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I. SOFT-CORE NUCLEOSOME GAS (SNG) – EFFECTIVE INTERACTION BE-

TWEEN PARTICLES

To integrate the spontaneous transient unwrapping of nucleosomal DNA (‘nucleosome

breathing’) into the nucleosome gas model, we give each nucleosome particle two internal

degrees of freedom, which correspond to the degree of unwrapping from each end. In its

fully wrapped state, a nucleosome within our SNG model occupies a bases on the DNA,

in the sense that two neighboring nucleosomes on the DNA begin to constrain each other

conformationally when their dyads are a distance a apart on the DNA (we expect to find

a > 147 bp, since nucleosomes should constrain each other already before their core-particles

are immediately adjacent). For two nucleosomes to come closer than a requires that the

inward facing DNA segment on at least one of the neighbors changes its conformation into

a state with higher free energy than the ground state of the DNA in an isolated nucleosome.

This is a complex process on the molecular scale, with many different contributions to the

free energy. However, for simplicity, we refer to the free energy cost only as “unwrapping

energy”. We assume a linear dependence of the unwrapping energy on the number of released

bases on one nucleosome end, with

ε > 0 (S1)

measuring the cost for one base pair in units of the thermal energy kBT .1 Conceptually

similar models have been considered by Chou [1] and Teif et al. [2]. For the explicit

definition of the model, we allow only odd values,

a = 2w + 1 , (S2)

with a central base at the dyad and w bases to each side. We denote the two internal degrees

of freedom as r and l and refer to them as the number of unwrapped bases on the right and

left side, respectively. We allow r, l to take on any value in the range

0 ≤ r, l ≤ w . (S3)

The internal free energy of a nucleosome particle is then simply

E(r, l) = (r + l)ε , (S4)

1 In the following, we use kBT = 1 and implicitly refer to base pairs as length unit where it facilitates
readability.
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where we assume that there is no coupling between the unwrapping processes at the two

ends. We note that some of the above specific choices that we needed to make for the

explicit definition of the model do not affect the model behavior in any significant way. In

particular, the precise upper bound for the amount of unwrapping is not important, since

highly unwrapped states are energetically very unfavorable,

εw � 1 , (S5)

such that they do not contribute significantly to the statistical observables considered below.

Also, whether a is chosen even or odd does not matter, since the data does not permit

inference of a to single base pair accuracy.

The available nucleosome positioning data cannot distinguish between different internal

nucleosome states. In our model, we therefore consider the internal degrees of freedom as

equilibrated and calculate the effective nucleosome-nucleosome interaction. To that end, we

consider two neighboring nucleosome particles with a given distance ∆x between their dyad

positions and sum over the Boltzmann weights of all states compatible with this distance,

defining the partition function

Z(∆x) =
w∑

r,l=0

Θ(∆x− 2w + r + l)e−(r+l)ε , (S6)

where we use the convention Θ(x) = 1 for x > 0 and Θ(x) = 0 otherwise for the Heaviside

function. The effective interaction free energy v(∆x) between two neighboring particles is

then given by
v(∆x)

kBT
= − ln

Z(∆x)

Z(2w + 1)
, (S7)

where the normalization factor Z(2w + 1) ensures that v(∆x ≥ 2w + 1) = 0. When the

unwrapping penalty is significant, i.e. in the relevant limit of Eq. S5, we can obtain a simple

approximative form for the interaction v(∆x) by extending the sum in Eq. S6 to infinity,

Z(∆x) ≈
∞∑
r,l=0

Θ(∆x− 2w + r + l) e−(r+l)ε =
∞∑
n=0

n∑
j=0

Θ(∆x− 2w + n) e−nε

=
∞∑

n=2w−∆x+1

(n+ 1) e−nε =

(
1− ∂

∂ε

) ∞∑
n=2w−∆x+1

e−nε

=

(
1− ∂

∂ε

)
e−(2w−∆x+1)ε

1− e−ε
. (S8)
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Calculating the derivative and then substituting into Eq. S7 leads to the desired approxi-

mation for the interaction free energy,

v(∆x)

kBT
≈ (a−∆x)ε− ln

[
1 + (a−∆x)

(
1− e−ε

)]
for ∆x ≤ a = 2w + 1 , (S9)

valid for nucleosome distances ∆x not too much smaller than the interaction range a =

2w + 1. To illuminate the physics of this interaction, it is useful to note that the “self-

energy” of a soft-core nucleosome particle is

v0 = −kBT ln

(
∞∑
n=0

e−nε

)2

= −2 kBT ln
1

1− e−ε
(S10)

within the approximation used above (extension of the sum to infinity). The self-energy is

the free energy of a single, isolated particle, obtained from the partition function over its

internal degrees of freedom. The factor 2 results from the two DNA ends of a nucleosome.

