SUPPLEMENTAL DATA

Supplemental Figure 1: Properties of the screen

A. GFP/RFP ratio at three different time points from one micro titer plate. The log of the GFP and RFP ratio at day, 0, 1, 2, and 3 is plotted. The data points representing pyrvinium pamoate are indicated.

B. Regression analysis of the screen. The slope of the compounds shown in panel A is shown. Substances outside the 3 fold standard deviations were selected for further analysis.

C. Regression slope of all compounds in the screen.

Supplemental Figure 2: Screen results

A. Schematic representation of the number of hits from the two stable cell lines.B. List of 22 compounds that changes alternative splicing in both cell lines in the primary screen.

Supplemental Figure 3: CLUSTAL W alignment of HTR2c pre-RNAs.

The sequences corresponding to the regulated RNA shown in Figure 6 were aligned with CLUSTAL W. Changes are highlighted in yellow.

Supplemental Figure 4: RT-PCR validation of changes in alternative splicing caused by pyrvinium pamoate after six hours.

The highest-ranking changes caused by six hours treatment of cells with pyrvinium pamoate were tested by RT-PCR using primers in the flanking constitutive exons.

Supplemental Figure 5: RT-PCR validation of Changes in alternative splicing caused by pyrvinium pamoate after sixteen hours.

The highest-ranking changes caused by six hours treatment of cells with pyrvinium pamoate were tested by RT-PCR using primers in the flanking constitutive exons.

Supplemental Figure 6: Pathways changed by pyrvinium pamoate

Supplemental Figure 7: Excel files showing the results of the array experiments

List of compounds active in both cell lines

(-)-Isoproterenol hydrochloride Ajmalicine Corynanthine hydrochloride Diltiazem Doxorubicin hydrochloride Ergocryptine-alpha Fluvastatin Harmaline Hexetidine Lysergol Menadione Mycophenolic acid Nitrarine dihydrochloride Phenazopyridine Pyrvinium pamoate Quinacrine Rauwolscine hydrochloride Reserpine S(+)-Terguride Scoulerine Simvastatin Yohimbinic acid monohydrate

