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I. INTRODUCTION 
 
This document serves as Methods and Supplementary Information for the article From Link 
Prediction in Brain Connectomes and Protein Interactomes to the Local-community Paradigm 
in Complex Networks and is organised as ten sections. Subsequent to the current 
Introduction, Section II briefly summarises the fundamental ideas behind link prediction by 
exclusive means of network topology; it also describes the applicability of this process to the 
network representation of different systems. Section III describes the most commonly used 
prediction techniques (indices). Some of these predictors are general purpose (Section III.A) 
and some are tailored for biological networks (Section III.B), another more sophisticated 
group is based on statistical inference (Section III.C), and we also introduce variations of the 
classical prediction approach so that they adopt a link/community strategy to predict (Section 
III.D). Section IV provides an in-depth description of the methodology applied to the 
destruction-prediction experiment in brain connectomes while Section V gives a detailed 
explanation of how prediction in protein interactomes is performed. At comparable levels of 
detail, Sections VI and VII examine the concepts of Performance and Time Robustness and 
of the In-silico validation of the best prediction tools as applied to protein-interaction networks. 
Section VIII expands the main article’s explanation of the Local Community Paradigm (LCP) 
Decomposition Plot and the way in which the LCP-correlation is computed. Finally, Section IX 
lists the network data analysed in this study and depicts the LCP-Decomposition Plots for 
networks that are and are not characterised by LCP organisation within their topology.  
 
 

II. PREDICTION OF LINKS IN NETWORKS 
 
The idea of predicting links on the mere basis of network topology originates from the fact that 
part of the information associated with the organisation of the topology itself was generated 
gradually and in accordance with the growth process of the network. Links between nodes 
exist because two people have similar interests (social networks), two proteins are bound 
together to perform a specific function (protein interaction networks), or two cities are 
connected through a direct flight (flight maps); nodes and edges are only abstractions of the 
dynamics that exist within complex systems, and the information contained within these 
abstractions can definitely be exploited for the prediction of new links. 
 
How to take advantage of existing network topologies to predict missing edges is still not 
clear. However, techniques have been developed to do so, both in unspecific networks (here 
referred to as General Purpose and Maximum Likelihood techniques, see Sections III.A and 
III.C) and in very specific ones, such as Protein-protein Interaction Networks (PPINs, see 
Section III.B). 
 
Taking the network of interest as the input, these prediction techniques proceed as follows: 
 

1. Assign a likelihood score to every pair of nodes that is not directly connected in the 
current network topology (each of these pairs is known as ‘candidate interaction’). 

2. Sort the list of candidate interactions by score (for some approaches, the larger the 
score, the more the interaction is likely to be real, for others the scoring works in the 
opposite way). 

 
Performance assessment for any given prediction tool can avail of several methods; specific 
choices will depend mainly on the type of network and the available information about the 
nodes and links. The most common approaches are: 
 

a. Some systems allow access to their network representations at different timestamps. 
One example is Facebook; the number of links at time ti+1 is (almost certainly) larger 
than at time ti. Thus, one can apply a prediction technique to the network topology at 
ti and verify whether the links at the top of the candidate interaction list appear in the 
network at ti+1. 
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b. When networks at different timestamps are not available, the procedure is to remove 
n links randomly from the available network, obtain a candidate interaction list that is 
sorted by likelihood using a prediction technique, and take n links from the top of this 
list to verify if they match those removed from the network (see Section IV for a 
detailed example of this approach). 

c. For some systems, it is possible to access reliable node property information that 
serves as a criterion to decide whether two nodes can interact or not. An example is 
Gene Ontology (a vocabulary for processes, functions and localization of genes and 
proteins). If, for instance, two proteins perform the same function and are located in 
the same cellular compartment, they are likely to interact. Thus, the proportion of 
interactions at the top of the candidate list that fulfils the given criterion constitutes a 
prediction technique performance measure (see Section V for a detailed example of 
this approach). 

 

III. TOPOLOGICAL TECHNIQUES (INDICES) FOR LINK PREDICTION 
 

A. General purpose 
 
Numerous indices have been proposed to predict links in differing types of networks on the 
exclusive basis of the given network’s topology. For examples of indices, see the surveys by 
(Liben-Nowell and Kleinberg, 2007) and (Lü and T. Zhou, 2011). We decided to use the most 
reliable and referential indices, which have the merit of being fast and parameter-free, and we 
measured their prediction performance. The indices we selected are Common Neighbours 
(CN), Jaccard (JC), Preferential Attachment (PA), Adamic and Adar (AA), and Resource 
Allocation (RA). 
 
CN (M. Newman, 2001) follows the basic idea that two people are more likely to meet if they 
have common acquaintances. If Γ(𝑥) is the set of neighbours of x, and Γ(𝑦) is the set of 
neighbours of y, the CN score is defined as in Equation S1. 
 
 𝐶𝑁(𝑥, 𝑦) = |Γ(𝑥) ∩ Γ(𝑦)| (S1) 
 
JC (Jaccard, 1912) measures the probability that both x and y share a common neighbour 
(see Equation S2). 
 
 

𝐽𝐶(𝑥, 𝑦) =
|Γ(𝑥)  ∩  Γ(𝑦)|
|Γ(𝑥)  ∪  Γ(𝑦)| (S2) 

 
PA (M. Newman, 2001) is based on a process of the same name, where a certain quantity is 
distributed according to the number of entities it already has. In networks, these entities are 
nodes and they prefer to connect with others that have a high number of connections. 
Therefore, this index is given as in Equation S3. 
 
 𝑃𝐴(𝑥, 𝑦) = |Γ(𝑥)|  ∙  |Γ(𝑦)| (S3) 
 
AA (Adamic and Adar, 2003) and RA (T. Zhou et al., 2009) are two similar indices that assign 
better scores to candidate interactions whose common neighbours have very few other 
neighbours (see Equations S4 and S5 respectively). 
 
 𝐴𝐴(𝑥, 𝑦) =  �

1
𝑙𝑜𝑔2 (|Γ(𝑠)|)

𝑠∈Γ(𝑥) ∩ Γ(𝑦)

 (S4) 

   
 𝑅𝐴(𝑥, 𝑦) =  �

1
|Γ(𝑠)|

𝑠∈Γ(𝑥) ∩ Γ(𝑦)

 (S5) 
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B. Bio-inspired indices 
 
When prior functional biological knowledge about the proteins that form a PPIN is not 
available, the only biological resource we are left with is the information allocated in the PPIN 
topology itself. Several techniques have been proposed to exploit the topology of a PPIN in 
order to assess the reliability of the network interactions or to predict protein function. 
 