The self-energy is also directly related to the normalization factor in Eq. S7 via

v0 = −kBT lnZ(a) , (S11)

since Z(a) is also the statistical weight for all unwrapping states of two DNA ends, in this

case the upstream end of the downstream nucleosome and vice versa. We now rewrite Eq. S8

in the form

Z(∆x) ≈ e−(a−∆x)ε ·
[

1

(1− e−ε)2
+
a−∆x

1− e−ε

]
, (S12)

which can be interpreted as follows. The first factor is simply the statistical weight (Boltz-

mann factor) of the minimal unwrapping energy cost required to allow a distance ∆x between

the two nucleosomes. The second factor contains two terms: The first is equal to Z(a) and

describes all unwrapping states of the two DNA ends, starting from one of the ground states,

whereas the second term accounts for the degeneracy of the ground state for ∆x < a and

therefore contains only the sum over one DNA unwrapping degree of freedom.

II. SOFT-CORE NUCLEOSOME GAS (SNG) – CALCULATION OF OBSERV-

ABLES

It is long known in statistical physics that the equilibrium properties of so-called “many-

body systems” with finite-range interactions in one spatial dimension can be calculated
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exactly, see e.g. [3] for a compendium of solved models and [4] for a textbook exposition.

The transfer matrix method (see e.g. [5] for a brief pedagogical introduction) is the main tool

for discrete systems. These systems consist of lattice sites that can take on different states,

with the states of neighboring sites coupled via an energy function (the most prominent

example being the Ising model). The method not only permits the exact calculation of

thermodynamic observables (such as the free energy or entropy), but also of all statistical

observables (such as correlation functions). Our soft-core nucleosome gas model falls within

the class of models amenable to this method, as do many related 1D models for collective

protein-DNA interactions, see e.g. [2, 6].

Given a system where each lattice site j can take on a finite number S of possible states,

the basic idea of the method is to consider the conditional statistical weight Tην(j) of finding

site j in state ν given that site j − 1 is in state η. This defines an S × S matrix T (j), the

transfer matrix, for each lattice site. Summing over the states of a lattice site j then

corresponds to a matrix multiplication, T (j) · T (j + 1), and the matrix elements of this

product matrix are the statistical weights of finding site j + 1 in a specified state given that

site j−1 is in another specified state. Along the same lines, the statistical partition function

(i.e., the total statistical weight of all states) and all statistical observables of interest can

then be calculated by simple linear algebra. If the system is uniform, i.e. the transfer

matrix is identical for all lattice sites, T (j) ≡ T , then products of transfer matrices reduce

to powers, T n, in which case it is useful to diagonalize the transfer matrix and switch to its

eigenbasis, see below.

For our SNG model, a natural choice of the transfer matrix involves S = a + 1 states2,

since each site of the DNA “lattice” can either be outside of the interaction range of any

nucleosome (state 0, the “linker state”) or be at any one of the a = 2w+ 1 positions within

the interaction footprint of a nucleosome (state 1 through a, the “footprint states”), see

Fig. S18 for illustration. For instance, a site in state w + 1 sits at the dyad position of a

nucleosome, while a site in state 1 (2w+1) is at the left-most (right-most) end of a footprint.

To obtain an unambiguous definition of the state for each DNA site, we must also consider

the situation that the interaction footprints of two nucleosomes overlap, as shown in the

2 Note that the same physical model can be formulated with different transfer matrices, even with different
size S.
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bottom panel of Fig. S18. For this situation we adopt the convention that the state of the

DNA site is always determined by the nucleosome on the right (with the direction set by

the chromosome coordinate x).

Given this definition of the states, the transfer matrix must be chosen to implement

the effective nucleosome-nucleosome interaction discussed in the previous section. In the

following, we only discuss the case of a uniform system, with site-independent transfer

matrix elements Tην , where η and ν each run over all states, i.e. from 0 to a. Explicitly, T

takes the form

T =



1 eµ 0 0 . . . 0

0 eµ−v(1) 1 0 . . . 0

0 eµ−v(2) 0 1 . . . 0
...

