Supplementary Information

Efficient protection and transfection of siRNA by cationic shell-crosslinked knedel-like nanoparticles (cSCKs)

Yuefei Shen,¹ Huafeng Fang,¹ Ke Zhang,¹ Ritu Shrestha,^{1,2} Karen L.Wooley,^{*1,2} and John-Stephen A. Taylor^{* 1}

¹ Department of Chemistry, Washington University, One Brookings Drive, St. Louis, Missouri 63130 USA

² Departments of Chemistry and Chemical Engineering, Texas A&M University, P.O. Box
30012, College Station, TX 77842-3012 USA

Contents	Page
Table S1. LC ₅₀ for PAEA ₁₂₈ - <i>b</i> -PS ₄₀ cSCKs, cM and Lipofectamine 2000 with	S3
control and lethal siRNAs.	
Table S2. LC_{50} for (PAEA ₁₆₀ -b-PS ₃₀) cSCKs, cM and Lipofectamine 2000	S4
with control and lethal siRNAs in HeLa cells.	
Figure S1. Cytotoxicity assay for siRNA silencing efficiency in different	S5
mammalian cell lines.	
Eisure 62 - Silensing officiency of siDNA modiated brookdown of iNOS	56
Figure S2. Shencing efficiency of SIRNA mediated knockdown of INOS $\frac{1}{2}$ PDNA has DAFA. $\frac{1}{2}$ DS $\frac{1}{2}$ SCK as 100 is DAW2(4.7 sells	50
mkina by $PAEA_{128}$ - ∂ - PS_{40} cSCK-pa100 in RAW264. / cells.	

Figure S3. Electromobility shift assay of siRNA and GALA binding to PAEA ₁₆₀ -b-PS ₃₀ cSCK.	S7
Figure S4. Cellular uptake of PAEA ₁₆₀ -b-PS ₃₀ cSCK(Alexa488)-siRNA(Cy5)-GALA nanocomplexes in RAW264.7 cell line by flow cytometry analysis.	S8
Figure S5. Representative confocal fluorescent microscopic image of intracellular localization of cSCK•siRNA•GALA nanocomplexes in RAW 264.7 cell line.	S9
Figure S6. Inhibition of cSCK uptake and cytotoxicity of endocytosis inhibitors.	S10
Figure S7. Representative confocal fluorescent microscopic image of intracellular localization of cSCK•siRNA•GALA nanocomplexes with Lysotracker-Blue in RAW 264.7 cell line.	S11
Figure S8. Representative confocal fluorescent microscopic image of intracellular localization of cSCK•siRNA•GALA nanocomplexes with Dextran in RAW 264.7 cell line.	S11

Tables

Table S1. LC₅₀ for PAEA₁₂₈-*b*-PS₄₀ cSCKs, cM and Lipofectamine 2000 with control and lethal siRNAs.

Transfection agent	LC50 control	Hill slope	LC50 lethal	Hill slope
	siRNA (µg/mL)	coefficient	siRNA (µg/mL)	coefficient
cSCK-pa ₁₀₀	11.1 ± 0.1	6.3 ± 0.2	3.4 ± 0.1	5.2 ± 0.5
cSCK-pa75ta25	13.4 ± 0.6	3.4 ± 0.5	5.5 ± 0.2	5.4 ± 0.5
cSCK- pa ₅₀ ta ₅₀	22.4 ± 1.5	1.8 ± 0.3	8.3 ± 0.6	2.6 ± 0.4
cSCK- pa ₂₅ ta ₇₅	30.6 ± 1.3	2.6 ± 0.4	12.2 ± 0.7	2.7 ± 0.3
cM-ta ₁₀₀	39.1 ± 1.9	1.9 ± 0.2	21.5 ± 1.0	3.1 ± 0.5
Lipofectamine 2000	11.1 ± 0.3	2.7 ± 0.2	4.1 ± 0.5	1.8 ± 0.4

		LC50 control siRNA (µg/ml)	Hill slope coefficient	LC50 lethal siRNA (µg/ml)	Hill slope coefficient
HeLa	cSCK	16.9 ± 0.8	3.2 ± 0.8	3.9 ± 0.2	2.6 ± 0.3
293T	cSCK	23.6 ± 2.3	2.3 ± 0.2	7.5 ± 0.8	1.3 ± 0.2
	Lipofectamine 2000	10.6 ± 0.5	1.2 ± 0.1	3.2 ± 0.7	0.7 ± 0.1
HEK	cSCK	10.2 ± 0.3	3.3 ± 0.3	6.2 ± 0.2	2.4 ± 0.2
	Lipofectamine 2000	7.4 ± 0.3	3.1 ± 0.4	5.0 ± 0.3	2.2 ± 0.2
BEAS-2B	cSCK	13.6 ± 2.3	1.4 ± 0.4	7.2 ± 1.6	0.9 ± 0.2
	Lipofectamine 2000	6.0 ± 0.7	0.6 ± 0.1	1.2 ± 0.6	0.6 ± 0.2
MCF-10A	cSCK	13.8 ± 0.6	5.5 ± 1.1	12.1 ± 0.3	4.6 ± 0.5
	Lipofectamine 2000	5.7 ± 0.2	1.9 ± 0.1	3.7 ± 0.3	1.6 ± 0.2

