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1. Introduction 

In Liao et al. B, we described how stochasticity in the timings of conversion for some phenotypes 

corresponds to stochasticity in the duration of quiescence.  Supplemental section 2 explains that this 

situation guarantees that curves on metronomograms have an initial slope that is vertical. Given this 

condition, curves must explore the region fS > fP above the central diagonal where reduction of target cell 

population is achieved. 

 

Cell-cycle-specific phenotypes are only one example of a mechanism by which the time scales for 

phenotypic fluctuations and the time scales for the cell cycle can be related.  In Liao et al. B, we provided 

broader examples of how these time scales could be similar. Supplemental section 3 explains that, in these 

situations, curves on the metronomogram may often be near the central fS = fP diagonal, raising the 

possibility of beneficial schedules for therapy.  

 

2. Cell-cycle specificity 

In Liao et al. B, we explained that the variable duration of time that elapses before a quiescent cell enters 

another phase of the cell cycle can be equal to the variable duration of time that elapses before that cell 

undergoes a particular phenotypic transition.  This relationship holds for a variety of phenotypes that are 

specific to particular cell-cycle phases.  For the example of cell-cycle specific drug-sensitivity, we can 

demonstrate an interesting result for therapeutic scheduling.  If the proliferative state is fully drug-

sensitive, then a population of cells is guaranteed to be depleted by a cell-cycle specific drug delivered 

frequently.  This is true even if the cells predominantly remain in a drug-resistant state and only 

occasionally attempt to proliferate.   

In the following subsections we provide biological background information and then develop our 

argument by mathematically analyzing the shape of curves on the metronomogram.   

2.1. Drugs that target specific phases of the cell cycle 

Figure S 1(a) is a cartoon of the cell-cycle indicating passage through the phases G1, S, G2, and M, with 

rest in the quiescent phase G0 (in some literature, the label G1 is used to refer to both G1 and G0 as a single 

state).  Classic antimetabolites, such as methotrexate and cytarabine, interfere with DNA synthesis (S 
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phase) [1].  Anthracyclines, such as doxorubicin, are thought to exert cytotoxic effects by poisoning 

topoisomerase II, with particular activity in G2/M [2].  Paclitaxel stabilizes microtubules, disrupting 

mitosis [3], [4].  In Figure S 1(a), M-phase is highlighted in orange to denote sensitivity to paclitaxel 

while other phases of the cell cycle, particularly “quiescence,” i.e. G0, are shaded blue to indicate relative 

insensitivity.  In contrast to cells in culture in vitro, some cells in physiological and pathological 

conditions can rest for weeks in G0 (counter-clockwise arrow) before occasionally entering the “cycling” 

phase (clockwise arrow) and dividing once, maybe a couple times.  The cell-division time is roughly the 

time spent waiting in G0 until entering the comparatively brief proliferative state.  The time scale for an 

initially drug-resistant cell to achieve drug-sensitivity is likewise the time spent waiting in G0 before 

entering M-phase.  In this example, the time scale for switching to the drug-sensitive phenotype is 

comparable to the cell-division time because the drug-sensitive phenotype is associated with the brief 

replicative phase of the cell cycle.  Other phenotypes associated with specific phases of the cell cycle in a 

similar way will also be described by fluctuations with time scales defined by the cell cycle time.   

2.2. Qualitative form of curves on the metronomogram for cell-cycle specific drugs 

Many of the mathematical techniques that will be helpful for studying and utilizing dynamic 

heterogeneity in cancer therapy have been used extensively in mathematical biology to study the special 

case of cell-cycle-specificity.  In this supplemental section we provide a simplified calculation.  We refer 

the interested reader to additional mathematical work modeling the cell cycle [5], [6], and variation in 

drug-sensitivity with cell-cycle phase [7], [4].  

To discuss clinical consequences of cell-cycle specificity using the metronomogram, we express 

the cartoon in Figure S 1(a) quantitatively in terms of a mathematical model for the dynamics of the drug-

sensitive population, S, and the drug-resistant population, R   

 

 
dS

dt
cRR rS mS cS S  (1) 

  

 

 
dR

dt
rR mR cR R cSS.  (2) 

  

 

As previously described in Liao et al. A, a drug-sensitive cell replicates with rate coefficient rS, dies 

(mortality) with rate coefficient mS, and converts to the drug-resistant phenotype with rate coefficient cS.  

The drug-resistant population is described by analogous rate coefficients rR, mR, and cR.  This model is 

illustrated in Figure S 2.  Figure S 1(b) illustrates one parameter set we can use to convert the cartoon in 

Figure S 1(a) into rate coefficients for (1) and (2). The counter-clockwise loop describing G0 in Figure S 

1(a) is represented by the counter-clockwise loop associated with phenotypic interconversion passing into 

and out from the “resting” or nonproliferative drug-resistant state, in Figure S 1(b).  The brief duration of 

drug-sensitivity in M-phase in Figure S 1(a) corresponds to the drug-sensitive state in Figure S 1(b), 

whose rate coefficients for replication and exiting out of the cycling state are comparable to each other 

and about an order of magnitude faster than the rate coefficient parametrizing the awakening of quiescent 

cells.  The cell cycle can proceed as quickly as ~day in vitro, so we model the passage through S, G2, and 

M, as well as the approach toward the less drug-sensitive state G1, with rate coefficients of rS and cS 

~1/day.  To account for the weeks that a cell can rest in quiescence in vivo, we set the rate coefficient cR 

describing conversion back to the cycling state at ~1/(2 weeks).   