...

0 eµ−v(2w) 0 0 . . . 1

1 eµ 0 0 . . . 0


, (S13)

where µ is the chemical potential and the effective interaction potential v(∆x) was defined

in Eq. (S7). The matrix element Tην corresponds to the conditional statistical weight of

finding a site in state ν given that the previous site (to the left) is in state η. For instance,

T0,0 = Ta,0 = 1, since there is no interaction between neighboring empty sites or between

an empty site and the site to the left in state a (i.e., at the right-most end of a footprint).

The entries in the second column correspond to the situation that the right site marks the

beginning of a new nucleosome footprint, and hence each element contains a factor eµ, i.e.

the statistical weight for adding a nucleosome particle. In addition, there is a factor eµ−v(∆x)

for all states η that imply a footprint overlap with a nucleosome further to the left. Finally,

the sequential progression of states, from left to right, within a nucleosome footprint is

contained in T via the matrix elements Tν−1,ν = 1 for 2 ≤ ν ≤ a.

With the help of the transfer matrix (S13), the statistical partition function for a uniform

system with N sites is simply the trace of the N -th power of the transfer matrix,

Z = Tr(TN) . (S14)

This expression assumes periodic boundary conditions, i.e. strictly speaking it would apply

only for a circular chromosome, but as long as N is large, all statistical observables of interest

here are insensitive to the boundary conditions. In particular, the statistical distribution
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functions deep inside a long linear chromosome are identical to those on a long circular

chromosome. The calculation of the statistical distribution functions is based on the fact

that the probability of finding nucleosomes at specified lattice sites can be expressed as

the ratio of two partition functions, a constrained partition function and the unconstrained

partition function (S14). A constrained partition function is obtained by fixing the states

of the lattice sites of interest and summing over the states of the remaining sites. Within

the transfer matrix approach this is implemented by inserting projection matrices at the

appropriate positions within the product of transfer matrices. For instance, the constrained

partition function Z|0 that keeps one particle at a fixed position is

Z|0 = Tr(F · TN) , (S15)

where the projection matrix F with elements Fην = δηνδη1 enforces state 1 at one lattice

site (it is irrelevant which one, since we consider a uniform system with periodic boundary

conditions). In the limit of large N , the ratio of the constrained and full partition functions

yields the average nucleosome density,

ρ = lim
N→∞

Z|0
Z

, (S16)

i.e., the average probability of finding a nucleosome dyad3 at a lattice site (0 < ρ < 1).

Similarly, we can introduce a partition function where two particles are kept at fixed positions

with a distance x,

Z|0,x = Tr(F · T x · F · TN−x) (S17)

to obtain the particle density ρ(x|0) at position x given a positioned particle at site 0 via

ρ(x|0) = lim
N→∞

Z|x,0
Z|0

. (S18)

Transforming the matrices F and T to the eigenbasis of T makes the limit N → ∞ ana-

lytically accessible. We denote matrices written in the eigenbasis of T by a hat (T̂ then is

diagonal), and we define the eigenvalues λν of T in decreasing order of absolute value, i.e.,

3 Note that due to our convention for overlapping nucleosome footprints, where the state of a DNA site
is always the smaller of two possible states, we have to use state 1 for “counting” particles, since this is
the only state that necessarily occurs for each particle. However, we consider the dyad position (w bases
further to the right from a state 1 position) as the location of a nucleosome.
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|λ0| > |λ1| ≥ |λ2| ≥ . . ., and T̂00 = λ0, T̂11 = λ1, . . .. For large systems, the largest (abso-

lute) eigenvalue, λ0, dominates the partition function. Since the trace is invariant under a

change of basis, one obtains the average nucleosome density

ρ = lim
N→∞

Tr(F̂ · T̂N)

Tr(T̂N)
= lim

N→∞

λN0
∑

κ F̂κκ

(
λκ
λ0

)N
λN0
∑

ν

(
λν
λ0

)N = F̂00 (S19)

and the local nucleosome density (in the vicinity of a well-positioned nucleosome)

ρ(x|0) = lim
N→∞

Tr(F̂ · T̂ x · F̂ · T̂N−x)
Tr(F̂ · T̂N)

= lim
N→∞

λN0
∑

κ,σ F̂σκ

(
λκ
λ0

)x
F̂κσ

(
λσ
λ0

)N−x
λN0
∑

ν F̂νν

(
λν
λ0

)N
=

1

F̂00

∑
κ

F̂0κF̂κ0

(
λκ
λ0

)x
(S20)

that we use to calculate the nucleosome patterns of the SNG model shown in Fig. 2 of the

main paper and in the supplementary figures below.