The pioneers of Protein-protein Interaction (PPI) reliability assessment are Saito and his 
team. In 2002, they proposed the so-called Interaction Generality (IG1) Index which, given 
that partners of ‘sticky’ proteins and self-activators do not interact with anything else in the 
network (J. Chen, Chua, et al., 2006), assigns high index values to potential false positives 
(interactions whose seed proteins x and y have a lot of neighbours that do not interact with 
anything else) and low values to more reliable PPIs (see Equation S7, where G is a network, 
and x, y, x’, and y’ are nodes in G). 
 

𝐼𝐺1(𝑥, 𝑦) = 1 + |�{𝑥′, 𝑦′} ∈ 𝐺�𝒙′ ∈ {𝒙′,𝒚′},𝒚′ ∉ {𝒙,𝒚},𝚪(𝐲′) = 𝟏�| (S7) 
 
Later, further indices were proposed, such as Interaction Generality Two (IG2) (Saito et al., 
2003) or Interaction Reliability by Alternative Path (IRAP) (J. Chen et al., 2005), but their 
minimal comparative performance makes them very computationally expensive (J. Chen et 
al., 2005). On the other hand, indices to predict functions such as Czekanowski-Dice 
Dissimilarity (CDD) (Brun et al., 2003), Functional Similarity Weight (FSW) (Chua et al., 
2006), and Adjust Czekanowski-Dice Dissimilarity (ACDD) (Liu et al., 2009) were additionally 
and successfully employed  for reliability assessment (J. Chen, Chua, et al., 2006; Liu et al., 
2009) and link prediction in PPINs (Liu et al., 2009; You et al., 2010). Equations S8-S10 
respectively represent the formulae of these last three indices . In these equations 𝛾(𝑥) is the 
set of neighbours of x including itself, and 𝑛𝑎𝑣𝑔 is the average node degree of the network. 
 
 

𝐶𝐷𝐷(𝑥, 𝑦) =   
|𝛾(𝑥)∆𝛾(𝑦)|

|𝛾(𝑥) ∪ 𝛾(𝑦)| + |𝛾(𝑥) ∩ 𝛾(𝑦)|
 (S8) 

   
 

𝐹𝑆𝑊(𝑥, 𝑦) =   
2|𝛾(𝑥) ∩ 𝛾(𝑦)|

|𝛾(𝑥) − 𝛾(𝑦)| + 2|𝛾(𝑥) ∩ 𝛾(𝑦)| + 𝜆𝑥,𝑦

∙
2|𝛾(𝑥) ∩ 𝛾(𝑦)|

|𝛾(𝑦) − 𝛾(𝑥)| + 2|𝛾(𝑥) ∩ 𝛾(𝑦)| + 𝜆𝑦,𝑥
 

(S9) 

 
 
 
 
 

𝐴𝐶𝐷𝐷(𝑥,𝑦) =   
|𝛾(𝑥)∆𝛾(𝑦)| +  𝜆𝑥,𝑦 + 𝜆𝑦,𝑥

|𝛾(𝑥) ∪ 𝛾(𝑦)| + |𝛾(𝑥) ∩ 𝛾(𝑦)|
 

 

 
 

(S10) 
 
 
 

where 𝜆𝑥,𝑦 = max (0,𝑛𝑎𝑣𝑔 − (|𝛾(𝑥) − 𝛾(𝑦)| + |𝛾(𝑥) ∩ 𝛾(𝑦)|)). 
 
In 2009, Kuchaiev et al. proposed a method for geometric denoising of PPINs. The algorithm 
is based on multidimensional scaling (MDS) which is used to preserve the network shortest-
path (SP) lengths between nodes in a low dimensional space, where the network after 
embedding is proven to be denoised. The new candidate links are scored according to their 
Euclidean distance (ED) in the low dimensional space, following the principle that the closer 
two proteins are, the higher the likelihood that they interact (Kuchaiev et al., 2009). Although it 
is not explicitly mentioned in the article, the embedding method adopted by Kuchaiev et al. is 
equivalent to Isomap (Tenenbaum, et al., 2000). 
 
In 2010, in an independent study, You et al. proposed a hybrid strategy based on network 
embedding to assign prediction scores to candidate interactions. They exploited the notion 
that a PPIN - like theoretically any network - lies on a low dimensional manifold shaped in a 
high-dimensional space. The shape of the manifold and the associated topology is a result of 
the constraints imposed on the protein interactions by the biological evolution. You et al. used 
a renowned algorithm for manifold embedding, Isomap (Tenenbaum, et al., 2000), to embed 
the PPIN in a space of reduced dimensionality. Then, they applied FSW to the embedded 
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network (pruned according to a cutoff on the ED) to assign the likelihood scores to the 
candidate interactions 
 
As shown in (J. Chen, Chua, et al., 2006) and mentioned in (You et al., 2010), FSW and CDD 
outperform IG1, IG2 and IRAP. Accordingly, and because IG2 and IRAP are computationally 
expensive (J. Chen et al., 2005), we limited our choice of indices to: IG1 (which is a baseline 
for improvement in the field), FSW, CDD, ACDD, ISOMAP and ISOMAP+FSW.  
 

C. Maximum likelihood indices 
 
As mentioned in sections III.A and III.B, we decided to compare CAR (our proposed 
approach, see main article and the following sections for details) against parameter-free and 
efficient prediction techniques. There are, however, two recently published approaches to link 
prediction that are based on the underlying community structure of real world networks and 
we decided to take them into account as well. 
 
In the Hierarchical Random Graph or HRG (Clauset et al., 2008), the space of all possible 
dendrograms of a network is searched to get the ones that best fit the hierarchical structure of 
such a network. Non-adjacent pairs of nodes that have high average probability of being 
connected within these dendrograms are then considered good candidates for interaction. In 
the Stochastic Block Model or SBM (Guimerà and Sales-Pardo, 2009), a general network 
model in which a network is partitioned into groups, the probability that two nodes are 
connected only depends on the groups they belong to. For further details and 
implementations of HRG and SBM, look at the referenced articles and the following websites: 
http://tuvalu.santafe.edu/~aaronc/hierarchy/ for HRG and 
http://etseq.urv.cat/seeslab/downloads/network-c-libraries-rgraph/ for SBM. 
 
