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Supplementary Information S1 (Box) Modelling the effects of buffers in 
realistic coupling regimes.  
 
A lot of insight into the mechanisms of coupling between Ca2+ channels and 
Ca2+ sensors can be obtained by modelling the diffusion of Ca2+ and its 
reaction with buffers. As in other fields of Neuroscience, the Hopfield quote 
“build it, and you understand it” perfectly applies. How can one model the 
Ca2+ transient?  

In a simple scenario, the steady-state solution to the linearized 
reaction-diffusion problem is obtained analytically1,2. In this framework, the 
Ca2+ concentration ([Ca2+]) can be described by a simple equation, which is 
comprised of a 1 / r term (representing diffusion) and an exponential term 
(representing buffering):  
 

[Ca2+]  =   1 / r   exp(-r / λ)                                                        (Eq. 1) 

 

with           λ = √ DCa  / (kon [B]),                  

 
where iCa is the Ca2+ current, F is the Faraday constant, DCa is the diffusion 
coefficient of Ca2+, r is radial distance from a source, λ is the length constant, 
kon is the Ca2+-binding rate of the buffer, and [B] is the concentration of the 
buffer1.  

Although the linear approach represents a useful approximation for 
short distances from the source, it does not account for the time course of the 
Ca2+ transient, the phenomenon of buffer saturation, and the presence of 
fixed and mobile buffers1.  

The limitations can be overcome by obtaining the time-dependent 
solution to the full reaction-diffusion equations3-7. This can be done by 
numerically solving a set of partial differential equations, containing the Ca2+ 
and buffer concentrations as a function of space and time, as well as several 
partial derivatives.  
 Everything starts from Fick’s first and second law of diffusion8. Fick’s 
first law relates the diffusive flux to the concentration field. In the simplest 
possible form in one spatial dimension, the first law is  
 

,         (Eq. 2) 
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where J is the flux in units mol s-1 m-2. From the law of mass conservation and 
Fick's first law, Fick’s second law can be derived2.  
 

       (Eq. 3) 

 
Equation 3 gives the partial differential equation that has to be solved. 
Equation 2 gives the boundary condition near the source. In addition, a 
second boundary condition has to be implemented remote from the source. 
This is usually a reflective boundary condition, which is given as [Ca2+] / x 
= 0 for x → xmax. As there is no gradient at this distance, Ca2+ cannot escape 
beyond this point. Furthermore, initial conditions have to be appropriately 
chosen. For example, [Ca2+] at t = 0 is set to the resting value. The partial 
differential equations can be solved numerically, e.g. using NDSolve of 
Mathematica3, 4, 9.  

Finally, the effect of the Ca2+ transient on transmitter release has to be 
simulated, using models of transmitter release derived from Ca2+ uncaging 
experiments10-14. Based on a 6- to 8-state reaction scheme, a set of ordinary 
differential equations can be formulated, which can be solved numerically.  

The cookbook recipe (Eq. 1 – 3) describes the backbone of the 
simulations, defining the Ca2+ transients from a point source in the absence of 
buffers. For a more realistic simulation, several extensions have to be made. 
In the presence of buffers, the right hand side of equation 3 has to be 
extended by the sum of reaction terms. To simulate Ca2+ transients originating 
from Ca2+ channel clusters or other distributed sources, the one-dimensional 
simulations have to be extended into two or three dimensions5-7.  

Early studies have used several different approximations, such as the 
steady-state excess buffer approximation (EBA; buffer concentration is so 
high that it changes little during Ca2+ inflow) and rapid buffer approximation 
(RBA; buffers are so fast that they are in chemical equilibrium with Ca2+ at 
every point in time and space7). As computer power has increased, these 
approximations have become unnecessary.  
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