Using these parameter values, we obtain the curve in Figure S 1.  At the earliest moments after 

drug-kill, the surviving population is drug-resistant.  This means it is also “resting” in a nonproliferative 

state.  The initial dynamics of the system involve moving cells from the drug-resistant population to the 

drug-sensitive compartment, rather than the net generation of additional cells.  Consequently, the curve in 

Figure S 1(c) rises vertically from the origin, fS = fP = 0, ensuring that at least part of the curve explores 



 

 

the potentially beneficial region where fS > fP (above the diagonal).  For the parameter values in this 

example, the curve then approaches a steady-state drug-sensitive fraction, crossing the diagonal fS = fP 

line at fP ~ 0.1 (arrow), corresponding to t ~ 2 days.  In a cell population that predominantly rests in 

quiescence and occasionally, briefly passes through the drug-sensitive replicative phase for durations 

measured in days, the intervals of rest between drug kill should also be measured in days.   

The initial vertical slope of the curve in Figure S 1(c) is the geometric expression of drug-

resistance in quiescence.  It means that there exists a dosing frequency such that reduction of the target 

population is possible.  In more sophisticated models, where kill rates vary with drug-concentration, the 

corresponding idea is that reduction of the tumor burden is possible if a sufficiently high average dose 

over time or “area under the curve” can be administered to quickly kill cells in the drug-sensitive 

compartment.  The cost for a cell to gain drug-resistance is to temporarily surrender its replicative 

capacity.  This places a speed limit on the expansion of the drug-resistant population and ensures that 

depletion of the drug-sensitive population can, in principle, indirectly deplete the drug-resistant 

population as well.  One can easily embark on mathematical investigations of cell-cycle-specific therapy, 

knowing ahead of time that a burden-reducing dosing schedule is at least mathematically guaranteed to 

exist.  This feature may make this class of models particularly attractive for theoretical research.  The 

phenomenon of bacterial persisters is usually modeled in a mathematically similar way [8], again, with 

the eradication of the drug-resistant population at least in principle possible for the same reasons.   

 

3. Time scale calculations 

In Liao et al. B, we demonstrated, through the use of theoretical and experimental examples, that time 

scales for phenotypic conversion generated by proteomic fluctuations can often be similar to the time 

scales for cell division. In this supplemental section, we explain the consequences of this relationship for 

therapeutic scheduling.  In this parameter regime, curves on the metronomogram often straddle the fS = fP 

diagonal.  This means that some portion of a given curve may pass through the region fS > fP (above the 

diagonal, reducing target population), and so it is useful to check through quantitative measurement 

whether (and where) the curve actually crosses the diagonal line to identify optimal scheduling.   

 

To perform our analysis using (1) and (2), we express the similarity between time scales for 

proteomic fluctuations and cell division by setting the rate coefficients for replication and phenotypic 

conversion equal, i.e. rR = cR and rS = cS.  For simplicity we also set rR = rS.  This is a back-of-the-

envelope approximation.  As a further simplification, we consider the biological situation in which rate 

coefficients describing apoptosis and cell clearance are negligible (mR = mS = 0).  The parameters we have 

chosen correspond to the solid curve in Figure S 3.  In biological systems, the rate coefficients will vary.  

We adjust the rate coefficient, cR, describing the conversion of drug-resistant to drug-sensitive cells.  The 

solutions to (1) and (2) are plotted for values of cR = 0.5, 0.75, 1.25, and 1.5.  The curve with cR = 1 

straddles the fS = fP diagonal.  The dynamics for cR = 1.5 includes a region above the diagonal, and the 

curve with cR = 0.5 remains fully in the region where fS < fP, below the diagonal.   

When rate coefficients for cell replication and phenotypic switching are of similar magnitude, 

curves hover near a crucial edge in the metronomogram where a slight change in parameter values can 

mean the difference between a situation in which tumor reduction can be achieved through judicious dose 

scheduling and a situation where such success is not possible.  Since the curve is exploring a region where 

either outcome is possible, measurement is necessary to distinguish which outcome is actually realized in 

a particular biological system.  In this perspective, similarities in time scales for the generation of 

heterogeneity and the generation of population number can manifest as the proximity of curves on 

metronomograms to the regions where fS = fP, i.e. regions where curves may cross the fS = fP diagonal and 

potentially explore the beneficial region fS > fP above the diagonal.   
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Figure S 1.  Cell-cycle specificity.  (a) Classic chemotherapeutic drugs target S, G2, and M phases of the 

cell cycle.  Here, drug-sensitivity in M phase is illustrated.  (b) Two-compartment coarse-grained model.  

(c) Qualitative appearance of cell-cycle-specificity on a metronomogram.   

  



 

 

 
Figure S 2.  Minimal Markov model described in Liao et al. A, figure 2(c).  Drug-sensitive cells replicate 

with rate coefficient rS, are cleared with rate coefficient mS, and convert to the drug-resistant phenotypic 

state with rate coefficient cS.  Analogous rate coefficients describe the dynamics of the drug-resistant 

cells.    



 

 

 

 
Figure S 3.  Curves on a metronomogram straddle the central diagonal, fS = fP, when the rate coefficients 

describing phenotypic interconversion and the rate coefficients describing population expansion are of 

similar magnitude.  The solid curve labeled cR = 1.00 corresponds to the solution of the model in (1) and 

(2), with coefficients rR = rS = cR = cS = 1 and mR = mS = 0.  The curves exploring greater and lesser values 

of cR, with all other coefficients unchanged, cover a range of positions that sweeps across the fS = fP 

diagonal line.   

 


