Convergence Result of t-LSE

The gradient of L(®(V),e) can be written as the following compact form:
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where L, and L, represent
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The matrices P and Q are defined as
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Here we prove that the search direction A=(L,) L,®(V)-®(V) is a descent direction. The
inner-product between A and (L, —L,)®(V) is

(AL~ Ly )@ (V) = trace (AT (Lp — Ly ) &(V))
=—trace(ATL,A)
Thus we only need to prove that L, is positive semi-definite. It is easy to verify that L, is

symmetric, and forany a=[a,a,-,a,] €R",
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Since | (@(V),s) is a decreasing function of m;, J; is positive, we have a'L,a>0. Thus we

ij !
have L, is positive semi-definite. Hence, as a result of Zoutendijk’ s theorem [38], we are guaranteed
to converge to a local optimum of L(@(V),g) if we use the search direction in combination with a

line-search that satisfies the Wolfe conditions, i.e., a line-search step that simultaneous satisfies the
Armijo condition and the curvature condition.