One important issue with these approaches is that they are very time-consuming and they are 
not parameter-free (because of this, we used them with their default parameters). The HRG 
for instance, requires a parameter that indicates the number of dendrogram models that a 
Markov Chain Monte Carlo algorithm will sample. This sampling process usually requires 
O(N2) steps (where N is the number of nodes) and for large N it might require exponential 
time in the worst case (Lü and T. Zhou, 2011). Similarly, the SBM relies on all possible 
network partitions to assign link likelihood scores but since the number of partitions grows 
extremely fast as N grows, a Metropolis algorithm is needed to estimate these scores. Even 
then, the process is computationally expensive and can only manage networks with a few 
thousand nodes (Lü and T. Zhou, 2011). For the sake of computational time, we did not 
perform parameter tuning when applying this techniques. 
 

D. CAR-based variations of general purpose indices 
 
The ranking offered by CAR deviates from the ranking offered by CN, because of the 
penalization of the candidate links whose common neighbours do not present a 
community/link structure (the value of their Local Community Links (LCL) is low or equal to 
zero). Conceptually it means that we penalize the candidate links that deviate from the 
community structure behaviour, which we proved to be a general characteristic of most real 
networks. In conclusion, the product of CN and LCL should be interpreted as a logical AND 
operator. Pairs of nodes with very few (or without) LCL attain low scores and migrate to the 
bottom of the candidate-ranking list. 
 
As mentioned in the first paragraph of the Results section in the main article, more than a 
new index, our interest is to introduce a new philosophy in the formulation of parameter-
free/neighbourhood-based indices. We advocate a shift in perspective from nodes to links, 
and in particular from nodes to community links. The use of the LCL in CAR’s formulation can 
be seen as an attempt to propose a variation of the CN index that offers more resolution for 
candidate interactions with equal number of CNs. This boosting in resolution is given by the 
use of the link/community perspective, which is introduced adopting LCL in the formula.   
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Thus, if the LCL is seen as an index enhancer, it can be plugged into PA, AA, RA and JC 
indices so that these techniques also shift to the link/community perspective. In the main body 
of the article we extensively prove the value of this idea. 
 
Let us consider kx as the degree of node x, CN the common neighbour index for nodes x and 
y, and ex as the number of neighbours of x not shared with y (i.e. ex =  kx − CN). We can write 
that:  
 

PA =  kx ∙ ky = (ex +  CN)�ey + CN� =  ex ∙ ex +  ex ∙ CN + ey ∙ CN + CN2  
 
and if in this expression we multiply  CN by LCL (using the CAR-trick), we obtain the PA’s 
reformulation based on the link/community perspective, which results in: 
 

CPA = ex ∙ ex +  ex ∙ CAR +  ex ∙ CAR + CAR2 
 
Applying the CAR-trick to the JC formulation, we can modify also JC as below: 
 
 

CJ =
CN
U

  
CAR−trick
�⎯⎯⎯⎯⎯⎯�  CJC =

CAR
U

  
 
where U indicates the number of elements contained in the union set of the first neighbours of 
the nodes x and y. On the other hand, an important observation is that the LCL can be written 
also as: 
 

LCL =  �
ds
2s ∈ CN

 

 
where ds is the inner-community degree of the common neighbour  (i.e. the degree of s in the 
subnetwork formed only by the common neighbours of x and y). This observation allows for 
the modification of AA, RA according to the link perspective as follows:  
 

CAA =  �
ds

log2(ks)s ∈ CN
 

 

CRA =  �
ds
kss ∈ CN

 

 
In the following we prove that CAR can be considered a reasonable community-based 
variation of AA, and that CAR is proportional to CAA under certain assumptions. 
 

CAR = CN × LCL =  CN × �
ds′′

2s′′ ∈ CN
 

 
If we exploit the assumption that our networks are very sparse, it is reasonable to write that 
the average node degree k� in the network tends to be equal to two (k� → 2) with a very small 
standard deviation. Under this assumption ks′ will be a value very close to k� → 2, and we can 
approximate the formulation of CAR:  
 

CAR ≈�
1

log2(ks′)s′∈ CN
× �

ds′′
2s′′ ∈ CN

=  

 

=
1
2
∙ ��

ds
log2(ks)(s′= s′′= s ∈ CN)

+ �
ds′

log2(ks′′)(s′≠  s′′ ∈ CN)
� =

1
2
∙ (CAA +  R) 

  
 
Considering that in very sparse networks the average node degree tends to two, ks� → 2, with 
a very small standard deviation, the average node degree of the common neighbours 
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considering only the internal community links ds�  also tends to ε < 2 ( ds� → ε < 2) with a very 
small standard deviation. Thus we can say that, under the hypothesis of very sparse networks 
with conserved community structure, although s′ ≠ s′′  the probability that ds′ ≈ ds′′  and 
ks′ ≈ ks′′  is very high. A consequence of this assumption is that the R term will be 
proportional to CAA, and: 
 

CAR ≈
1
2
∙ (CAA +  k ∙ CAA) = K ∙ CAA 

 
where K indicates a constant. The conclusion is that under the assumption of very sparse 
networks both CAR and CAA give the same ranking because, according to the 
approximations that we used, they end up being proportional. On the other hand, when we 
largely deviate from this assumption the two indices will start to produce different 
performances. 
 
Figure S2 (see Section IV) confirms the above claimed and in addition shows that the 
performance of CAR, LCL, CAA, CRA and R practically overlap in eight different networks, 
especially when the hypothesis of very sparse network is forced in the simulations. A further 
confirmation is that the performances of CAR, LCL, CAA, CRA and R practically overlap also 
in the link prediction tests on the protein interactomes reported in the Fig. 3 of the article, and 
in Figure S3 (see Section V). 
 
The Matlab code to compute the classical and CAR-based indices is provided at the following 
link: https://sites.google.com/site/carlovittoriocannistraci/5-datasets-and-matlab-code. 

