### SUPPLEMENT SECTION

#### **METHODS**

Malek, et al. study comparison. SAM result data from the rat study by Malek, et al. [1] was retrieved from the TIGR Programs for Genomic Applications (PGA) (http://pga.tigr.org/). Nonblank GenBank IDs representing website the significantly differentially-expressed genes between normoxia and hypoxia conditions for male Dahl SS rats were extracted and translated into a set of identifiers representative Entrez Gene using the DAVID tool (http://niaid.abcc.ncifcrf.gov) [2]. Using а similar process, significantly differentially-expressed probe sets derived using SAM were translated into representative Entrez Gene identifiers for two sets of the present study: normoxia versus hypoxia and normoxia versus hypoxia/SU5416. The common distinct Entrez Gene identifiers between two experimental sets of the present study and the normoxia versus hypoxia set from Malek, et al. was then derived using the comparison tool of the Whitehead Institute (http://jura.wi.mit.edu/bioc/tools/ compare.html) and these numbers are displayed in Supplemental Table 4 and **5**. The probability of finding common genes between these group is calculated using the hypergeometric distribution (assuming arrays contain > 15,000 genes in rat).

Geraci, et al. study comparison. The list of significantly differentially-expressed genes in *H. sapiens* for PH was taken from Table 3 and Supplement Table 1 of Geraci, et al.'s paper [3] and were manually translated from gene names to

Entrez Gene identifiers. The GeneCards database (http://www.genecards.org/index.shtml) was used to retrieve orthologuous rat gene symbols and IDs. Genes from the normoxia versus hypoxia and normoxia versus hypoxia/SU5416 analyses sets were similarly translated as above using DAVID [2] into Entrez Gene identifiers, selecting only those associated with the species *rattus norvegicus, rattus rattus,* and *rattus sp.* The resulting lists of Entrez gene identifiers of the study by Geraci, *et al.* were compared to those or our study using the comparison tool of the Whitehead Institute as above.

**Girgis**, *et al.* **study comparison.** Similar to the previous study comparisons, data from a previous study examining the effects of simvastatin on a rat model of hypoxia [4] was compared with the results of this study. All identifiers were converted to Entrez Gene identifiers using DAVID [2], using only results falling into the "rattus norvegicus" and "rattus sp." species. Specifically, three comparisons were conducted: first, the hypoxia versus hypoxia/simvastatin pair was compared to the hypoxia/SU6516 versus hypoxia/SU6516/sorafenib. Additionally, the normoxia versus hypoxic condition was compared to our normoxia versus hypoxia and normoxia versus hypoxia/SU5416 datasets.

**Gharib**, *et al.* study comparison. Differentially-expressed mice probes derived by Gharib, *et al.* [5] were downloaded from http://physiolgenomics.physiology.org/cgi/content/full/00265.2004/DC1. Results are presented as 5,141 probe ids (from the NIA 15K mouse cDNA chip [6, 7]

representing 1,752 distinct mice genes divided in 9 clusters) and translated the probe IDs into gene symbols using the annotation file of NIA 15K chip found at http://lqsun.grc.nia.nih.gov/cDNA/15k.html. A Mouse to rat ortholog translation table "HMD Rat2.rpt" downloaded from was ftp://ftp.informatics.jax.org/pub/reports/. Two sets of genes were retrieved from the differential expressed genes spanning 35 days of experiments by examining their 7 expression patterns: normoxia versus hypoxia group, and hypoxia versus re-oxygenation group. The first set, normoxia versus hypoxia, (1,133 genes with 738 of them having rat orthologs) was selected from clusters 2,4,5,6 and 7. These clusters show significant expression change (beyond the 1<sup>st</sup> and 3<sup>rd</sup> quartile of expression value for each cluster) between day 1 (normoxia stage) and day 21 (hypoxia stage). This hypoxia-driven set was used to compare to two of our sets including normoxia versus hypoxia and normoxia versus hypoxia/SU5416. The second set, hypoxia versus re-oxygenation, (405 genes) with 266 having rat orthologs), was selected from clusters 2 and 7 and compared to our hypoxia/SU5416 versus hypoxia/SU5416/sorafenib. These clusters show significant expression change (beyond the 1<sup>st</sup> and 3<sup>rd</sup> quartile of expression value for each cluster) between day 21 (hypoxia stage) and day 35 (re-oxygenation stage). In addition, the set was filtered to include only the specific mouse genes for which the average normalized expression value between the two periods changed by more than 0.1 on a log scale.