Table S2. LC_{50} for (PAEA₁₆₀-b-PS₃₀) cSCKs, cM and Lipofectamine 2000 with control and lethal siRNAs in HeLa cells.

Figure S1. Cytotoxicity assay for siRNA silencing efficiency in different mammalian cell lines. Cells were transfected with 100 nM AllStars Hs Cell Death Control siRNA or ALLStars Negative Control siRNA in the presence of for (PAEA₁₆₀-b-PS₃₀) cSCK at different N/P ratios, or Lipofectamine 2000 at the same μ g/mL as for cSCK-pa₁₀₀. After 48 h, the relative cell viability was quantified using CellTiter-Glo[®] Luminescent Cell Viability Assay. The concentration of the cSCKs for N/P=1 was: cSCK-pa₁₀₀ 0.62 µg/mL.

Figure S2. Silencing efficiency of siRNA mediated knockdown of iNOS mRNA by PAEA₁₂₈-*b*-PS₄₀ cSCK-pa100 in RAW264.7 cells. A) Curve fits for the taken from Figure 6A with a modified Hill equation to take into account plateauing of the inhibition curve at 20% relative nitrite ($\frac{80}{1+[cSCK]/IC50}^{Hill} + 20$), to give LC50 and Hill coefficients of 3.8 ± 0.4 and 2.1 ± 0.5 for knockdown by the iNOS siRNA, and 10.5 ± 0.3 and 3.2 ± 0.4 for non-specific knockdown, presumably cell death, by the control siRNA. B) Silencing efficiency plot, with 58% maximum efficiency at 6 ug/mL.

Figure S3. Electromobility shift assay of siRNA and GALA binding to $PAEA_{160}$ -b-PS₃₀ cSCK. ³²P-labeled iNOS siRNA (50 nM, 100 nM) and GALA (0, 0.5, 1.0, 2.0 μ M) were incubated with cSCK (10 μ g/ml) in OptiMEMI media for 30 min and electrophoresed on a 15% native polyamide gel.

cSCK•iNOS-siRNA•Cy5-GALA

Figure S4. Cellular uptake of PAEA₁₆₀-b-PS₃₀ cSCK(Alexa488)-siRNA(Cy5)-GALA nanocomplexes in RAW264.7 cell line by flow cytometry analysis. (A) Alexa488 channel (B) Cy5 channel.

Figure S5. Representative confocal fluorescent microscopic image of intracellular localization of cSCK•siRNA•GALA nanocomplexes in RAW 264.7 cell line. cSCK-Alexafluor488 (green), siRNA-Cy5 (red), Nucleus (Blue). A complex of 10 μ g/mL cSCK and 50 nM siRNA A) without GALA and B) with 0.2 μ M GALA.

Figure S6. Inhibition of cSCK uptake and cytotoxicity of endocytosis inhibitors. RAW 264.7 cells were treated with the indicated inhibitors and incubated for 1 h after which cSCK uptake was monitored by flow cytometry and cell viability by the CellTiter 96 Non-Radioactive Cell proliferation Assay (MTT assay).

Figure S7. Representative confocal fluorescent microscopic image of intracellular localization of cSCK•siRNA•GALA nanocomplexes with Lysotracker-Blue in RAW 264.7 cell line. cSCK-Alexafluor488 (green), siRNA-Cy5 (red), Lysotracker-Blue (Blue). Lysotracker-Blue (50 nM) with complexes of 10 ug/mL cSCK and 50 nM siRNA without GALA (A) and with 0.2 uM GALA (B).

Figure S8. Representative confocal fluorescent microscopic image of intracellular localization of cSCK•siRNA•GALA nanocomplexes with Dextran in RAW 264.7 cell line. cSCK-Alexafluor488 (green), siRNA-Cy5 (red), Dextran-Cascade Blue (Blue). Dextran (100 ug/ml) with complexes of 10 ug/mL cSCK and 50 nM siRNA without GALA (A) and with 0.2 uM GALA (B).