0.349383	C -4.167227 1.004711 -0.715282
H -3.122089 -4.853984 0.955695	H -5.195119 0.711762 -0.929204
H -4.425213 -5.842341 0.223029	C -3.650042 2.272588 -0.674004
H -4.789228 -4.235022 0.925507	H -4.172834 3.212151 -0.854579
C -5.380542 -1.340445 -1.349922	C 1.013822 4.203291 -0.128967
H -5.787140 -2.239505 -1.853564	H 0.729249 5.243655 0.028093
H -5.494821 -0.509469 -2.074588	C 2.284816 3.680684 -0.184946
C -6.237670 -1.034870 -0.098981	H 3.229226 4.216131 -0.087904
H -6.195885 -1.873254 0.618787	C 4.229867 -0.993133 -0.627888
H -7.296818 -0.863451 -0.369925	H 5.273105 -0.712654 -0.773702
H -5.862767 -0.137079 0.422480	C 3.706125 -2.256090 -0.550281
C -4.024378 3.932030 -0.991898	H 4.243628 -3.203205 -0.597245
H -4.543920 3.339983 -1.771645	C -4.571276 -1.889266 -0.622080
H -3.938783 4.957428 -1.401528	C -5.557537 -1.649092 0.362886
C -4.904327 3.970080 0.279598	H -5.289903 -1.052003 1.241441
H -5.022327 2.958349 0.705364	C -6.853314 -2.172346 0.231289
H -5.910942 4.374599 0.060586	H -7.598455 -1.977365 1.012057

 Table S2. Cartesian coordinates of the calculated structures and energies

н	-4.439484 4.601273 1.057851	C -7.192844 -2.949785 -0.888461
С	-1.262827 5.553726 -0.533021	H -8.204754 -3.359695 -0.991188
н	-0.548978 5.845586 0.262208	C -6.224215 -3.197933 -1.875653
н	-2.213516 6.063862 -0.284097	H -6.479568 -3.797334 -2.758060
С	-0.748365 6.083715 -1.891831	C -4.929179 -2.673482 -1.743651
н	0.208905 5.603591 -2.161134	H -4.177737 -2.859363 -2.519049
н	-0.592136 7.178988 -1.864901	C -1.898202 4.603753 -0.313419
н	-1.469184 5.856772 -2.697761	C -2.806180 4.999026 0.697398
С	3.960033 4.177416 0.133351	H -3.064392 4.280601 1.482876
н	4.956544 4.180729 0.617008	C -3.355898 6.290161 0.710898
н	3.320368 4.836188 0.753681	H -4.050549 6.574946 1.510360
С	4.086538 4.790615 -1.280730	C -3.011145 7.217563 -0.286516
н	4.765718 4.188018 -1.910098	H -3.439752 8.226873 -0.275373
н	4.480724 5.823687 -1.237301	C -2.111701 6.840599 -1.298159
н	3.104426 4.815358 -1.784788	H -1.841357 7.553210 -2.086989
C	5.581451 1.369246 0.298177	C -1.562468 5.549488 -1.311141
H	5.796720 0.530412 0.989624	H -0.870324 5.253402 -2.107080
н	6.053557 2.262817 0.751993	C 4.614604 1.928632 -0.525674
C	6.258770 1.082619 -1.062316	C 5.581150 1.635747 0.465164
н	5 824337 0 184468 -1 535642	H 5 301541 0 980754 1 297455
н	7 346801 0 919293 -0 943230	C = 6.872167 = 2.182480 = 0.400496
н	6 111028 1 927095 -1 759193	H 7 600768 1 945366 1 185201
Ċ	4 230479 -3 887402 -0 053817	C = 7.227330 = 3.038550 = 0.655283
н	4 808993 -3 339382 0 716338	H 8 235554 3 466952 -0 705027
н	4 200057 -4 941394 0 286457	C = 6.278067 = 3.342801 = 1.645604
Ċ	4 994762 -3 817324 -1 396664	H = 6.544753 = 4.005941 = 2.477647
н	4 474076 -4 404061 -2 174568	C = 4.988050 = 2.794567 - 1.580734
н	6 023670 -4 212564 -1 296307	H 4 251304 3 025628 -2 358108
н	5 058091 -2 775348 -1 756999	C 1 930700 -4 583298 -0 331057
Ċ	1 455748 -5 525096 -0 468949	C = 1.8080700 + 3.808250 = 0.851057
н	0 562565 -5 856893 0 096849	H 1 302293 -4 994158 1 699977
н	2 314657 -6 059700 -0 017757	C = 2.331771 - 6.701617 - 0.834021
Ċ	1 307032 -5 969523 -1 942936	H 2 230312 -7 314558 1 737732
н	0 446816 -5 466383 -2 418680	(2.250512 +514550 +57752)
н	1 155502 -7 063126 -2 019902	H 3 400161 -8 232478 -0 281842
н	2 207765 -5 70/581 -2 525337	C = 3.117172 - 6.416778 - 1.444427
N	-0.095520 -0.131235 -2.263623	H 3 622775 -6 810091 -2 33/8/2
Ċ	-1 151555 -0 037680 -3 1/8366	C = 2.590/19 = 5.115/30 = 1.461971
N	-0.787428 -0.165132 4.438536	H = 2.679971 - 1.496159 - 2.361585
Ċ	0.586043 _0.357883 _4.388485	F = -31/1 56086086 Hartree
ц	1 160511 -0.404678 5 302033	L= -5441.50080580 Haitiee
د	1 017379 -0 337803 -2 072616	
с ц	2 011705 _0 /5/881 2 620522	
п С	2.011/33 -0.434001 2.033332 -2.57/671 0.182//0 2.732065	
с ц	-2.374071 0.102440 2.722903	
ц	-2 686740 1 088282 2 000033	
н Ц	-3 108764 0 204707 2 625527	
	5.150704 0.254757 5.025527 F31/6 30116338 Hartroo	
	L2140.33110330 Hallice	