### RESULTS

### SUPPLEMENT TABLE 4. Number of biological processes significantly overrepresented in differentially-expressed genes derived from three comparison sets.

|                                                                     | Count of distinct GO terms under the broad GO categories |           |                  |  |
|---------------------------------------------------------------------|----------------------------------------------------------|-----------|------------------|--|
| GO Functional Category                                              | N vs H                                                   | N vs H-SU | H-Su vs H-SU-Sor |  |
| Development<br>(GO:0032502)                                         | 69                                                       | 73        | 12               |  |
| Immune System<br>(GO:0006952,<br>GO:0002376)                        | 19                                                       | 24        | 5                |  |
| Muscle Contraction or<br>Development<br>(GO:0006937,<br>GO:0007517) | 2                                                        | 5         | 3                |  |
| Cell Metabolism<br>(GO:0044237,<br>GO:0008152)                      | 90                                                       | 65        | 18               |  |
| Cell Differentiation (GO:0030154)                                   | 36                                                       | 39        | 6                |  |
| Cell Proliferation<br>(GO:0008283)                                  | 7                                                        | 8         | 3                |  |

SUPPLEMENT TABLE 5. 57 common hypoxia-driven distinct genes across the differentially-expressed set between normoxia and hypoxia from the Malek, *et al.* study and the differentially-expressed set between normoxia versus hypoxia of our study.

| Entrez Gene ID | Gene Symbol |  |
|----------------|-------------|--|
| 24440          | Hbb         |  |
| 24772          | Cxcl12      |  |
| 24791          | Sparc       |  |
| 24875          | Vipr1       |  |
| 24914          | Lox         |  |
| 25054          | Ntrk2       |  |
| 25330          | Lipe        |  |
| 25339          | Npr3        |  |
| 25532          | Rab4a       |  |
| 25644          | Bmp6        |  |
| 25655          | Gja4        |  |
| 29147          | Jag2        |  |
| 29393          | Col1a1      |  |
| 54292          | Rgs12       |  |
| 56765          | Plvap       |  |

| 58948            | Dlgh3                |  |
|------------------|----------------------|--|
| 60357            | Prom1                |  |
| 60423            | Slc28a2              |  |
| 64155            | Scn7a                |  |
| 65155            | Alas1                |  |
| 79252            | Adamts1              |  |
| 81640            | Amd1                 |  |
| 81660            | Gatm                 |  |
| 83834            | Nrn1                 |  |
| 84407            | Cdh11                |  |
| 84575            | Fads1                |  |
| 85332            | Prkcdbp              |  |
| 89784            | ldi1                 |  |
| 113900           | Nupr1                |  |
| 116501           | Slc9a3r2             |  |
| 245956           | Scn3b                |  |
| 245963           | Egfl7                |  |
| 246138           | Ly6b                 |  |
| 246327           | Prim1                |  |
| 289083           | RGD1308584_predicted |  |
| 290905           | Col4a1               |  |
| 293186           | Xlkd1 predicted      |  |
| 295490           | Emcn                 |  |
| 298006           | Ccl21b               |  |
| 299357           | RGD1359202           |  |
| 306628           | Col4a2_predicted     |  |
| 307861           | Terf2ip              |  |
| 308393           | RGD1560435_predicted |  |
| 308508           | Uble1b               |  |
| 309804           | Cdc2l6_predicted     |  |
| 310811           | Palmd                |  |
| 311071           | Zfhx1b               |  |
| 311209           | Tp53i11_predicted    |  |
| 313722           | Spsb1_predicted      |  |
| 315259           | Prickle1             |  |
| 315655           | Rdx                  |  |
| 315970           | LOC315970            |  |
| 360551           | RGD1563179_predicted |  |
| 360914           | Plac8_predicted      |  |
| 361303           | Lims2                |  |
| 432392           | Fut8                 |  |
| 641523 LOC641523 |                      |  |

