Supplemental data

In vivo study for BBB disruption

Representative FITC-dextran perfusion in cortical capillary networks from mice 4 h after MCA occlusion, comparing non-ischemic area (A) to ischemic area (B). Bar = 200µm.

C57BL6/J male mice of 10 weeks (n=4) were anesthetized with isoflurane mixed with air (4% for induction, 1% during surgery), under spontaneous respiration for focal cerebral ischemia. Intraluminal middle cerebral artery (MCA) occlusion was achieved by introducing a monofilament 7.0 (Doccol corporation) through the right internal carotid up to the bifurcation with the MCA. The monofilament was maintained for 4 hours and then was removed to allow reperfusion. Immediately after reperfusion, 200 mL of an intravascular fluorescent marker (FITC-Dextran, Molecular weight: 70000 Da) at a concentration of 12.5 mg/mL was injected through the right internal carotid. One minute after the injection, the mice were sacrificed with intraperitoneal injection of a lethal dose of pentobarbital. The brain was removed and fixed with 3.7% paraformaldehyde overnight and then with 20% sucrose for 24 hours. The brain was frozen in OCT and sectioned (10 mm) at -20°C. Intraparenchymal extravasation of FITC-Dextran was evaluated by fluorescence microscopy. Animal care and experimental protocols were approved by the Animal Ethics Committee of the INSERM-University Paris 7, authorization 2010/13/698-0002

Comparison of permeability of the blood brain barrier (BBB) model used in our study (hCMEC/D3 cells) compared to previously reported results of ¹Weksler et al. (FASEB J. 2005; 19:1872-4) using the same model, and to that of human umbilical vein endothelial cells (HUVEC). Results were obtained using 70kDa-Dextran-FITC in triplicate in 3 independent experiments.

PMN alone

Determination of gelatinolytic activity of MMP-9 in the supernatant of PMNs alone (1.10⁶ cells/mL) treated for 4 hours with HDLs (0.4g/L) under control (normoxic and normo-glycemic conditions) or OGD (oxygenglucose deprivation) conditions (n \geq 3). After gelatin zymography, the lysis areas corresponding to MMP-9 were quantified by densitometry and expressed as % of MMP-9 detected in the supernatant of PMNs activated by 1µM fMLP (1.10⁶ cells/mL). Results were obtained in triplicate in 3 independent experiments.

A- purified elastase (EL) on cellular fibronectin

Western Blot for detection of soluble fibronectin/fragments in the supernatant of cells after treatment with A, HDLs (0.4g/L) \pm EL (100nM) and B, PMNs (1.10⁶ cells/mL) \pm alpha-1 anti-trypsin (AAT, 1µM) for 4 hours under OGD (oxygen-glucose deprivation) or non-OGD conditions. Results are representative of three independent experiments. Plain arrows show more intense degradation fragments in OGD versus non-OGD conditions. Dashed arrow shows a decreased amount of high molecular weight fragments of fibronectin.

B-AAT PMN-induced fibronectin degradation

Determination of elastase activity in the supernatant of endothelial cells incubated with PMNs (1.106 cells/mL) \pm AAT (1µM) for 4 hours under OGD and non-OGD conditions. No elastase activity could be detected without PMNs. Results are expressed as % of elastase activity detected in the supernatant of endothelial cells + PMNs. *P<0.05 vs all groups.

Immunofluorescent staining of VE-Cadherin (red) after treatment with HDLs (0.4g/L) or AAT (1 μ M) ± PMN (1.10⁶ cells/mL) for 4 hours under OGD and non-OGD conditions. Nuclei are stained with DAPI (blue). Results are representative of three independent experiments.

Determination of MPO levels by ELISA in the supernatant of endothelial cells incubated with PMNs (1.10^{6} cells/mL) ± AAT (1μ M) for 4 hours under OGD and non-OGD conditions.

In vitro effects of low density lipoproteins (LDL) on permeability measured in a BBB model (hCMEC/D3 cells) under oxygen-glucose deprivation (OGD) condition. Cells were incubated with HDL (0.4g/L) or LDL (0.4g/L) \pm PMNs (1.10⁶ cells/mL) for 4 hours (n≥3 for each condition). Results are presented as mean \pm SD.

OGD Elastase

OGD Elastase HDL

OGD Elastase LDL

Immunofluorescent staining of VE-Cadherin (red) after treatment with elastase ± HDLs (0.4g/L) or LDL (0.4g/L) for 4 hours under OGD and non-OGD conditions. Nuclei are stained with DAPI (blue). Results are representative of three independent experiments.

Elastase

Elastase HDL

Elastase LDL

OGD Elastase

OGD Elastase HDL

OGD Elastase LDL

Immunofluorescent staining of VE-Cadherin (red) after treatment with elastase ± HDLs (0.4g/L) or LDL (0.4g/L) for 4 hours under OGD and non-OGD conditions. Nuclei are stained with DAPI (blue). Results are representative of three independent experiments.