IV. REDISCOVERY OF REMOVED LINKS IN CONNECTOMES, SOCIAL AND 
ECOLOGICAL NETWOKS 
 
This experiment was carried out in three connectomes and five social networks, two of which 
were ecological networks belonging to the class of food webs. The three connectomes are: 
Mouse Visual Cortex Neuro-synaptic Connectome, Macaque Cortical Connectome, and C. 
elegans Rostral Ganglia Neuro-synaptic Connectome. The social networks are: Dolphin 
Associations, College Football, Zachary’s Karate Club, Food Web of Tuesday Lake, and Food 
Web of Grassland Species (see Tables S3 and S4 for details). 
 
The aim of the experiment was to measure the prediction (rediscovery) power of each 
general-purpose neighbourhood-based technique (including CAR and the CAR-based 
variations) and each maximum likelihood approach, if links are removed from each network 
uniformly at random. The methodology followed was to destroy a specific amount of links in 
the networks (uniformly at random, as mentioned above) ranging from 10% to 90%, 1000 
times per percentage. This procedure requires that 10% of the links in the network are 
chosen randomly 1000 times, and thus generate 1000 different topologies to which each 
prediction technique, along with a random predictor, are applied. At the second step, a 
number equal to the 10% of the original links is removed (i.e. 20% of links are removed in 
total at the second deletion step) from each of the 1000 networks obtained at the first step, 
and the prediction techniques are applied again. The process continues up to the point where 
90% of the links are removed. 
 
Every time a prediction technique is applied to a network topology, a ranked list of candidate 
interactions is generated and a number of links equivalent to the number of those removed is 
taken from the top of this list. The proportion of candidate interactions that matches the 
removed links is the performance measure for the prediction technique used. Notice that this 
measure is equivalent to Precision. Since this process was repeated 1000 times for each 
sparsification level, in practise mean precision and standard error were considered for each 
stage. 
 
To characterise the deviation of each predictor from randomness, we transformed the indices’ 
mean precisions at each sparsification level into decibels (dB); as a reference, we used the 
mean precision of the random predictor (a dB indicates a logarithm scaled ratio between a 

https://sites.google.com/site/carlovittoriocannistraci/5-datasets-and-matlab-code
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quantity and reference level). We were thus able to measure the deviation of each predictor 
from randomness, as depicted in Equation S11. 
 
 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑃𝑜𝑤𝑒𝑟𝐼𝑛𝑑𝑒𝑥 = 10 log10
𝑃𝑟𝑒𝑐𝚤𝑠𝚤𝑜𝑛�������������𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑇𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒

𝑃𝑟𝑒𝑐𝚤𝑠𝚤𝑜𝑛�������������𝑅𝑎𝑛𝑑𝑜𝑚 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟
 (S11) 

 
 
The Predictive Power, comprising its standard error at each percentage of links destroyed, 
generates a Prediction Power Curve, and the area under this curve (Area Under the 
Prediction Power Curve or AUPPC) summarises the power of each predictor. 
 
As it is clear from Figure 2A in the main body of the article, link removal from the initial 
network topology impacts the community structure of network and all common-neighbours-
based approaches have an important reduction in performance (Feng et al., 2012). To have a 
fair comparison between all different predictors, we decided to focus our analysis on their 
prediction power when only 10% of the network links have been destroyed (i.e. 90% of the 
original edges remain). While in the main text we show results for parameter-free and efficient 
techniques only, here we include HRG and SBM in Figure S1. 
The above-mentioned supplementary figure shows that CAR and the CAR-based variations 
of the general-purpose indices are, in general, the best and most robust techniques. While 
the HRG approach also shows its robustness and adaptability to different sparse topologies, 
its computational time is prohibitive for large networks. Our Matlab implementation of CAR 
was able to perform all the 1000 realizations for 10% of the links removed in only 7 minutes in 
the largest of the 8 networks used (C. elegans Rostral Ganglia Neuro-synaptic Connectome). 
HRG’s C++ implementation spent 81 hours to complete the simulation and, as stated in 
section IIIC, no parameter tuning was carried out. The poor performance of SBM may be due 
to this lack of parameter tuning, however this is also prohibitive since 814 hours were needed 
to complete our analyses for the C. elegans connectome with the technique’s C 
implementation (all these experiments were carried out in a Dell Precision T7500 
Workstation, 24 GB RAM and 2 Intel® Xeon® X5550 @ 2.67GHz quad-core processors). 
 

 
 
Figure S1. Prediction power comparison in 8 different networks when only 10% of the links are 
destroyed. Techniques in black represent neighbourhood-based, general-purpose approaches; 
techniques in red are all CAR-based indices; and techniques in blue correspond to maximum likelihood 
algorithms.  
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In Figure 2C we also include the LCP-correlation of each network and a p-value indicating 
that there is a statistically significant difference between the mean performance of the CAR-
based index family and that of the general-purpose approaches. To compute these p-values a 
permutation test with 1000 resampling realizations was performed between the prediction 
power of the CAR-based indices and the prediction power of the general-purpose techniques. 
 
 

 
 
Figure S2. Prediction power comparison in 8 different networks when up to 90% of the links are 
destroyed. The CAR-based variations shown in these plots, as it is clear, offer a similar result. In 
particular, the performance-curves of CAR, CAA and R overlap, and their difference is practically 
indistinguishable. 
 

V. PREDICTION OF LINKS IN PROTEIN-PROTEIN INTERACTION NETWORKS 
 
Saito’s research team established a schema for the validation of PPI reliability indices (Saito 
et al., 2002, 2003). This schema has been used in every work on PPI reliability and prediction 
assessment (Saito et al., 2002, 2003; J. Chen et al., 2005; J. Chen, Chua, et al., 2006; You et 
al., 2010). With specific regard to prediction, the procedure consists (i) in annotating every 
protein in the original network topology with their respective Gene Ontology (GO) terms from 
the three existent gene ontologies (Molecular Function, or MF, Biological Process, or BP, and 
Cellular Compartment, or CC) and (ii) looking for link similarities between all possible protein 
pairs in relation to Functional Homogeneity (two proteins are involved in the same function or 
process) or Localization Coherence (two proteins are located in the same cellular 
compartment). Subsequently a recursive procedure is applied to an increasing fraction of 
PPIs taken from the top of the list of candidate ranked interactions, and a curve that reports 
the proportion of pairs with Functional Homogeneity and Localization Coherence for each 
fraction is computed. It is important to note that this procedure measures a precision curve for 
the index: for each step, it evaluates the ratio between the number of interactions that are 
very likely to occur and the total number of interactions taken from top of the list. 
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Conventionally, a number of top-ranked candidate links equivalent to 10% of the links of the 
original network is used to compute the entire precision curve. 
 