We can also use the transfer matrix to calculate the distribution of distances ∆x between

neighboring nucleosomes, pnn(∆x), by introducing an additional projection operator Gην =

δην − Fην , which ensures that there is no particle located at a site. Repeated use of this

projection operator guarantees that no particle is bound in between two specified particles,

leading to

pnn(∆x) =

∑
νκ F̂0ν

(
[T̂ Ĝ]∆x−1T̂

)
νκ
F̂κ0

λ∆x
0 F̂00

. (S21)

Finally, we consider a more microscopic observable of the SNG model: the effective DNA

footprint size aeff . This quantity captures the average reduction of the footprint a due to

DNA unwrapping. Its definition,

aeff = a− 〈r + l〉 , (S22)

includes both spontaneous DNA breathing (which occurs also at low nucleosome density),

as well as pressure-induced unwrapping (which is relevant only at high densities), i.e. the

average over the unwrapping lengths r and l (introduced in the previous section) is not a

single-nucleosome property but is an effect which must be considered in the context of the
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nucleosome gas. We can calculate this average by first summing over all unwrapping states

compatible with a fixed spacing ∆x between neighboring nucleosomes, and then summing

over ∆x weighted by its distribution pnn(∆x). We find

aeff = a+
∑
∆x

pnn(∆x)
∂

∂ε
lnZ(∆x) , (S23)

where Z(∆x) is the partition function defined in Eq. S6. This expression is plotted in

Fig. S15.

III. DATA PROCESSING

We obtained nucleosome positioning data for 12 yeast species from Tsankov et al. [7]

and data for 3 different MNase digestion levels in S. cerevisiae from Weiner et al. [8]. The

data from Weiner et al. [8] was used only for our study of the effect of digestion levels on

our estimate of the effective nucleosome width b, see section VI and Fig. S19. The data

was processed in a similar manner as in Ref. [7], with slight modifications. Briefly, mono-

nucleosomal DNA was isolated from cells grown to mid-log phase and sequenced using single-

end Illumina technology with 36 bp reads. We then used BLAT [9] to map sequenced reads

from each species to the corresponding reference genome, keeping only reads that mapped

to a unique location, allowing for up to 4 mismatches, and considering only sites where no

ambiguous reads were mapped to. To merge the reads from the Watson and Crick strands,

we shifted the read start locations by half of the mean DNA fragment length (estimated by

cross-correlating the reads from both strands [7]) in the direction towards the nucleosome

center and took the sum to represent the total read density.

Using the genomic nucleosome read locations, we inferred nucleosome positions and

searched for the 5’ NFR with the (downstream) flanking +1 nucleosome for each gene in

all the species as described in Ref. [7]. We aligned the read density relative to the +1 nu-

cleosome at all genes where a NFR was identified, and averaged across genes, resulting in

Ω(x), the gene-averaged read density at distance x downstream from the +1 nucleosome for

a given species.

Similarly, we determined averages over genes longer than 2000 or 3000 bps and genes with

20% lowest and 20 % highest expression level (considering genes with reported expression

level only). Absolute gene expression levels were taken from Ref. [7]. Gene lengths were
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obtained using the species annotations used in Ref. [7].

IV. OPTIMIZING PARAMETERS OF THE NUCLEOSOME GAS MODELS

To compare the observed read densities to our theoretical models and to estimate our

model parameters, we first computed the theoretical nucleosome patterns over a wide range

of biologically reasonable parameters for both the HNG and SNG models. Subsequently, we

determined the optimal parameters, in each case, by minimizing the mean-squared deviation

per data point between data and model.

In the case of the SNG model, we employed the transfer matrix as explained above to com-

pute the average density ρ for a given chemical potential µ (Eq. S19) and the density pattern

close to a boundary ρ(x|0) (Eq. S20). Note that although we consider the grand-canonical

ensemble here, we may equivalently use the average density ρ as a system parameter, given

the assumption of a large system size.

