Supplementary Information S1 (Box) Modelling the effects of buffers in realistic coupling regimes.

A lot of insight into the mechanisms of coupling between Ca^{2+} channels and Ca^{2+} sensors can be obtained by modelling the diffusion of Ca^{2+} and its reaction with buffers. As in other fields of Neuroscience, the Hopfield quote "build it, and you understand it" perfectly applies. How can one model the Ca^{2+} transient?

In a simple scenario, the steady-state solution to the linearized reaction-diffusion problem is obtained analytically^{1,2}. In this framework, the Ca^{2+} concentration ([Ca^{2+}]) can be described by a simple equation, which is comprised of a 1 / r term (representing diffusion) and an exponential term (representing buffering):

$$[Ca^{2+}] = \frac{i_{Ca}}{4\pi F D_{Ca}} \, 1 / r \, \exp(-r / \lambda)$$
(Eq. 1)

with $\lambda = \sqrt{D_{Ca}} / (k_{on} [B]),$

where i_{Ca} is the Ca²⁺ current, F is the Faraday constant, D_{Ca} is the diffusion coefficient of Ca²⁺, r is radial distance from a source, λ is the length constant, k_{on} is the Ca²⁺-binding rate of the buffer, and [B] is the concentration of the buffer¹.

Although the linear approach represents a useful approximation for short distances from the source, it does not account for the time course of the Ca^{2+} transient, the phenomenon of buffer saturation, and the presence of fixed and mobile buffers¹.

The limitations can be overcome by obtaining the time-dependent solution to the full reaction-diffusion equations³⁻⁷. This can be done by numerically solving a set of partial differential equations, containing the Ca²⁺ and buffer concentrations as a function of space and time, as well as several partial derivatives.

Everything starts from Fick's first and second law of diffusion⁸. Fick's first law relates the diffusive <u>flux</u> to the concentration field. In the simplest possible form in one spatial dimension, the first law is

$$J = D_{Ca} \frac{\partial [Ca^{2+}]}{\partial x}, \qquad (Eq. 2)$$

where J is the flux in units mol $s^{-1} m^{-2}$. From the law of mass conservation and Fick's first law, Fick's second law can be derived².

$$\frac{\partial [Ca^{2+}]}{\partial t} = \frac{\partial J}{\partial x} = \frac{\partial}{\partial x} \left(D_{Ca} \frac{\partial [Ca^{2+}]}{\partial x} \right)$$
(Eq. 3)

Equation 3 gives the partial differential equation that has to be solved. Equation 2 gives the boundary condition near the source. In addition, a second boundary condition has to be implemented remote from the source. This is usually a reflective boundary condition, which is given as $\partial [Ca^{2+}] / \partial x$ = 0 for $x \rightarrow x_{max}$. As there is no gradient at this distance, Ca²⁺ cannot escape beyond this point. Furthermore, initial conditions have to be appropriately chosen. For example, $[Ca^{2+}]$ at t = 0 is set to the resting value. The partial differential equations can be solved numerically, e.g. using NDSolve of Mathematica^{3,4,9}.

Finally, the effect of the Ca²⁺ transient on transmitter release has to be simulated, using models of transmitter release derived from Ca²⁺ uncaging experiments¹⁰⁻¹⁴. Based on a 6- to 8-state reaction scheme, a set of ordinary differential equations can be formulated, which can be solved numerically.

The cookbook recipe (Eq. 1 - 3) describes the backbone of the simulations, defining the Ca²⁺ transients from a point source in the absence of buffers. For a more realistic simulation, several extensions have to be made. In the presence of buffers, the right hand side of equation 3 has to be extended by the sum of reaction terms. To simulate Ca²⁺ transients originating from Ca²⁺ channel clusters or other distributed sources, the one-dimensional simulations have to be extended into two or three dimensions⁵⁻⁷.

Early studies have used several different approximations, such as the steady-state excess buffer approximation (EBA; buffer concentration is so high that it changes little during Ca²⁺ inflow) and rapid buffer approximation (RBA; buffers are so fast that they are in chemical equilibrium with Ca²⁺ at every point in time and space⁷). As computer power has increased, these approximations have become unnecessary.

- Neher, E. Usefulness and limitations of linear approximations to the 1. understanding of Ca⁺⁺ signals. *Cell Calcium* **24**, 345-357 (1998). Crank, J. *The Mathematics of Diffusion* (Clarendon Press, Oxford,
- 2. 1975).

- 3. Bucurenciu, I., Kulik, A., Schwaller, B., Frotscher, M. & Jonas, P. Nanodomain coupling between Ca²⁺ channels and Ca²⁺ sensors promotes fast and efficient transmitter release at a cortical GABAergic synapse. *Neuron* **57**, 536–545 (2008).
- Bucurenciu, I., Bischofberger, J. & Jonas, P. A small number of open Ca²⁺ channels trigger transmitter release at a central GABAergic synapse. *Nature Neurosci.* 13, 19-21 (2010).
- 5. Matveev, V., Zucker, R. S. & Sherman, A. Facilitation through buffer saturation: constraints on endogenous buffering properties. *Biophys. J.* **86**, 2691-2709 (2004).
- 86, 2691-2709 (2004).
 Klingauf, J. & Neher, E. Modeling buffered Ca²⁺ diffusion near the membrane: implications for secretion in neuroendocrine cells. *Biophys. J.* 72, 674-690 (1997).
- Smith, G. D. Modelling local and global calcium signals using reactiondiffusion equations. In Computational Neuroscience, E. de Schutter, ed. (Boca Raton, FL, CRC Press 2001), pp. 49 – 85.
- 8. Fick, A. Über Diffusion. Ann. Physik **170**, 59-86 (1855).
- 9. Trott, M. *The Mathematica guidebook for numerics* (Springer, New York, 2006).
- 10. Schneggenburger, R. & Neher, E. Intracellular calcium dependence of transmitter release rates at a fast central synapse. *Nature* **406**, 889-893 (2000).
- 11. Bollmann, J.H., Sakmann, B. & Borst J.G.G. Calcium sensitivity of glutamate release in a calyx-type terminal. *Science* **289**, 953-957 (2000).
- Lou, X., Scheuss, V. & Schneggenburger, R. Allosteric modulation of the presynaptic Ca²⁺ sensor for vesicle fusion. *Nature* **435**, 497-501 (2005).
- 13. Sun, J. *et al.* A dual-Ca²⁺ -sensor model for neurotransmitter release in a central synapse. *Nature* **450**, 676-682 (2007).
- Sakaba, T. Two Ca²⁺-dependent steps controlling synaptic vesicle fusion and replenishment at the cerebellar basket cell terminal. *Neuron* 57, 406-419 (2008).