Convergence Result of *t*-LSE

The gradient of $L(\Phi(V),\varepsilon)$ can be written as the following compact form:

$$\frac{\partial L(\Phi(V),\varepsilon)}{\partial \Phi(V)} = (L_P - L_Q)\Phi(V)$$

where L_p and L_Q represent

$$L_{P} = \operatorname{diag}\left(\sum_{j} p_{1j}, \sum_{j} p_{2j}, \dots, \sum_{j} p_{nj}\right) - P, \quad L_{Q} = \operatorname{diag}\left(\sum_{j} q_{1j}, \sum_{j} q_{2j}, \dots, \sum_{j} q_{nj}\right) - Q$$

The matrices P and Q are defined as

$$p_{ij} = \begin{cases} -4\lambda_{ij} \frac{\partial l_{ij} \left(\Phi(V), \varepsilon\right)}{\partial m_{ij}} & e_{ij} \in E \\ 0 & \text{else} \end{cases}, \quad q_{ij} = \begin{cases} 4\lambda_{ij} \frac{\partial l_{ij} \left(\Phi(V), \varepsilon\right)}{\partial m_{ij}} & e_{ij} \notin E \\ 0 & \text{else} \end{cases}$$

Here we prove that the search direction $\Delta = (L_p)^{-1} L_Q \Phi(V) - \Phi(V)$ is a descent direction. The inner-product between Δ and $(L_p - L_Q) \Phi(V)$ is

$$\left\langle \Delta, (L_{P} - L_{Q}) \Phi(V) \right\rangle = \operatorname{trace} \left(\Delta^{T} (L_{P} - L_{Q}) \Phi(V) \right)$$

= $-\operatorname{trace} \left(\Delta^{T} L_{P} \Delta \right)$

Thus we only need to prove that L_p is positive semi-definite. It is easy to verify that L_p is symmetric, and for any $a = [a_1, a_2, \dots, a_n]^T \in \mathbb{R}^n$,

$$a^{T}L_{P}a = -4\sum_{i=1}^{n}\sum_{j=i+1}^{n}\lambda_{ij}\frac{\partial l_{ij}\left(\Phi(V),\varepsilon\right)}{\partial m_{ij}}\left(a_{i}-a_{j}\right)^{2}$$

Since $l_{ij}(\Phi(V),\varepsilon)$ is a decreasing function of m_{ij} , λ_{ij} is positive, we have $a^T L_p a \ge 0$. Thus we have L_p is positive semi-definite. Hence, as a result of Zoutendijk's theorem [38], we are guaranteed to converge to a local optimum of $L(\Phi(V),\varepsilon)$ if we use the search direction in combination with a line-search that satisfies the Wolfe conditions, i.e., a line-search step that simultaneous satisfies the Armijo condition and the curvature condition.