For the HNG model (with the average density ρ and particle width b as parameters), we

used the known analytical result for a continuum semi-infinite system,

ρ(x|0) = δ(x) +
∞∑
k=1

(
x
b
− k
)k−1

Θ
(
x
b
− k
)

b · (k − 1)!

(
ρb

1− ρb

)k
e−

x/b−k
1/ρb−1 , (S24)

as previously used in Ref. [10].

When optimizing parameters, both the finite width of the density peak around the posi-

tion of the +1 nucleosome and the unknown sequencing depth had to be taken into account.

As explained in the main text, the finite width of the +1 nucleosome peak may originate

from a localized attractive region in the effective free energy landscape u(x), restricting the

+1 nucleosome to a finite interval. Furthermore, experimental errors could contribute to

the finite width of the peak. For simplicity, we convolved the model with the shape of the

peak before optimizing parameters. Formally, the model’s nucleosome density ρ̃(x|0) thus

depends on the species considered: ρ̃(x|0) =
∑min(c2,x)

y=c1
ρ(x − y|0) · Ω(y)/

[∑c2
z=c1

Ω(z)
]
. As

convolution range we chose c1 and c2 to be the positions where the peak falls to a quarter

of its maximum value.

The unknown sequencing depth can be treated as an additional parameter in the opti-

mization process [10]. With α denoting a (species-dependent) normalization factor related
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to the sequencing depth, the mean-squared deviation per data point reads

δ̂2 =
1

l2 − l1 + 1

l2∑
x=l1

[Ω(x)− α · ρ̃(x|0)]2 , (S25)

from which α can be determined analytically by minimizing δ̂2 with respect to α, resulting

in α =
(∑l2

x=l1
ρ̃(x|0) · Ω(x)

)
/
(∑l2

z=l1
ρ̃(z|0)2

)
. In the following, we refer to α simply as

‘the sequencing depth’. Note, however, that according to its definition, α depends on the

model and its parameters. For the data reported in the main manuscript, the comparison

between model and data was limited to a window [l1, l2] = [200, 1900] (however see below

for a robustness analysis which includes an alternative choice of fitting range).

Finally, we optimized parameters by minimizing δ̂2 over the range of model parameters

listed in Table S1, for each species independently. We use δ2 = δ̂2/α2 to report the deviation

between model and data at the level of nucleosome densities (instead of read densities) in

Fig. 4 and Fig. S13, in order to make the deviation values more comparable between different

species. For all cases reported in the main paper, the parameter values and δ2 deviations

obtained by our optimization procedure are listed in Tables S2 and S3.

In the case of the HNG model, we first performed fits with the nucleosome width kept

fixed at b = 147 bp, as described in the main text. By inspection of the fits shown in

Fig. S1A to S12A and the deviations plotted in Fig. S13, it is clear that the two prominent

features of the nucleosome patterns, their period and the shape of the decaying amplitude,

cannot be simultaneously accounted for in our different species by the HNG model with

fixed nucleosome width. This is apparent, in particular, for the species K. waltii, K. lactis,

and D. hansenii. We note that the disagreement between HNG model and data is much

more significant than the uncertainty in the data itself, as estimated e.g. by considering the

average pattern from different subset of genes from the same species (Fig. S1B to S12B) or

by comparing independent experiments for the same species (compare Fig. S1A and S19A

for different S. cerevisiae data sets). This justifies our conclusion, drawn in the main text,

that the hard-core nucleosome gas must be ruled out as a unified physical model.

In the case of the unified SNG model, parameters were optimized for all species except

K. lactis simultaneously (see main text). To that end, we minimized
∑

i ωi · δ̂2
i where the

sum is taken over the species and the weights ωi = 1/α2
SNG,i are introduced to account for

varying sequencing depth between species, where αSNG,i is the sequencing depth of species

i estimated from the independent SNG fit to that species. In the unified SNG model, the
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free energy cost ε and maximum wrapping length w are uniform across species, while the

chemical potential µ is species-dependent.

To investigate how well the unified SNG model describes the data from K. lactis, we opti-

mized the chemical potential µ while the parameters ε and w were set to the values obtained

from the simultaneous optimization over the 11 other yeast species (see also Table S1).