SUPPLEMENT TABLE 6. 35 common distinct genes across the differentially-expressed set between normoxia and hypoxia from the Malek, *et al.* study and the differentially-expressed set between normoxia versus hypoxia-SU5416 of our study.

| Entrez Gene ID         | Gene Symbol     |  |
|------------------------|-----------------|--|
| 24626                  | Pde4b           |  |
| 24772                  | Cxcl12          |  |
| 24914                  | Lox             |  |
| 25043                  | Eln             |  |
| 25054                  | Ntrk2           |  |
| 25532                  | Rab4a           |  |
| 25644                  | Bmp6            |  |
| 25661                  | Fn1             |  |
| 29147                  | Jag2            |  |
| 29266                  | Mcpt2           |  |
| 29393                  | Col1a1          |  |
| 29436                  | Tfpi            |  |
| 54294                  | Rgs5            |  |
| 60423                  | SIc28a2         |  |
| 65204                  | Cnn1            |  |
| 79252                  | Adamts1         |  |
| 81640                  | Amd1            |  |
| 83834                  | Nrn1            |  |
| 84050                  | Enpp2           |  |
| 84348 Cmkor1           |                 |  |
| 84407 Cdh11            |                 |  |
| 85251                  | Col18a1         |  |
| 89784                  | ldi1            |  |
| 113900                 | Nupr1           |  |
| 116501                 | Slc9a3r2        |  |
| 192262                 | C1s             |  |
| 245963                 | Egfl7           |  |
| 246327                 | Prim1           |  |
| 293186                 | Xlkd1_predicted |  |
| 293823                 | RGD1311350      |  |
| 294335                 | Susd2_predicted |  |
| 298006                 | Ccl21b          |  |
| 313722                 | Spsb1_predicted |  |
| 360785 Ap1s1_predicted |                 |  |
| 361303                 | Lims2           |  |

SUPPLEMENT TABLE 7. Overlap of Genbank IDs differentially-expressed between normoxia versus hypoxia from Girgis, *et al.* study and our hypoxia-driven gene set resulted in 20 common genes.

٦

| Entrez  |                                                     |
|---------|-----------------------------------------------------|
| Gene ID | Gene Name                                           |
| 29517   | SERUM/GLUCOCORTICOID REGULATED KINASE               |
|         | SERINE (OR CYSTEINE) PROTEINASE INHIBITOR, CLADE E, |
| 24617   | MEMBER 1                                            |
| 64511   | FARNESYLTRANSFERASE, CAAX BOX, BETA                 |
| 24654   | PHOSPHOLIPASE C, BETA 1                             |
| 29602   | PROSTAGLANDIN F2 RECEPTOR NEGATIVE REGULATOR        |
| 81640   | S-ADENOSYLMETHIONINE DECARBOXYLASE 1                |
| 140868  | FATTY ACID BINDING PROTEIN 5, EPIDERMAL             |
|         | REGULATOR OF G-PROTEIN SIGNALING 19 INTERACTING     |
| 83823   | PROTEIN 1                                           |
| 24791   | SECRETED ACIDIC CYSTEINE RICH GLYCOPROTEIN          |
| 83834   | NEURITIN                                            |
| 293186  | EXTRA CELLULAR LINK DOMAIN-CONTAINING 1 (PREDICTED) |
| 24825   | TRANSFERRIN                                         |
| 25339   | NATRIURETIC PEPTIDE RECEPTOR 3                      |
| 293701  | ESTROGEN RELATED RECEPTOR, ALPHA                    |
|         | SOLUTE CARRIER FAMILY 29 (NUCLEOSIDE                |
| 63997   | TRANSPORTERS), MEMBER 1                             |
|         | OXIDIZED LOW DENSITY LIPOPROTEIN (LECTIN-LIKE)      |
| 140914  | RECEPTOR 1                                          |
| 25741   | PHOSPHOFRUCTOKINASE, LIVER, B-TYPE                  |
| 246138  | LYMPHOCYTE ANTIGEN 6 COMPLEX, LOCUS B               |
| 245963  | EGF-LIKE DOMAIN 7                                   |
| 117183  | RESPONSE GENE TO COMPLEMENT 32                      |

SUPPLEMENT TABLE 8. Overlap of Genbank IDs differentially-expressed between normoxia versus hypoxia from Girgis, *et al.* study and our hypoxia/SU5416-driven gene set resulted in 17 common genes.

