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Supplementary Information S1 (Box) Modelling the effects of buffers in
realistic coupling regimes.

A lot of insight into the mechanisms of coupling between Ca** channels and
Ca?* sensors can be obtained by modelling the diffusion of Ca* and its
reaction with buffers. As in other fields of Neuroscience, the Hopfield quote
“build it, and you understand it” perfectly applies. How can one model the
Ca** transient?

In a simple scenario, the steady-state solution to the linearized
reaction-diffusion problem is obtained analytically'?. In this framework, the
Ca** concentration ([Ca?*]) can be described by a simple equation, which is
comprised of a 1 / r term (representing diffusion) and an exponential term
(representing buffering):

[Ca®] = — '« 1/r exp(-r/) (Eq. 1)

aF Ca
with A=V Dca / (kon [B]),

where ica is the Ca?* current, F is the Faraday constant, D¢, is the diffusion
coefficient of Ca*, r is radial distance from a source, A is the length constant,
kon is the Ca?*-binding rate of the buffer, and [B] is the concentration of the
buffer’.

Although the linear approach represents a useful approximation for
short distances from the source, it does not account for the time course of the
Ca?* transient, the phenomenon of buffer saturation, and the presence of
fixed and mobile buffers'.

The limitations can be overcome by obtaining the time-dependent
solution to the full reaction-diffusion equations®’. This can be done by
numerically solving a set of partial differential equations, containing the Ca®*
and buffer concentrations as a function of space and time, as well as several
partial derivatives.

Everything starts from Fick’s first and second law of diffusion®. Fick’s
first law relates the diffusive flux to the concentration field. In the simplest
possible form in one spatial dimension, the first law is

a C 2+
J=D,, [ai 1 (Eq. 2)
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where J is the flux in units mol s™' m™. From the law of mass conservation and
Fick's first law, Fick’'s second law can be derived’.

Eq. 3
ot ox Ox 0x (Eq-3)

[Ca™] =£=1(D a a[&:”])
Equation 3 gives the partial differential equation that has to be solved.
Equation 2 gives the boundary condition near the source. In addition, a
second boundary condition has to be implemented remote from the source.
This is usually a reflective boundary condition, which is given as 9 [Ca*']/ 9 x
= 0 for X — Xmax. As there is no gradient at this distance, Ca** cannot escape
beyond this point. Furthermore, initial conditions have to be appropriately
chosen. For example, [Ca?*] at t = 0 is set to the resting value. The partial
differential equations can be solved numerically, e.g. using NDSolve of
Mathematica®*°.

Finally, the effect of the Ca** transient on transmitter release has to be
simulated, using models of transmitter release derived from Ca*" uncaging
experiments'®'*. Based on a 6- to 8-state reaction scheme, a set of ordinary
differential equations can be formulated, which can be solved numerically.

The cookbook recipe (Eq. 1 — 3) describes the backbone of the
simulations, defining the Ca®" transients from a point source in the absence of
buffers. For a more realistic simulation, several extensions have to be made.
In the presence of buffers, the right hand side of equation 3 has to be
extended by the sum of reaction terms. To simulate Ca?* transients originating
from Ca?" channel clusters or other distributed sources, the one-dimensional
simulations have to be extended into two or three dimensions™’.

Early studies have used several different approximations, such as the
steady-state excess buffer approximation (EBA; buffer concentration is so
high that it changes little during Ca** inflow) and rapid buffer approximation
(RBA; buffers are so fast that they are in chemical equilibrium with Ca®" at
every point in time and space’). As computer power has increased, these
approximations have become unnecessary.
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