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The individual Euler equation: The current value Hamiltonian is

H = log(c) + γ log(β) + λ [(r + µ− δ)k + ŵ − (1 + ψβ)c] .

The first order conditions are

1

c
= λ(1 + ψβ) (A.1)

γ

β
= λψc (A.2)

λ̇ = (ρ+ δ − r)λ. (A.3)

From equation (A.2) the birth rate follows as

β =
γ

(1− γ)ψ
. (A.4)

Taking the time derivative of equation (A.1) and plugging it into equation (A.3) yields

ċ

c
= r − ρ− δ

which is the familiar individual Euler equation.

Aggregate capital and aggregate consumption in the Romer (1990) case: Note

that we set β ≡ µ in this case. Following Heijdra and van der Ploeg (2002) and differen-

tiating aggregate consumption and aggregate capital with respect to time yields

Ċ(t) = µN

[∫ t

−∞
ċ(t0, t)e

µ(t0−t)dt0 − µ
∫ t

−∞
c(t0, t)e

µ(t0−t)dt0

]
+ µNc(t, t)− 0

= µNc(t, t)− µC(t) + µN

∫ t

−∞
ċ(t0, t)e

−µ(t−t0)dt0, (A.5)

K̇(t) = µN

[∫ t

−∞
k̇(t0, t)e

µ(t0−t)dt0 − µ
∫ t

−∞
k(t0, t)e

µ(t0−t)dt0

]
+ µNk(t, t)− 0

= µN k(t, t)︸ ︷︷ ︸
=0

−µK(t) + µN

∫ t

−∞
k̇(t0, t)e

−µ(t−t0)dt0. (A.6)
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From the wealth constraint of an individual it follows that

K̇(t) = −µK(t) + µN

∫ t

−∞
[(r + µ− δ)k(t0, t) + ŵ(t)− (1 + ψµ)c(t0, t)] e

−µ(t−t0)dt0

= −µK(t) + (r + µ− δ)µN
∫ t

−∞
k(t0, t)e

−µ(t−t0)dt0

−µ(1 + ψµ)N

∫ t

−∞
c(t0, t)e

−µ(t−t0)dt0 +N

(
µŵe−µ(t−t0)

µ

)t
−∞

= −µK(t) + (r + µ− δ)K(t)− (1 + ψµ)C(t) + Ŵ (t)

= (r − δ)K(t)− (1 + ψµ)C(t) + Ŵ (t)

= (r − δ)K(t)−
(

1 +
γ

1− γ

)
C(t) + Ŵ (t)

which is the law of motion for aggregate capital. In the last line we used that µ = γ/((1−
γ)ψ) in the Romer (1990) case. Reformulating an agent’s optimization problem subject

to its lifetime budget restriction, stating that the present value of lifetime consumption

expenditures have to be equal to the present value of lifetime non-interest income plus

initial assets, yields the optimization problem

max
c(t0,τ)

U =

∫ ∞
t

e(ρ+µ)(t−τ) [log(c(t0, τ)) + γ log(µ)] dτ

s.t. k(t0, t) +

∫ ∞
t

ŵ(τ)e−R
A(t,τ)dτ = (1 + ψµ)

∫ ∞
t

c(t0, τ)e−R
A(t,τ)dτ,

(A.7)

where RA(t, τ) =
∫ τ
t (r(s) + µ− δ)ds. The FOC to this optimization problem is

1

c(t0, τ)
e(ρ+µ)(t−τ) = λ(t)(1 + ψµ)e−R

A(t,τ).

In period (τ = t) we have

c(t0, t) =
1

λ(t)(1 + ψµ)
.

Therefore we can write

1

c(t0, τ)
e(ρ+µ)(t−τ) =

1

c(t0, t)
e−R

A(t,τ)

c(t0, t)e
(ρ+µ)(t−τ) = c(t0, τ)e−R

A(t,τ).