٦

| Entrez  |                                                     |
|---------|-----------------------------------------------------|
| Gene ID | Gene Name                                           |
|         | SERINE (OR CYSTEINE) PROTEINASE INHIBITOR, CLADE E, |
| 24617   | MEMBER 1                                            |
| 64511   | FARNESYLTRANSFERASE, CAAX BOX, BETA                 |
| 81640   | S-ADENOSYLMETHIONINE DECARBOXYLASE 1                |
| 24373   | FOLLISTATIN                                         |
| 140868  | FATTY ACID BINDING PROTEIN 5, EPIDERMAL             |
| 25427   | CYTOCHROME P450, SUBFAMILY 51                       |
| 24654   | PHOSPHOLIPASE C, BETA 1                             |
| 83834   | NEURITIN                                            |
| 293186  | EXTRA CELLULAR LINK DOMAIN-CONTAINING 1 (PREDICTED) |
| 24825   | TRANSFERRIN                                         |
| 64369   | PHOSPHATIDIC ACID PHOSPHATASE 2A                    |
|         | AMILORIDE BINDING PROTEIN 1 (AMINE OXIDASE, COPPER- |
| 65029   | CONTAINING)                                         |
|         | SOLUTE CARRIER FAMILY 29 (NUCLEOSIDE                |
| 63997   | TRANSPORTERS), MEMBER 1                             |
|         | OXIDIZED LOW DENSITY LIPOPROTEIN (LECTIN-LIKE)      |
| 140914  | RECEPTOR 1                                          |
| 24626   | PHOSPHODIESTERASE 4B, CAMP SPECIFIC                 |
| 245963  | EGF-LIKE DOMAIN 7                                   |
| 117183  | RESPONSE GENE TO COMPLEMENT 32                      |

# SUPPLEMENT TABLE 9. 47 common hypoxia-driven genes between the differentially-expressed rat ortholog set (from mice) in the Gharib, *et al.* study and differentially-expressed rat genes from our study with a similar time period (3 weeks).