Supplemental Fi	igure 3: Alignment of the known serotonin receptor 2C pre-mRNAs
human	TACGTAATCCTATTGAGCATAGCCGTTTCAATTCGCGGGACTAAGGCCATCATGAAGATTG 60
chimp	TACGTAATCCTATTGAGCATAGCCGTTTCAATTCGCGGACTAAGGCCATCATGAAGATTG 60
gorilla	TACGTAATCCTATTGAGCATAGCCGTTTCAATTCGCGGACTAAGGCCATCATGAAGATTG 60
orangutan	TACGTAATCCTAT-GAGCATAGCCGTTTCAATTCGCGGACTAAGGCCATCATGAAGATTG 59
qibbon	TACGTAATCCTATTGAGCATAGCCGTTTCAATTCGCGGACTAAGGCCATCATGAAGATTG 60
rhesus	TACGTAATCCTATTGAGCATAGCCGTTTCAATTCGCGGACTAAGGCCATCATGAAGATTG 60
marmoset	TACGTAATCCTATTGAGCATAGCCGTTTCAATTCGCGGACTAAGGCCATCATGAAGATTG 60
mouse	TACGTAATCCTATTGAGCATAGCCG <mark>G</mark> TTCAATTCGCGGACTAAGGCCATCATGAAGATTG 60
rat	TACGTAATCCTATTGAGCATAGCCGGCTTCAATTCGCGGGACTAAGGCCATCATGAAGATTG 60
Nakedmole	TACGTAATCCTATTGAGCATAGTCGTTTCAATTCGCGGACTAAGGCCATCATGAAGATTG 60
rabbit	TACGTAATCCTATTGAGCATAGCCGTTTCAATTCGCGGGACTAAGGCCATCATGAAGATTG 60
pig	TACGTAATCCTATTGAGCATAGCCGTTTCAATTCA
COW	TACGTAATCCTATTGAGCATAGCCGTTTCAATTCA
horse	TACGTAATCCTATTGAGCATAGCCGTTTCAATTCGCGGGACTAAGGCCATCATGAAGATTG 60
dog	TACGTAATCCTATTGAGCATAGCCGTTTCAATTCGCGGACTAAGGCCATCATGAAGATTG 60
panda	TACGTAATCCTATTGAGCATAGCCGTTTCAATTCGCGGACTAAGGCCATCATGAAGATTG 60
microbat	TACGTAATCCTATTGAGCATAGCCGTTTCAATTCGCGGACTAAGGCCATCATGAAGATTG 60
	*********** ******** ** ******* *******
human	CTATTGTTTGGGCAATTTCTATAGGTAAATAAAACTTTTTGGCCATAAGAATTGCAGCGG 120
chimp	CTATTGTTTGGGCAATTTCTATAGGTAAATAAAACTTTTTTGGCCATAAGAATTGCAGCGG 120
gorilla	CTATTGTTTGGGCAATTTCTATAGGTAAATAAAACTTTTTGGCCATAAGAATTGCAGCGG 120
orangutan	CTATTGTTTGGGCAATTTCTATAGGTAAAT <mark>G</mark> AAACTTTTTTGGCCATAAGAATTGCAGCGG 119
gibbon	CTATTGTTTGGGCAATTTCTATAGGTAAATAAAACTTTTTTGGCCATAAGAATTGCAGCGG 120
rhesus	CTATTGTTTGGGCAATTTCTATAGGTAAATAAAACTTTTTGGCC <mark>G</mark> TAAGAATTGCAGCGG 120
marmoset	CTATTGTTTGGGCAATTTCTATAGGTAAATAAAACTTTTTGGCCGTAAGAATTGCAGCGG 120
mouse	CCATCGTTTGGGCAATATCAATAGGTAATTATACCTGGCCA-TAGAATTGCAGCGG 115
rat	CCATCGTTTGGGCAATATCAATAGGTAAATATACCTGGCCA-TAGAATTGCAGCGG 115
Nakedmole	CTATTGTTTGGGCAATTTCTCTCTGGGTAAATAAACC-CTCTGGGCCATTAGAATTGCAACGG 119
rabbit	CTAT <mark>C</mark> GTTTGGGCAATTTCTATAGGTAA <mark>C</mark> TAAA <mark>CT</mark> TT <mark>C</mark> TTGGCCAT <mark>T</mark> AGAATTGCAGCGG 120
pig	CTATTGTTTGGGCAATTTCT <mark>T</mark> TAGGTAA <mark>TG</mark> AA <mark>CT</mark> -TT <mark>C</mark> TTGGCCA <mark>GT</mark> AGAATTGCAGCGG 119
COW	CTATTGTTTGGGCAATTTCT <mark>T</mark> TAGGTAA <mark>T</mark> TAACT-TTCTTGGCCAGTAGAATTGCAGCGG 119
horse	CTAT <mark>A</mark> GTTTGGGCAATTTCTATAGGTAA <mark>T</mark> TAA <mark>CT</mark> -TT <mark>C</mark> TTGGCCAT <mark>T</mark> AGAATTGCAGCGG 119
dog	CTATTGTTTGGGCAATTTC <mark>G</mark> ATAGGTAAATAA <mark>CG</mark> -TT <mark>C</mark> TTGGCCAT <mark>T</mark> AGAATTGCAGCGG 119
panda	CTATTGTTTGGGCAATTTCGATAGGTAAATAACT-TTCTTGGCCATTAGAATTGCAGCGG 119
microbat	CTAT <mark>C</mark> GTTTGGGCAATTTCTATAGGTAAAT <mark>G</mark> ACT-TT <mark>CC</mark> TGGCCAT <mark>T</mark> AGAATTGCA <mark>AG</mark> GG 119
	* ** ********* ** *********************
human	CTATGCTCAATACTTTCGGATTATGTA 147
chimp	CTATGCTCAATACTTTCGGATTATGTA 147
gorilla	CTATGCTCAATACTTTCGGATTATGTA 147
orangutan	CTATGCTCAATACTTTCGGATTATGTA 146
gibbon	CTATGCTCAATACTTTCGGATTATGTA 147
rhesus	CTATGCTCAATACTTTCGGATTATGTA 147
marmoset	CTATGCTCAATACTTTCGGATTATGTA 147
mouse	CTATGCTCAATAC <mark>C</mark> TTCGGATTATGTA 142
rat	CTATGCTCAATAC <mark>C</mark> TTCGGATTATGTA 142
Nakedmole	CTATGCTCAATAC <mark>C</mark> TTCGGATTATGTA 146
rabbit	CTATGCTCAATAC <mark>C</mark> TTCGGATTATGTA 147
pig	CTATGCTCAATACTTTCGGATTATGTA 146
COW	CTATGCTCAATACTTTCGGATTATGTA 146
horse	CTATGCTCAATACTTTCGGATTATGTA 146
dog	CTATGCTCAATACTTTCGGATTATGTA 146
panda	CTATGCTCAATACTTTCGGATTATGTA 146
microbat	CTATGCTCAATAC <mark>C</mark> TTCGGATTATGTA 146
	*********** ***********

#: Rank in the cassette exon array data

155/94

100/84

RRP45 300 200 100

211/163

200

100

300 200

100

300 200

100

hnRPDL

319/214

SC35

321/221

212/125

USP15

187/124

276/222

162/102

After 6 hours

176 gene changes 379 changes in splicing

After 18 hours

1120 cassette exons5284 regulated genes

Regulated genes

p53 signaling pathway Spliceosome Axon guidance Basal cell carcinoma Inositol phosphate metabolism Valine, leucine and isoleucine degradation Pathwavs in cancer Cell cycle Fc gamma Rmediated phagocytosis Endocytosis ECM-receptor interaction Small cell lung cancer Amino sugar and nucleotide sugar metabolism RNA degradation Fructose and mannose metabolism Hedgehog signaling pathway Glycosaminoglyca n biosynthesis chondroitin sulfate Melanogenesis Fatty acid metabolism Lysine degradation Basal transcription factors Propanoate metabolism Phosphatidylinosit

ol signaling system Prostate cancer MAPK signaling pathway Sulfur metabolism Glycosylphosphati dylinositol(GPI)anchor biosynthesis Glycerolipid metabolism Glycosaminoglyca n biosynthesis heparan sulfate NOD-like receptor signaling pathway Bladder cancer Wnt signaling pathway N-Glycan biosynthesis PPAR signaling pathway Base excision repair Calcium signaling pathway Adipocytokine signaling pathway Pyrimidine metabolism Ether lipid metabolism Neurotrophin signaling pathway Glycerophospholip id metabolism Purine metabolism