Our study followed the same approach to measure the predictive performance of techniques 
applied to PPINs (referred to as Network1, Network2, and Network3, see Table S3 for 
details). We take 10% of the links in the original network from the candidate interaction list 
generated by a prediction technique. As previously mentioned, we used GO, which is a 
reference ontology for discrimination between candidate interactions that are highly likely to 
be real (because GO confirms their Functional Homogeneity or Localization Coherence) and 
candidate interactions that are not likely to occur (because according to GO their proteins do 
not perform the same functions, are not involved in the same process or are not in the same 
cellular location). 
 
To annotate the protein pairs and measure the similarity between GO terms, we used the R-
GOSemSim package (G. Yu et al., 2010) and Wang GO Semantic Similarity (J. Wang et al., 
2007). The GOSemSim function that we used takes the list of proteins that form the PPIN as 
its input, annotates them, computes the Wang GO semantic similarity between proteins, and 
outputs a matrix whose entries are the GO similarities for every possible PPI. 
 
Most of the GO semantic similarity indices (Jiang and Conrath, 1997; Lin, 1998; Resnik, 
1999) were originally developed for natural language taxonomies, and it is not known whether 
they are 100% suitable for GO. Wang’s measure was created from the ground up, especially 
for the GO. Thus, Wang’s index is more consistent with human perspective and with manual 
gene clustering into GO terms (J. Wang et al., 2007). This index ranges within 0 (no GO 
information available for one or both proteins, or no similarity in MF, BP or CC terms) and 1 
(proteins share one or more identical GO terms). For these reasons Wang’s measure is 
generally preferred for the evaluation of index performance in PPI prediction, and we too 
selected the measure for the current study. 
 
In Wang et al. (J. Wang et al., 2007), it is mentioned that whenever Wang similarity is at  the 
high end of the range, the proteins being analysed can be considered as analogous in their 
MF, BP, or CC. On the additional grounds of previous studies (J. Chen, Hsu, M. L. Lee, et al., 
2006), we decided to use the same threshold, and only those pairs with Wang similarity 
above 0.5 were evaluated as good candidates. Wang’s semantic similarity is a sort of 
confidence value, because the closer it is to 1, the greater the chance the interaction is real. 
 
Finally, to obtain the precision curve that measures the performance of the indices, we 
removed protein pairs in chunks that were multiples of 100 interactions from the top of the 
candidate list to the previously mentioned 10% ceiling of the number of links in the original 
network (up to 1100 PPIs in Network1, 1200 PPIs in Network2 and 1300 PPIs in Network3 
respectively). The proportion of interactions with relevant GO similarity (>= 0.5) was 
computed for each chunk, and each point generated a precision curve (see Figure S3). The 
area under this curve (Area Under the Precision curve or AUP) summarises the performance 
of each predictor. 
 
To better depict the difference in performance between techniques, we report performance 
robustness (PF) for each technique. Of the three networks analysed, PF is the minimum area 
under the precision curve (AUP). This value puts each index at a disadvantage and measures 
its performance in the worst-case scenario. If the technique remains better than the others, it 
is considered stable and robust. PF values for each technique are listed in Table S1. 
 
Times reported in the same table correspond to the maximum time the indices took to score 
the candidate interactions deriving from all the given networks. This is once again a measure 
of Time Robustness, because it depicts the worst-case scenario of the technique in terms of 
computational time. These times correspond to Matlab implementations running in a Dell 
Precision T7500 Workstation, with 24 GB of RAM and 2 Intel® Xeon® X5550 @ 2.67GHz 
quad-core processors. 
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Figure S3. Precision curves for Yeast PPINs Network2 and Network3 (the precision curves for 
Network1 appear in the main article). The X-axis indicates how many protein pairs are taken from the 
top of the candidate list and the Y-axis indicates the precision of the prediction technique for that 
amount of PPIs. The AUP values for all the above-depicted techniques are listed in Table S1. For 
brevity, the performance of ISOMAP and ISOMAP+FSW is reported only as AUP in the Table S1. 
 
 

Technique 
Area Under the Precision Curve (AUP) Time cost 

(minutes) Network1 Network2 Network3 Performance 
Robustness 

CAR 0.86*** 0.86* 0.97** 0.86* 17*** 
CAA 0.87** 0.86* 0.97** 0.86* 20 
LCL 0.87** 0.86* 0.97** 0.86* 17*** 
CPA 0.86*** 0.86* 0.98* 0.86* 17*** 
CRA 0.86*** 0.86* 0.97** 0.86* 19 
CJC 0.88* 0.85** 0.96*** 0.85** 30 
CN 0.82 0.82*** 0.98* 0.82*** 16** 
RA 0.71 0.73 0.95 0.71 18 
FSW 0.74 0.67 0.98* 0.67 84 
CDD 0.75 0.67 0.88 0.67 71 
CDDP 0.75 0.67 0.97** 0.67 80 
PA 0.60 0.64 0.98* 0.60 1* 
AA 0.60 0.64 0.98* 0.60 18 
IG1 0.55 0.57 0.75 0.55 29 
JC 0.55 0.54 0.80 0.54 29 
ISO 0.53 0.50 0.80 0.50 37 
ISO+FSW 0.62 0.59 0.93 0.59 42 

 
Table S1. Comparative table of performance robustness (minimum AUP) and time cost (in minutes, 
considering the maximum value between the time spent in each network) for the bio-inspired, general-
purpose, CAR variations, and embedding techniques (coloured green, black, red, and blue 
respectively). Values in bold indicate the top three techniques for the characteristic measured in the 
respective column. The number of stars indicates the position occupied in the top three. 
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VI. IN-SILICO VALIDATION OF CANDIDATE LINKS IN STRING DATABASE 
 
 
To verify the quality of the interactions proposed by the best techniques, namely CAR and 
FSW (from the general-purpose and the bio-inspired categories respectively), we took the top 
100 candidate interactions from each technique’s list and intersected them with the entire 
STRING Database (Szklarczyk et al., 2011) version 9.0, which was queried in February 2012. 
STRING is a compendium of PPIs found in the literature, experiments, coexpression, etc. 
Given a list of proteins, it finds the links between them and assigns them a confidence value 
based on the available evidence to the effect that the interactions exist. The number of 
interactions confirmed in STRING is a conservative estimate, because an interaction that 
does not appear in STRING might in fact be a non-detected interaction. 
 