|                     | Mouse             |         |            |                                                                                                |  |
|---------------------|-------------------|---------|------------|------------------------------------------------------------------------------------------------|--|
| Rat genes in        | genes in          | Cluster |            | O                                                                                              |  |
| our study           | Gharib et al.     | Id      | Clone ID   | Gene Name                                                                                      |  |
| Plat                | Plat              | 4       | H3080H11   | plasminogen activator, tissue                                                                  |  |
| Акар2               | Акар2             | 6       | H3090C12   | A kinase (PRKA) anchor protein 2                                                               |  |
| Fads1               | Fads1             | 4       | H3031E12   | fatty acid desaturase 1                                                                        |  |
| Akt1                | Akt1              | 4       | H3020C06   | thymoma viral proto-oncogene 1                                                                 |  |
| _ predicted         | Slc35e3           | 5       | H3093E08   | solute carrier family 35, member E3                                                            |  |
| Kit                 | Kit               | 6       | H3136A01   | kit oncogene                                                                                   |  |
| Nr3c1               | Nr3c1             | 6       | H3147F05   | nuclear receptor subfamily 3,<br>group C, member 1                                             |  |
| Por                 | Por               | 7       | H3090A06   | P450 (cytochrome) oxidoreductase                                                               |  |
| Kif23_<br>predicted | Kif23             | 4       | H3068A08   | kinesin family member 23                                                                       |  |
|                     |                   |         |            | CTD (carboxy-terminal domain, RNA                                                              |  |
| Ctdspl_             | Ctdopl            | 5       |            | polymerase II, polypeptide A)                                                                  |  |
| Predicted<br>Bas12  | Bas12             | 5       | H3001F04   | regulator of C protoin signaling 12                                                            |  |
| Rysiz               | Rysiz             | 0       | H3155E02   | ROD1 regulator of differentiation 1 (S                                                         |  |
| Rod1                | Rod1              | 6       | H3001B02   | pombe)                                                                                         |  |
| Fkbp5               | Fkbp5             | 2       | H3138G12   | FK506 binding protein 5                                                                        |  |
| Tef                 | Tef               | 6       | H3028E11   | thyrotroph embryonic factor                                                                    |  |
| Aldh3b1             | Aldh3b1           | 4       | H3149A06   | aldehyde dehydrogenase 3<br>family, member B1                                                  |  |
| Fntb                | Fntb              | 5       | H3001H04   | farnesyltransferase, CAAX box, beta                                                            |  |
| Sfpq                | Sfpq              | 2       | H3066C06   | splicing factor proline/glutamine<br>rich (polypyrimidine tract binding<br>protein associated) |  |
| Tekt2               | Tekt2             | 5       | H3084B10   | tektin 2                                                                                       |  |
| Atp1b1              | Atp1b1            | 5       | H3005E10   | ATPase, Na+/K+ transporting,<br>beta 1 polypeptide                                             |  |
| Procr               | Procr             | 4       | H3022E10   | protein C receptor, endothelial                                                                |  |
| Eno1                | Eno1              | 4       | H3027E08   | enolase 1, alpha non-neuron                                                                    |  |
| Cldn7               | Cldn7             | 5       | H3084E04   | claudin 7                                                                                      |  |
| Adcy3               | Adcy3             | 5       | H3113D06   | adenylate cyclase 3                                                                            |  |
| RGD1307736          | 2410014A08<br>Rik | Δ       | H3110B11   |                                                                                                |  |
| 100501069           | Golga4            | 7       | H3037A05   | dolai autoantigen, golain subfamily a 4                                                        |  |
| Tcf3                | Colga-            | 1       | 1100017400 |                                                                                                |  |
| predicted           | Tcf3              | 5       | H3004D03   | transcription factor 3                                                                         |  |
|                     |                   |         |            | solute carrier family 28                                                                       |  |
| 01.00.0             |                   |         |            | (sodium-coupled nucleoside                                                                     |  |
| Sic28a2             | Sic28a2           | 4       | H3014C12   | transporter), member 2                                                                         |  |
| Pdlim/              | Pdlim/            | 6       | H3082E06   | PDZ and LIM domain /                                                                           |  |
| Camk2g              | Camk2g            | 5       | H3093E05   | protein kinase II gamma                                                                        |  |

| Lmcd1_                    |         |   |          |                                                                           |
|---------------------------|---------|---|----------|---------------------------------------------------------------------------|
| predicted                 | Lmcd1   | 4 | H3134B01 | LIM and cysteine-rich domains 1                                           |
| Mt1a                      | Mt1     | 4 | H3020C02 | metallothionein 1                                                         |
| Coro1b                    | Coro1b  | 4 | H3018F07 | coronin, actin binding protein 1B                                         |
| Crebbp                    | Crebbp  | 6 | H3075G02 | CREB binding protein                                                      |
| Phactr1                   | Phactr1 | 5 | H3018G12 | phosphatase and actin regulator 1                                         |
| Atrx                      | Atrx    | 6 | H3067F06 | alpha thalassemia/mental retardation<br>syndrome X-linked homolog (human) |
| Adipor2                   | Adipor2 | 7 | H3137B07 | adiponectin receptor 2                                                    |
| Aplp2                     | Aplp2   | 7 | H3154H04 | amyloid beta (A4) precursor-<br>like protein 2                            |
| Lamc1                     | Lamc1   | 4 | H3044A05 | laminin, gamma 1                                                          |
| Agtrap                    | Agtrap  | 5 | H3027C07 | angiotensin II, type I receptor-<br>associated protein                    |
| Dcxr                      | Dcxr    | 7 | H3098H02 | dicarbonyl L-xylulose reductase                                           |
| Ucp2                      | Ucp2    | 4 | H3136E12 | uncoupling protein 2, mitochondrial                                       |
| RGD1564237<br>_ predicted | Gpihbp1 | 2 | H3153H06 | GPI-anchored HDL-binding protein 1                                        |
| Bgn                       | Bgn     | 4 | H3127D03 | Biglycan                                                                  |
| Zadh1                     | Zadh1   | 6 | H3010E06 | zinc binding alcohol dehydrogenase,<br>domain containing 1                |
| Col4a1                    | Col4a1  | 4 | H3112C01 | procollagen, type IV, alpha 1                                             |
| Stk4_<br>predicted        | Stk4    | 7 | H3080D05 | serine/threonine kinase 4                                                 |
| MGC105830                 | Rab1b   | 6 | H3025A10 | RAB1B, member RAS oncogene family                                         |

