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Supporting Information

Numerical methods

To compute Equation (6), under the geometric configuration shown in Figure 1, in a conventional finite-
difference or finite-element way requests a structured or unstructured body-fitted mesh generation at
first. This pre-processing is not a trivial job and usually takes a serious amount of man and computer
hours to do so especially when a good-quality mesh is demanded. After discretization, Equation (6) would
end up with a large sparse linear system, which can be solved directly by some sparse solvers. However,
this approach would request huge computer memory. An alternative is to solve the linear system by
iteration methods, which do not demand large computer memory, but sometimes suffer poor convergence
due to ill-conditioning. The convergence usually can be improved by pre-conditioning, but it takes skills
to choose a good pre-conditioner and the associated iteration method. To avoid all the difficulties above,
here we embed Equation (6) into a time-dependent problem as follows,

∂Pi

∂t
= ∇ · (K∇Pi) , (S1)

and compute Equation (S1) until the steady-state is reached. Method of lines (MOL) is employed to
compute Equation (S1). The basic idea of MOL is first to semi-discretize a time-dependent problem
in space. This will end up with a set of coupled ordinary differential equations (ODE), which can be
efficiently solved by many well-developed ODE solvers.

Here we applied the highly accurate multi-block Chebyshev pseudospectral method to discretize Equa-
tion (S1) in space. We first divided the physical domain shown in Figure 1 into three parts, denoted by
sub-domains I, II, and III, as shown in Figure 2A. Since Chebyshev pseudospectral method can only be
implemented on a square domain [−1, 1]× [−1, 1], we need to employ coordinate transformation to each
physical sub-domain, denoted by (xj , yj), j ∈ {I, II, III}, to rectangular computational domains, denoted
by (ξj , ηj), with −1 ≤ ξj , ηj ≤ 1, j ∈ {I, II, III}, respectively. Sigma transformation, frequently used in
hydraulics, is applied to transform sub-domains I and III to rectangular ones.

Chebyshev pseudospectral method with Gauss-Lobatto grids (CPGL) has been a popular high-order
numerical method for spatial discretization of partial differential equations [1]. To illustrate the simple
idea of CPGL together with MOL, here we will use one-dimensional heat conduction problem as an
example

∂w

∂t
= α

∂2w

∂x2
, t ∈ (0,∞), x ∈ (−1, 1). (S2)

Note that when Equation (7) or Equation (S1) is considered, w will correspond to C or Pi. In basic
theory of CPGL, if wN (x) is the projection of w(x) into a polynomial space with degree less than or
equal to N through Chebyshev polynomials as basis functions, then w(x) can be well approximated by
wN (x) when N is large. Actually, wN (x) converges exponentially to w(x) as N → ∞, provided w(x) is
smooth enough. wN (x) can be expressed through interpolation as

wN (x) =

N
∑

k=0

w(xk)LN,k(x), (S3)

where LN,k(x) is the k-th Lagrange interpolation polynomial of degree N ,

LN,k(x) =
(x− x0)(x− x1) · · · (x− xk−1)(x − xk+1) · · · (x− xN )

(xk − x0)(xk − x1) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xN )
, (S4)

with the interpolation node xk being Chebyshev Gauss-Lobatto collocation points,

xk = cos

(

kπ

N

)

, k = 0, 1, · · · , N. (S5)
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Similarly, w′

N (x) and w′′

N (x) will be good approximations of w′(x) and w′′(x), respectively, and can
be obtained through differentiation of Equation (S3),

w′

N (x) =

N
∑

k=0

w(xk)L
′

N,k(x), (S6a)

and

w′′

N (x) =

N
∑

k=0

w(xk)L
′′

N,k(x). (S6b)

where ′ and ′′ denote the first and second derivatives. In the spirit of collocation method, we are only
interested in function values on those collocation points. Therefore,

w′

N (xl) =
N
∑

k=0

w(xk)L
′

N,k(xl), l = 0, 1, · · · , N (S7a)

and

w′′

N (xl) =

N
∑

k=0

w(xk)L
′′

N,k(xl), l = 0, 1, · · · , N, (S7b)

where L′

N,k(xl) and L′′

N,k(xl) are so-called 1st and 2nd order collocation derivative matrices usually

denoted as D(1) and D(2). The entries of D(1) and D(2) can be found in Ref. [2]. In fact, D(2) can be
well approximated by D(1)D(1).