We queried the list of proteins involved in the top 100 candidate PPIs in STRING; Table S2 
reports how many protein pairs per 100 were validated for each network, the average 
STRING confidence and its standard deviation, the average GO confidence (Wang’s 
semantic similarity) and its standard deviation, and the Robustness of each one of these 
indicators (i.e. the minimum value that emerged from all three networks). Figure S4 presents 
the subnetworks formed by the top 100 PPIs and the interactions found in STRING are 
labelled in red. 
 
 

Technique Network1 Network2 Network3 Robustness 

(G) CAR 

Number of 
PPIs validated 71 67 64 64 

STRING 
confidence 0.75 ± 0.26 0.76 ± 0.25 0.99 ± 0.06 0.75 ± 0.26 

GO confidence 0.8 ± 0.17 0.79 ± 0.17 0.99 ± 0.05 0.79 ± 0.17 

(B) FSW 

Number of 
PPIs 55 38 92 38 

STRING 
confidence 0.91 ± 0.2 0.92 ± 0.16 0.97 ± 0.11 0.91 ± 0.2 

GO confidence 0.93 ± 0.12 0.89 ± 0.16 0.97 ± 0.06 0.89 ± 0.16 
 
Table S2. Comparative table of the In-silico Validation performed for the best prediction techniques. 
CAR is a general-purpose technique and is marked with a (G), while FSW is bio-inspired and is marked 
with a (B). Values in bold indicate which predictor is better in each network for each indicator (Number 
of PPIs validated, STRING confidence and GO confidence). As is evident, the number of valid 
interactions detected by CAR is almost twice the number revealed by FSW. However, the STRING and 
GO confidence of the valid interactions for FSW is higher: this implies that CAR is able to predict 
additional interactions, which are related to novel and more heterogeneous biological knowledge that is 
still not strongly validated in STRING (confidence 0.75) but that is well-characterised in GO (confidence 
almost 0.80).  
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Figure S4. The dashed-red lines depict CAR’s GO-precision-curve for the first 100 candidate PPIs. The 
top 100-ranked candidate interactions proposed by CAR were intersected with the STRING Database. 
This database provides each interacting pair with a confidence value. Below, the sub-networks formed 
by these candidate links are displayed, and the protein pairs found in STRING are shown in red. 

 
VII. NETWORK SPARSIFICATION EXPERIMENTS ON PROTEIN INTERACTOMES 
 
To investigate the robustness of the given prediction techniques against link deletion, and to 
study their behaviour in very sparse networks, we carried out a sparsification experiment on 
Network1, Network2 and Network3. 
 
The experiment consisted in removing 10% of the network links uniformly at random, and the 
same procedure was repeated 10 times (over the same original network) to generate 10 
different topologies. All prediction techniques were applied to each network, and their AUP 
was computed, after which another 10% of links was removed from each network (again 
randomly); this procedure was repeated to the point where the network lost connectivity. 
 

VIII. LCP-DECOMPOSITION PLOT AND LCP-CORRELATION 
 
The Local-community Paradigm Decomposition Plot (LCP-DP) is the new form of network 
visualisation that this study proposes. A point in the LCP-DP is a link from the network, and its 
coordinates are specified by the number of neighbours the interacting nodes have in common 
(CN) and the number of local community links between them (LCL). 
 
The LCP-DP provides important information about the number and size of the existing 
communities within a network. The larger the number of common neighbours two interacting 
nodes share, the larger the number of LCLs they can have. Equation S12 shows the upper 
bound. Since this upper bound is a quadratic function of CN, we decided to take the square 
root of the number of LCL to linearize the representation shown in the LCP-DP. 
 
 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐿𝐶𝐿 =
𝐶𝑁(𝐶𝑁 − 1)

2
=
𝐶𝑁2 − 𝐶𝑁

2
 (S12) 

 
In practice we found that a strong linear dependence between the number of CNs and the 
number of LCLs exists in many real networks. In order to quantify this linear dependency, we 
define the LCP-correlation (LCP-corr), which is the Pearson correlation coefficient of CN 
(considering only CN values greater than one, because a single CN cannot generate LCL) 
and LCL.  
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The formula to compute LCP-corr is given in Equation S13, where 𝑐𝑜𝑣(𝑋,𝑌) is the covariance 
of the variables X and Y, and 𝜎𝑋 is the standard deviation of the variable X. The Matlab code 
to compute the LCP-corr for a given network is provided at the following link: 
https://sites.google.com/site/carlovittoriocannistraci/5-datasets-and-matlab-code. 
 
 

 LCP-corr =  
𝑐𝑜𝑣(𝐶𝑁, 𝐿𝐶𝐿)
𝜎𝐶𝑁 ∙ 𝜎𝐿𝐶𝐿

,   𝑤ℎ𝑒𝑛 𝐶𝑁 > 1 (S13) 

 
In conclusion, we show that most networks representing dynamic systems have an LCP-
correlation greater than 0.80 (see Figures S5-S7 and Tables S3-S5). 

IX. NETWORK DATA 
 
This study used five types of real interaction networks, for a total of 45 networks, which 
represent differing systems and have their own meaning and characteristics: biological 
networks, social networks, atomic-level networks, power grids and road networks. Detailed 
information about each network is listed in Tables S3-S4 and their LCP-DPs appear in 
Figures S5-S7. The adjacency matrices of the networks for which we computed LCP-corr are 
provided at the following link: https://sites.google.com/site/carlovittoriocannistraci/5-datasets-
and-matlab-code. 
 