## SUPPLEMENT TABLE 10. 26 shared genes between the differential expressed genes between normoxia and hypoxia/SU5416 from our study to the orthologous rat genes found in the Gharib, *et al.* dataset between normoxia (day 1) versus hypoxia (21 days) in mice.

| Rat genes in<br>our study | Mouse<br>genes in<br>Gharib, <i>et al.</i> | Cluster<br>ID | Clone ID | Gene Name                                                                                      |  |
|---------------------------|--------------------------------------------|---------------|----------|------------------------------------------------------------------------------------------------|--|
| Rrbp1_<br>predicted       | Rrbp1                                      | 4             | H3009F11 | ribosome binding protein 1                                                                     |  |
| C1qa                      | C1qa                                       | 4             | H3139F06 | complement component 1, q<br>subcomponent, alpha polypeptide                                   |  |
| Fn1                       | Fn1                                        | 4             | H3116A10 | fibronectin 1                                                                                  |  |
| Kit                       | Kit                                        | 6             | H3136A01 | kit oncogene                                                                                   |  |
| Nr3c1                     | Nr3c1                                      | 6             | H3147F05 | nuclear receptor subfamily 3,<br>group C, member 1                                             |  |
| Por                       | Por                                        | 7             | H3090A06 | P450 (cytochrome) oxidoreductase                                                               |  |
| Kif23_<br>predicted       | Kif23                                      | 4             | H3068A08 | kinesin family member 23                                                                       |  |
| Carhsp1                   | Carhsp1                                    | 4             | H3112B05 | calcium regulated heat stable protein 1                                                        |  |
| Vldlr                     | VldIr                                      | 5             | H3096H12 | very low density lipoprotein receptor                                                          |  |
| Fntb                      | Fntb                                       | 5             | H3001H04 | farnesyltransferase, CAAX box, beta                                                            |  |
| Sfpq                      | Sfpq                                       | 2             | H3066C06 | splicing factor proline/glutamine rich<br>(polypyrimidine tract binding<br>protein associated) |  |
| Eno1                      | Eno1                                       | 4             | H3027E08 | enolase 1, alpha non-neuron                                                                    |  |
| Actr2                     | Actr2                                      | 6             | H3002C02 | ARP2 actin-related protein 2<br>homolog (yeast)                                                |  |
| RGD1307736                | 2410014A08<br>Rik                          | 4             | H3119B11 | RIKEN cDNA 2410014A08 gene                                                                     |  |
| LOC501069                 | Golga4                                     | 7             | H3037A05 | golgi autoantigen, golgin subfamily a, 4                                                       |  |
| Ugt1a1                    | Ugt1a1                                     | 2             | H3155C10 | UDP glycosyltransferase 1 family,<br>polypeptide A5                                            |  |
| Slc28a2                   | Slc28a2                                    | 4             | H3014C12 | solute carrier family 28 (sodium-<br>coupled nucleoside transporter),<br>member 2              |  |
| Pdlim7                    | Pdlim7                                     | 6             | H3082E06 | PDZ and LIM domain 7                                                                           |  |
| Mt1a                      | Mt1                                        | 4             | H3020C02 | metallothionein 1                                                                              |  |
| Adipor2                   | Adipor2                                    | 7             | H3137B07 | adiponectin receptor 2                                                                         |  |
| Cnn1                      | Cnn1                                       | 4             | H3053E04 | calponin 1                                                                                     |  |
| Car8                      | Car8                                       | 6             | H3115C01 | carbonic anhydrase 8                                                                           |  |
| C1r                       | C1r                                        | 7             | H3136D05 | complement component 1,<br>r subcomponent                                                      |  |
| Ugt1a2                    | Ugt1a2                                     | 2             | H3155C10 | UDP glycosyltransferase 1 family,<br>polypeptide A5                                            |  |
| Bgn                       | Bgn                                        | 4             | H3127D03 | biglycan                                                                                       |  |
| MGC105830                 | Rab1b                                      | 6             | H3025A10 | RAB1B, member RAS oncogene family                                                              |  |

