ONLINE SUPPLEMENT

ABNORMAL ALDOSTERONE PHYSIOLOGY AND CARDIO-METABOLIC RISK FACTORS

<u>AUTHORS</u>: Anand Vaidya^{*1,2}, Patricia C. Underwood^{*1,2}, Paul N. Hopkins³, Xavier Jeunemaitre⁴, Claudio Ferri⁵, Gordon H. Williams^{1,2}, Gail K. Adler^{1,2}.

<u>AFFILIATIONS:</u> *A.V. and P.C.U. contributed equally to this manuscript; ¹Division of Endocrinology, Diabetes, and Hypertension, ²Department of Medicine, Brigham and Women's Hospital and Harvard Medical School; ³Cardiovascular Genetics, Department of Internal Medicine, University of Utah School of Medicine; ⁴Centre d'Investigation Clinique Inserm/AP, Departement de Genetique, Hospital European Georges Pompidou, Paris, France; ⁵University of L'Aquila - Department MeSVA - San Salvatore Hospital - L'Aquila 67100 – Italy.

SHORT TITLE: Aldosterone Physiology and Cardio-Metabolic Risk

<u>CORRESPONDING AUTHOR:</u> Anand Vaidya MD MMSc, Brigham and Women's Hospital. Division of Endocrinology, Diabetes, and Hypertension. 221 Longwood Ave, RFB, Boston, MA, 02115. Tel: 617-525-8285, Fax: 617-732-5764. Email: <u>avaidya1@partners.org</u>

TABLES: 2 FIGURES: 0; REFS: 6

SUPPLEMENTARY TABLES:

Table S1: <u>Conventional measures of aldosterone.</u>
 The table lists methods to assess aldosterone, the expected physiologic response, and its interpretation. Measures that were utilized in this study are indicated the last column.

Measure of Aldosterone	Abbreviation	Expected Physiologic Response	Interpretation	Measured in this Study
Random serum aldosterone	Serum aldosterone	variable	Prone to intra- and inter- individual variation induced by diet, posture, circadian rhythms, and stress. ^{1, 2}	No
Random 24 hour urine aldosterone	Urinary aldosterone	variable	Prone to intra- and inter- individual variation induced by diet, posture, and stress ¹	No
Serum or urine aldosterone measures with subject in balance on a fixed liberal sodium diet	Serum aldosterone on LIB diet <i>OR</i> Urinary aldosterone on LIB diet	$\downarrow\downarrow\downarrow\downarrow$	 Maximal suppression of aldosterone, with simultaneous suppression of ANGII and PRA^{1, 3, 4} Lack of suppression may indicate autonomous aldosterone production 	Yes
Serum or urine aldosterone measures with subject in balance on a fixed restrictive sodium diet	Serum aldosterone on RES diet <i>OR</i> Urinary aldosterone on RES diet	↑ ↑	 Stimulated aldosterone, with simultaneous stimulation of ANGII and PRA¹ A blunted aldosterone stimulation may indicate abnormal adrenal responsiveness⁵ 	Yes
Serum aldosterone following an infusion of angiotensin II on	ANGII stimulated serum aldosterone on RES diet	$\uparrow \uparrow \uparrow$	• Stimulation of aldosterone, with a simultaneous suppression of endogenous PRA and ANGII, allows for	Yes

restrictive sodium diet	"uncoupling" of RAAS components ⁶		
	• Blunted stimulation may indicate abnormal adrenal responsiveness ⁶		

Table S2: Sensitivity and Specificity of Aldosterone Measurements and Risk for Cardio-Metabolic Disease. The sensitivity and specificity for detecting zero versus any one component of the MetS, and the sensitivity and specificity for detecting zero versus any combination of MetS components.

Zero versus any 1 MetS component					
Aldosterone Measurements	Sensitivity	Specificity			
LIB Aldo Serum	0.79	0.27			
RES Aldo Serum	0.65	0.21			
SASSI	0.86	0.29			
LIB Aldo Urine	0.78	0.27			
RES Aldo Urine	0.62	0.18			
SAUSSI	0.83	0.29			

Zero versus All (1, 2, 3, or 4 MetS components)					
Aldosterone Measurements	Sensitivity	Specificity			
LIB Aldo Serum	0.94	0.28			
RES Aldo Serum	0.62	0.23			
SASSI	0.91	0.28			
LIB Aldo Urine	0.86	0.27			
RES Aldo Urine	0.43	0.21			
SAUSSI	0.95	0.28			

ONLINE SUPPLEMENT REFERENCES:

- 1. Williams GH, Cain JP, Dluhy RG, Underwood RH. Studies of the control of plasma aldosterone concentration in normal man. I. Response to posture, acute and chronic volume depletion, and sodium loading. *J Clin Invest*. 1972;51:1731-1742.
- 2. Tuck ML, Dluhy RG, Williams GH. Sequential responses of the renin-angiotensinaldosterone axis to acute postural change: Effect of dietary sodium. *J Lab Clin Med*. 1975;86:754-763.
- 3. Weinberger MH, Dowdy AJ, Nokes GW, Luetscher JA. Plasma renin activity and aldosterone secretion in hypertensive patients during high and low sodium intake and administration of diuretic. *J Clin Endocrinol Metab.* 1968;28:359-371.
- 4. Williams GH, Tuck ML, Rose LI, Dluhy RG, Underwood RH. Studies of the control of plasma aldosterone concentration in normal man. 3. Response to sodium chloride infusion. *J Clin Invest*. 1972;51:2645-2652.
- 5. Christlieb AR, Hickler RB, Lauler DP, Williams GH. Hypertension with inappropriate aldosterone stimulation. *N Engl J Med.* 1969;281:128-131.
- 6. Shoback DM, Williams GH, Moore TJ, Dluhy RG, Podolsky S, Hollenberg NK. Defect in the sodium-modulated tissue responsiveness to angiotensin ii in essential hypertension. *J Clin Invest.* 1983;72:2115-2124.