Integrating and using equation (A.7) yields∫ ∞
t

c(t0, t)e
(ρ+µ)(t−τ)dτ =

∫ ∞
t

c(t0, τ)e−R
A(t,τ)dτ

c(t0, t)

ρ+ µ

[
−e(ρ+µ)(t−τ)

]∞
t

=
1

1 + ψµ

[
k(t0, t) +

∫ ∞
t

ŵ(τ)e−R
A(t,τ)dτ

]
⇒ c(t0, t) =

ρ+ µ

1 + ψµ
[k(t0, t) + h(t)] , (A.8)
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where h ≡
∫∞
t ŵ(τ)e−R

A(t,τ)dτ refers to human wealth, that is, non-interest wealth of in-

dividuals. Human wealth does not depend on the date of birth because productivity and

lump-sum transfers are age independent. The above calculations show that optimal con-

sumption in the planning period is proportional to total wealth with a marginal propensity

to consume of (ρ+ µ)/(1 + ψµ). Aggregate consumption evolves according to

C(t) ≡ µN

∫ t

−∞
c(t0, t)e

µ(t0−t)dt0

= µN

∫ t

−∞
eµ(t0−t) ρ+ µ

1 + ψµ
[k(t0, t) + h(t)] dt0

=
ρ+ µ

1 + ψµ
[K(t) +H(t)] , (A.9)

where H(t) = Nh(t) is aggregate human wealth. Note that newborns do not own capital

because there are no bequests. Therefore

c(t, t) =
ρ+ µ

1 + ψµ
h(t) (A.10)

holds for each newborn individual. Putting equations (A.5), (A.9), (A.10) and the indi-

vidual Euler equation together yields

Ċ(t) = µ
ρ+ µ

1 + ψµ
H(t)− µ ρ+ µ

1 + ψµ
[K(t) +H(t)] +

µN

∫ t

−∞
(r − ρ− δ)c(t0, t)e−µ(t−t0)dt0

= µ
ρ+ µ

1 + ψµ
H(t)− µ ρ+ µ

1 + ψµ
[K(t) +H(t)] + (r − ρ− δ)C(t)

⇒ Ċ(t)

C(t)
= r − ρ− δ − µ ρ+ µ

1 + ψµ

K(t)

C(t)

= r − ρ− δ − γ

(1− γ)ψ

ρ+ γ/((1− γ)ψ)

1 + γ/(1− γ)

K(t)

C(t)

= r − ρ− δ − γ

(1− γ)ψ

C(t)− c(t, t)N
C(t)︸ ︷︷ ︸
∈(0,1)

which is the aggregate Euler equation that differs from the individual Euler equation by

the term −µ [C(t)− c(t, t)N ] /C(t).

Aggregate capital and aggregate consumption in the Jones (1995a) case: Using

our demographic assumptions for the Jones (1995a) case, we can write the size of a cohort
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born at t0 < t at time t as

N(t0, t) = βL(t0)e−µ(t−t0)

= βL(0)ent0e−µ(t−t0)

= βL(0)eβt0e−µt.

Integrating over all cohorts yields the population size as

L(t) =

∫ t

−∞
βL(0)eβt0e−µtdt0

= L(0)e(β−µ)t.

Following Buiter (1988) and differentiating aggregate consumption and aggregate capital

with respect to time yields:

Ċ(t) =

[∫ t

−∞
βL(0)e−µtċ(t0, t)e

β(t0) − µβL(0)e−µtc(t0, t)e
βt0dt0

]
+ βL(0)e−µtc(t, t)eβt − 0

= βL(0)e−µtc(t, t)eβt − µC(t) + βL(0)e−µt
∫ t

−∞
ċ(t0, t)e

βt0dt0,

(A.11)

K̇(t) =

[∫ t

−∞
βL(0)e−µtk̇(t0, t)e

β(t0) − µβL(0)e−µtk(t0, t)e
βt0dt0

]
+ βL(0)e−µtk(t, t)eβt − 0

= βL(0)e−µt k(t, t)︸ ︷︷ ︸
=0

eβt − µK(t) + βL(0)e−µt
∫ t

−∞
k̇(t0, t)e

βt0dt0.