 
Almost all the categories mentioned above presented a high LCP-corr, ranging from 0.84 to 
0.99. The Power Grid and the Karate Club network are borderlines with LCP-corr = 0.78 and 
LCP-corr = 0.75 respectively, as well as the Grassland Species Food Web with LCP-corr = 
0.42. The road network values range from 0 to 0.16. Other networks analysed (most of them 
representing atomic interactions), present a clear LCP-corr of 0 (there are either no common 
neighbours between their interactors or there are no links between common neighbours if 
they exist). 

https://sites.google.com/site/carlovittoriocannistraci/5-datasets-and-matlab-code
https://sites.google.com/site/carlovittoriocannistraci/5-datasets-and-matlab-code
https://sites.google.com/site/carlovittoriocannistraci/5-datasets-and-matlab-code
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Figure S5. LCP-DP for networks of biological origin. The X-axis indicates the number of common 
neighbours and the Y-axis the square root of the number of links between them. Each point in the plot is 
an interaction from the network. The black, dashed line represents the LCL’s upper bound. 
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Figure S6. LCP-DP for social networks. The X-axis indicates the number of common neighbours and 
the Y-axis the square root of the number of links between them. Each point in the plot is an interaction 
from the network. The black, dashed line represents the LCL’s upper bound. 
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Figure S7. LCP-DP for atomic-level networks (top-left and top-centre) with significant LCP-corr. The 
Power Grid network (top-right), the Karate Club network (bottom-left), and the Grassland Species Food 
Web (bottom-centre) represent the borderline cases that we identified. The X-axis indicates the number 
of common neighbours and the Y-axis the square root of the number of links between them. Each point 
in the plot is an interaction from the network. The black, dashed line represents the LCL’s upper bound. 
 
 
 

Network N L LCP-corr Directionality Description 

Yeast Protein-protein  
Interactions (PPI) – Network1 (Ben-
Hur and Noble, 2005) 

4036 10411 0.92 Undirected Interactions between 
proteins in yeast. 

Yeast PPI – Network2 (J. Chen, Hsu, 
M.-L. Lee, et al., 2006)(Ben-Hur and 
Noble, 2005) 

4385 12234 0.95 Undirected Interactions between 
proteins in yeast. 

Yeast PPI – Network3 (You et al., 
2010) 3645 12934 0.90 Undirected Interactions between 

proteins in yeast. 

Worm PPI (Razick et al., 2008) 4743 18752 0.91 Undirected Interactions between 
proteins in worm. 

Fly PPI (Razick et al., 2008) 7809 71211 0.86 Undirected Interactions between 
proteins in fly. 

Mouse PPI (Razick et al., 2008) 2969 4033 0.85 Undirected Interactions between 
proteins in mouse. 

Human PPI (Razick et al., 2008) 11816 83422 0.91 Undirected Interactions between 
proteins in human. 

Yeast Genetic Interaction Network 
(Costanzo et al., 2010) 4319 74984 0.85 Undirected Interactions between 

genes in yeast. 
C. elegans Nervous System 
Connectome(Watts and Strogatz, 
1998) 

297 2345 0.91 Directed 
Synaptic interactions 
between neurons in 

C. elegans. 
C.elegans Global Connectome 
(Kaiser and C. C. Hilgetag, 2006) 277 1918 0.93 Directed Global connectome 

of C. elegans. 

C.elegans Rostral Ganglia Neuro-
synaptic Connectome(Kaiser and C. 
C. Hilgetag, 2006) 

131 687 0.84 Undirected 

Rostral ganglia 
(anterior, dorsal, 
lateral, and ring) 

synaptic interactions 
in C. elegans. 

C.elegans Chemical Synaptic 
(Varshney et al., 2011) 279 1961 0.94 Directed 

Chemical synapse 
network of C. 

elegans neurons. 

C.elegans Gap Junction (Varshney et 
al., 2011) 279 514 0.87 Directed 

Gap junction 
network of 

C.elegans neurons. 
Macaque Brain Connectome (Kötter, 
2004) 94 1515 0.97 Directed Macaque cortical 

connectivity network 
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within one 
hemisphere. 

Mouse Visual Cortex Neuro-synaptic 
Connectome(Bock et al., 2011) 18 42 0.86 Directed 

Synaptic interactions 
between neurons in 
the primary visual 

cortex (layers 1, 2/3 
and upper 4) in 

Mouse. 

Food Web (Cohen et al., 2009) 51 241 0.90 Directed 
Which taxon eats 
which in Tuesday 
Lake, Michigan 

Dolphin Associations (Lusseau et al., 
2003) 62 318 0.89 Undirected 

Frequent 
associations 

between dolphins in 
New Zealand. 

Political Blogosphere US Elections 
(Adamic and Glance, 2005) 1490 19025 0.93 Directed 

Incoming and 
outgoing links and 

posts on blogs at the 
time of the 2004 US 
presidential election 

WikiVote(Leskovec et al., 2010) 7115 103689 0.93 Directed 
Who votes who to be 

a Wikipedia 
administrator 

Scientific arXiv Collaborations (M. E. 
Newman, 2001) 16726 47594 0.92 Undirected 

Scientific 
Collaborations on 
the Condensed 

Matter archive of 
arXiv from 1995 to 

1999. 

Citations (Leskovec et al., 2005) 27770 352807 0.92 Directed 

Citation between 
papers on the High 

Energy Physics 
Theory archive of 
arXiv from 1993 to 

2003. 

American/Canadian Flight Map (Frey 
and Dueck, 2007) 456 37947 0.99 Undirected 

Flights between 
pairs of American 

and Canadian cities. 

College Football (Girvan and M. E. J. 
Newman, 2002) 115 613 0.89 Undirected 

Network 
representation of the 

schedule of 
American football 

games.  

Hydrogen Bonds between residues in 
a protein (A. J. M. Martin et al., 2011) 164 876 0.90 Undirected 

Hydrogen bond 
network of human 

GPX4. 
van der Waals Contacts between 
residues in a protein (A. J. M. Martin 
et al., 2011) 

248 1979 0.88 Undirected 
van der Waals 

contact network of 
human TIM barrel. 

 
Table S3. The set of 25 LCP networks used in this work, along with their number of nodes N, the 
number of links between them L, the Pearson correlation between CN and LCL (LCP-corr), their 
directionality, and a brief description of what they represent. The background colour indicates the type of 
network: green for LCP networks of biological origin, red for LCP networks of social origin, orange for 
LCP atomic-level networks. 
 
 
 

Power Grid (Watts and Strogatz, 
1998) 4941 13188 0.78 Undirected 

Power Grid of the 
Western States of 

the USA. 

Zachary’s Karate Club (Zachary, 
1977) 34 78 0.75 Undirected 

Friendship between 
members of a karate 

club in the US. 
Grassland Species (Dawah et al., 
1995) 75 113 0.42 Directed Food web of 

grassland species. 
 