Equations (7) and (S1) will further turn into a set of differential-algebraic equations (DAE) with the
algebraic equation part from boundary conditions which are independent of time. This DAE system can
be solved by many well-developed DAE solvers, and here we employed ode15s, a popular MATLAB script,
to solve this DAE system [3]. Besides boundary conditions mentioned above, extra interface conditions
between sub-domains rising from domain decomposition are also required. They are simply continuity
of Pi, C, and their normal derivatives. The current MOL+CPGL approach did show a great efficiency
in computing Equations (7) and (S1), since it does not request huge number of grids to gain enough
accuracy. Also Gauss-Lobatto collocation mesh tends to cluster near boundary and interface, as shown
in Figure 2A. This may also help to resolve possible boundary layer economically.

Auxiliary hydrodynamic model

In order to validate our numerical method, we further developed the hydrodynamic model in the inter-
stitial region. From Starling law, the pressure drops across arterial and venous walls are proportional to
the transmural volume flow rate as

Qa

LpS
= [(Pa − P ′

a)− σ (πa − πi)] , (S8)

and
Qv

LpS
= [(P ′

v − Pv)− σ (πi − πv)] , (S9)

where subscripts “a” and “v” are employed to indicate the capillaries at arterial and venous ends, re-
spectively. The capillary osmotic pressures are assumed to be πa = πv ≃ iCRT , with i and C denoting
the van’t Hoff factor and drug carrier concentration in capillaries, respectively. While the capillary pres-
sure Pa or Pv can be measured in practice, the interstitial hydrostatic pressures P ′

a or P ′

v in the tumor
interstitium right adjacent to vessel walls of arterial and venous microvessels respectively are yet to be
determined.
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To determine the values of P ′

a−P ′

v, we carried out intensive simulations to obtain the interstitial flow
rate (Qtissue) as an empirical function of the interstitial pressure drop (P ′

a − P ′

v), hydraulic conductivity
(K), capillary radius (r), and vascular distance (G), which was found to be

Qtissue

2.021×K × r2.745G−1.42
= (P ′

a − P ′

v), (S10)

with R2 = 0.9639. Given the vascular distribution in our simulation model, the volume flow rates across
the arterial capillary wall, interstitial space and venous capillary wall are equal to each other, i.e.,

Qa = Qv = Qtissue = Q. (S11)

By summing Equations (S8)-(S10), it yields the pressure difference between arterial and venous capillaries
yields

Pa − Pv = Q

[

2

LpS
+

1

2.021×K × r2.745G−1.42

]

. (S12)

Alternatively, the transmural and interstitial flow rate is described by

Q =
Pa − Pv

1
2.021×K×r2.745G−1.42 + 2

LpS

. (S13)

Once Q is determined by Equation (S13), P ′

a and P ′

v can then be determined from Equations (S8) and
(S9) respectively, which concludes the Dirichlet boundary conditions setup for Pi when solving Equation
(S6) or Equation (S1) alternatively. From knowledge of normal tissue parameters listed in Table S1,
we validated Equation (S13) by the computed volumetric flow rate Q = 8.08 × 10−7µm3/s, which is
comparable to the value of 9.8 × 10−7 µm3/s reported in Ref. [4]. This demonstrates the validity of
our mathematical model and numerical method. Consequently, our method can help to identify the
contributions of some key factors in the drug delivery and may facilitate the design of therapy strategies
for tumors.
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Table

Table S1. The physiological parameters of the normal tissue used to validate our

numerical method.

Property Value

Arterial and venous capillary radii (ra, rv) 5 µm

Capillary pressure at arterial end (Pa) 30 mmHg

Vascular osmotic pressures (π) 28 mmHg

Interstitial fluid pressures (Pi) -3 mmHg

Interstitial osmotic pressures (πi) 8 mmHg

Capillary pressure at venous end (Pv) 10 mmHg