(A.12)

From the individual wealth constraint it follows that

K̇(t) = −µK(t) + βL(0)e−µt
∫ t

−∞
[(r + µ− δ)k(t0, t) + ŵ(t)− (1 + ψβ)c(t0, t)] e

βt0dt0

= −µK(t) + (r + µ− δ)βL(0)e−µt
∫ t

−∞
k(t0, t)e

βt0dt0

−β(1 + ψβ)L(0)e−µt
∫ t

−∞
c(t0, t)e

βt0dt0 + L(0)e−µt
(
βŵ(t)eβt0

β

)t
−∞

= −µK(t) + (r + µ− δ)K(t)− (1 + ψβ)C(t) + Ŵ (t)

= (r − δ)K(t)− (1 + ψβ)C(t) + Ŵ (t)

which is the law of motion for aggregate capital. Note that the definition of aggregate

non-interest income is Ŵ (t) = L(0)ŵ(t)eβ−µ. By making use of equation (A.8) for β 6= µ,
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we can write aggregate consumption as

C(t) ≡ βL(0)e−µt
∫ t

−∞
c(t0, t)e

βt0dt0

= βL(0)e−µt
∫ t

−∞
eβt0

ρ+ µ

1 + ψβ
[k(t0, t) + h(t)] dt0

=
ρ+ µ

1 + ψβ
K(t) + βL(0)e−µt

ρ+ µ

1 + ψβ

∫ t

−∞
eβt0h(t)dt0

=
ρ+ µ

1 + ψβ
[K(t) +H(t)] . (A.13)

Note that the following definitions apply: K(t) = βL(0)e−µt
∫ t
−∞ e

βt0k(t0, t)dt0 andH(t) =

L(0)e(β−µ)th(t). Newborns do not own capital because there are no bequests, therefore

c(t, t) =
ρ+ µ

1 + ψβ
h(t) (A.14)

holds for each newborn individual. Putting equations (A.11), (A.13), (A.14) and the

individual Euler equation together yields

Ċ(t) = β
ρ+ µ

1 + ψβ
H(t)− µ ρ+ µ

1 + ψβ
[K(t) +H(t)] +

βL(0)e−µt
∫ t

−∞
(r − ρ− δ)c(t0, t)eβt0dt0

= β
ρ+ µ

1 + ψβ
H(t)− µ ρ+ µ

1 + ψβ
[K(t) +H(t)] + (r − ρ− δ)C(t)

⇒ Ċ(t)

C(t)
= r − ρ− δ +

β(ρ+ µ)H(t)− µ(ρ+ µ) [K(t) +H(t)]

(ρ+ µ) [K(t) +H(t)]

= r − ρ− δ +
γ

(1− γ)ψ

H(t)

K(t) +H(t)︸ ︷︷ ︸
Ω′∈(0,1)

−µ

which is the aggregate Euler equation that differs from the individual Euler equation by

the term γH(t)/ [(K(t) +H(t))(1− γ)ψ] − µ. Note that we substituted optimal fertility

decisions of households for β in the last line.

Operating profits for intermediate goods producers: Profits of intermediate goods

producers can be rewritten as

π =
r

α
x− rx

= (1− α)α
Y

A
.

5



Labor input in both sectors: We determine the fraction of workers employed in the

final goods sector and in the R&D sector by making use of the equilibrium condition (28)

in the main text

pAλAφ = (1− α)
Y

LY

LY =
(r − δ)A1−φ

αλ

⇒ LA = L− (r − δ)A1−φ

αλ
,

where the last line follows from labor market clearing, that is, L = LA + LY .

Rewriting production per capital unit: Production per capital unit can be written

as a function of the interest rate and the intermediate share in final goods production

r = αp = α2 Y

K
,

⇒ Y

K
=

r

α2
(A.15)

The BGP growth rate in the Jones (1995a) case with demography: The growth

rate of the economy is

g =
Ȧ

A
=

λLA
A1−φ .

Taking logarithms yields

log g = log(λ) + log(LA)− (1− φ) log(A).

Taking the derivative of this expression with respect to time and noting that along the

BGP the growth rate is constant, yields

ġ

g
= n− (1− φ)g = 0

⇒ g =
n

1− φ

=
γ/((1− γ)ψ)− µ

1− φ
.
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