## SUPPLEMENT TABLE 11. Search for differentially-expressed genes common to the two models of PH of our current study and previous PH studies.

| Previous Study                               | # Genes in common (probability) |                           |                    |  |  |  |  |
|----------------------------------------------|---------------------------------|---------------------------|--------------------|--|--|--|--|
| Conditions                                   | Normoxia vs Hypoxia             | Normoxia vs H-SU          | Total Unique Genes |  |  |  |  |
| Malek , <i>et al.</i><br>Normoxia vs Hypoxia | 57 (p<10 <sup>-11</sup> )       | 35 (p<10 <sup>-10</sup> ) | 72                 |  |  |  |  |
| Geraci, <i>et al.</i><br>Normoxia vs PH      | 4 (NS)                          | 1(NS)                     | 5                  |  |  |  |  |
| Girgis, <i>et al.</i><br>Normoxia vs Hypoxia | 20 (p=0.026)                    | 17 (p<10 <sup>-5</sup> )  | 25                 |  |  |  |  |
| Gharib, <i>et al.</i><br>Normoxia vs Hypoxia | 47 (p=0.016)                    | 26 (p=0.021)              | 58                 |  |  |  |  |

NS= not statistically significant. (See Supplement Methods for description of the calculation of the probability).

SUPPLEMENT FIGURE 1: Original R-derived Heatmap of 38 significant genes. This is the unmodified heatmap where the NA values for gene names have not been referenced to their underlying annotation and not replaced with appropriate descriptions.



SUPPLEMENT FIGURE 2. GO terms of "Cell proliferation" significantly overrepresented by differentially-expressed genes across three comparison sets. The network tree illustrates the relationship of GO terms via a GO hierarchy (used to construct the comparisons in Figure 8) under a single overarching functional category, *Cell proliferation*. The majority of biological processes that compromise *Cell proliferation* include the regulation of proliferation of B lymphycytes, fibroblasts, neuroblasts, and epithelial cells.



Normoxia vs. H-SU5416

Normoxia vs. Hypoxia

H-SU5416 vs. H-SU5416-Sor

### REFERENCES

- 1. Malek, R.L., et al., *Physiogenomic resources for rat models of heart, lung and blood disorders.* Nat Genet, 2006. **38**(2): p. 234-9.
- 2. Dennis, G., Jr., et al., *DAVID: Database for Annotation, Visualization, and Integrated Discovery.* Genome Biol, 2003. **4**(5): p. P3.
- 3. Geraci, M.W., et al., *Gene expression patterns in the lungs of patients with primary pulmonary hypertension: a gene microarray analysis.* Circ Res, 2001. **88**(6): p. 555-62.
- 4. Girgis, R.E., et al., *Differential gene expression in chronic hypoxic pulmonary hypertension: effect of simvastatin treatment.* Chest, 2005. **128**(6 Suppl): p. 579S.
- 5. Gharib, S.A., et al., *Global gene annotation analysis and transcriptional profiling identify key biological modules in hypoxic pulmonary hypertension*. Physiol Genomics, 2005. **22**(1): p. 14-23.
- 6. Kargul, G.J., et al., *Verification and initial annotation of the NIA mouse 15K cDNA clone set.* Nat Genet, 2001. **28**(1): p. 17-8.
- 7. Tanaka, T.S., et al., *Genome-wide expression profiling of mid-gestation placenta and embryo using a 15,000 mouse developmental cDNA microarray.* Proc Natl Acad Sci U S A, 2000. **97**(16): p. 9127-32.