Table S4. The set of 3 borderline networks used in this work, along with their number of nodes N, the 
number of links between them L, the Pearson correlation between CN and LCL (LCP-corr), their 
directionality, and a brief description of what they represent. The background colour indicates the type of 
network:  blue for grids, and red for social networks. 
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San Joaquin Road Network 
(Brinkhoff, 2002) 18263 23797 0 Undirected 

Road map of San 
Joaquin County, 

California 
San Francisco Road Network 
(Brinkhoff, 2002) 174956 221802 0.16 Undirected Road map of San 

Francisco, California 

California Road Network (Feifei Li et 
al., 2005) 21048 21693 0 Undirected 

Road map between 
cities in California, 

USA 
Oldenburg Road Network (Brinkhoff, 
2002) 6105 7035 0 Undirected Road map of 

Oldenburg, Germany 
North America Road Network 
(http://www.cs.fsu.edu/~lifeifei/Spatial
Dataset.htm) 

175813 179102 0 Undirected Road map of North 
America 

California Road Network (Leskovec et 
al., 2009) 1965206 2766607 0.13 Undirected 

Road map of 
California, USA 

where nodes are 
both cities and road 

intersections 
Texas Road Network (Leskovec et al., 
2009) 1379917 1921660 0.16 Undirected Road map of Texas, 

USA 
Pennsylvania Road Network 
(Leskovec et al., 2009) 1088092 1541898 0.15 Undirected Road map of 

Pennsylvania, USA 
German highway (Kaiser and C. 
Hilgetag, 2004) 1168 1243 0 Undirected German highway 

system 

Ice - - 0 Undirected Bonds between 
atoms in ice. 

Diamond - - 0 Undirected Bonds between 
atoms in diamond. 

Graphite - - 0 Undirected Bonds between 
atoms in graphite. 

Fullerene - - 0 Undirected Bonds between 
atoms in fullerene. 

DNA - - 0 Undirected Bonds between 
bases in DNA. 

β-sheet - - 0 Undirected 
Bonds between 

residues in a β-sheet 
like protein structure. 

α-helix - - 0 Undirected 
Bonds between 

residues in a α-helix 
like protein structure. 

Abiraterone Drug - - 0 Undirected 

Bonds between 
atoms in the 

chemical structure of 
the Abiraterone 

drug. 
 
Table S5. The set of 17 non-LCP networks used in this work, along with their number of nodes N, the 
number of links between them L, the Pearson correlation between CN and LCL (LCP-corr), their 
directionality, and a brief description of what they represent. The background colour indicates the type of 
network:  grey for road maps, and orange for atomic networks. 

X. LICENCE INFORMATION ON THE INDIVIDUAL ELEMENTS OF FIGURE 5 
 
Here, we provide a table with a reference to each of the images/elements adopted in Figure 
5, a link to the website where they were taken (or/and indication of our authorship) and a brief 
description of their terms of use. 
 
IMAGE SOURCE TERMS OF USE 

Protein folding 
tertiary network 

Made by us using 
http://commons.wikimedia.org/wiki/File:Alpha_helix.png 

 

GNU Free Documentation 
License 1.2 or later and Creative 

Commons Attribution-Share 
Alike 3.0 Unported 

 

Dolphin 
associations 

Made by us using 
http://www.clker.com/clipart-dolphin-silhouette.html 

 
Public domain 

Scientific 
collaborations 

Made by us using 
http://commons.wikimedia.org/wiki/File:Silhouette.svg 

 
Public domain 

WikiVote Made by us 
 

Creative Commons Attribution-
NonCommercial-ShareALike 3.0 

Unported License 

http://commons.wikimedia.org/wiki/File:Alpha_helix.png
http://www.clker.com/clipart-dolphin-silhouette.html
http://commons.wikimedia.org/wiki/File:Silhouette.svg
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Political 
blogosphere 

Made by us 
 

Creative Commons Attribution-
NonCommercial-ShareALike 3.0 

Unported License 
Human protein 

interaction 
network 

Made by us 
Creative Commons Attribution-

NonCommercial-ShareALike 3.0 
Unported License 

Yeast genetic 
interaction 
network 

Made by us 
Creative Commons Attribution-

NonCommercial-ShareALike 3.0 
Unported License 

Mouse 
connectome Made by us 

Creative Commons Attribution-
NonCommercial-ShareALike 3.0 

Unported License 

C. elegans 
connectome Made by us 

Creative Commons Attribution-
NonCommercial-ShareALike 3.0 

Unported License 
Plane http://www.clker.com/clipart-15304.html Public domain 

Power grid 
Based on modifications to 

http://en.wikipedia.org/wiki/File:Pylon_ds.jpg 
 

Creative Commons Attribution-
Share Alike 2.5 Generic 

 

Grassland 
species food web 

Made by us based on: 
1. http://www.clker.com/search/grasshopper/1 

2. http://www.clker.com/clipart-25717.html 
 

1. Public domain 
 

2. Public domain 

Ice 
http://commons.wikimedia.org/wiki/File:%E5%86%B0%E6%99%B

6%E7%BB%93%E6%9E%84.png 
 

Creative Commons Attribution-
Share Alike 3.0 Unported and 

GNU Free Documentation 
License 1.2 or later. 

 

Diamond and 
Graphite 

 

http://commons.wikimedia.org/wiki/File:Diamond_and_graphite2.jp
g 
 

Creative Commons Attribution-
Share Alike 3.0 Unported and 

GNU Free Documentation 
License 1.2 or later. 

DNA 
 

http://commons.wikimedia.org/wiki/File:ADN_static.png 
 Public domain 

Beta-sheet 
 

http://en.wikipedia.org/wiki/File:1gwe_antipar_betaSheet_both.pn
g 
 

Creative Commons Attribution-
NonCommercial-ShareALike 3.0 

Unported License 

Alpha-helix http://bioinsilico.blogspot.com/2008/11/secondary-structure-
prediction_25.html Public domain 

Abiraterone 
 

http://en.wikipedia.org/wiki/File:Abiraterone-3D-balls.png 
 Public domain 

Road maps 

Made by us using: 
1. http://www.clker.com/clipart-16724.html 

2. http://commons.wikimedia.org/wiki/File:Avenue_Road_
map.png 

1. Public domain 
2. Creative Commons 

Attribution-ShareAlike 3.0 
Unported Licence 
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