To test for robustness of our fitting procedure, we repeated the fits for the SNG model

also for a different fitting range (starting already at 100 bp from the +1 nucleosome), for

a different convolution range (the range over which the peak falls to half of its maximum

value), and also for the combination of these two modifications. The results are tabulated

in Tables S4, S5, and S6. While these modifications lead to slight changes in the optimal fit

parameters, our conclusions are not affected by these details. For the main paper, we have

chosen the combination of settings (fit start at 200 bp and convolution up to a quarter of the

peak height) that leads to the most conservative result, in the sense that it produces the most

modest improvement from HNG to SNG model in the deviation δ2 between experimental

and theoretical pattern.

V. ACTIVE SNG MODEL

We addressed the effect of remodelers shaping the density pattern in addition to the in-

teraction between neighboring particles using kinetic Monte Carlo simulations. Specifically,

we considered a fixed number of particles on a periodic lattice with about 8000 sites4. Par-

ticles were allowed to slide to adjacent lattice sites at rate ks ·min [1, exp(−∆V/kT )] where

∆V = Vnew − Vold is the change in total energy that results from the given transition. The

total energy V is given by the sum of the interaction potential v(∆x) between all nearest-

neighbor pairs of particles in the system (described above, parameters ε = 0.1525 kBT/bp

and a = 2w+1 = 167 bp as estimated for the unified SNG model). A configuration with two

particles occupying the same lattice site is considered to have infinite energy, prohibiting

this configuration.

In addition to this passive sliding process, remodelers randomly bind to two neighboring

nucleosomes at rate kRM and reduce the distance by shifting one nucleosome towards the

4 The actual system size was increased to the next integer multiple of the average spacing to yield the
desired average particle density.
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other by one base pair, but only for distances up to 4w. See Fig. 5A for an illustration.

The kinetics of the system was simulated employing the Gillespie algorithm [11]. Based

on random initial conditions and an estimated equilibration time for the local nucleosome

density of teq = (2ksρ
2)−1, the simulation was run for a time tsim = 100 teq. Two examples

for particle trajectories are displayed in Fig. S16.

To determine the nucleosome density close to a wall, we averaged over time (for t ≥ teq)

and 100 independent realizations. Furthermore, we averaged over reference particles, i.e.,

no particles were fixed in the simulation, but each particle was considered as a boundary

particle for determining ρ(x|0).

VI. EXCLUDING MNASE DIGESTION ARTEFACTS IN THE ESTIMATION OF

EFFECTIVE NUCLEOSOME WIDTHS

Our motivation for introducing nucleosome breathing and the SNG model to our analysis

was the correlation, obtained within the HNG model, between the best-fit nucleosome width

b and the average repeat length 1/ρ, see Fig. 2B. A possible concern is that this correlation

is caused by experimental artefacts related to the MNase digestion step in the experimental

protocol and the fact that we have only single-end sequencing data. For instance, although

the digestion level in each species was performed according to the same criterion (digestion

until the trinucleosome band was only barely visible [7]), there may still be a slight variation

in MNase digestion level from species to species. Therefore one may ask: Can we distinguish

between true nucleosome breathing effects and MNase digestion artefacts in our analysis of

the data?

An essential qualitative difference between true nucleosome breathing and MNase di-

gestion artifacts is the following: MNase digestion should not affect the nucleosome dyad

positions on the DNA but only blur our observation of these positions, since MNase diges-

tion leads to a variable distance between nucleosomal DNA end and dyad. In contrast, true

breathing has a long-range effect on the statistics of nucleosome dyad positions, as described

by the soft-core nucleosome gas model. In this work, we obtain an effective nucleosome size

by fitting the long-range nucleosome pattern and not by a local measure of nucleosome size.

Therefore it should be a robust measure. To test this, we performed two additional analyses

below.
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One important point to consider is that the experimental protocol included a selection

step for mononucleosome-sized DNA fragments. However, this was not a stringent length

selection for 147 bp. Instead, a band from the gel that corresponds roughly to the length

range 130 − 170 bp was cut out [7]. Hence, the spectrum of the nucleosomal DNA lengths

is at least as wide as the variation in the effective nucleosome size inferred by the HNG

model (Fig. 2B) and the variation predicted by the SNG model (Fig. S15). The single-end

sequencing yields one MNase cutting position from each nucleosomal DNA fragment, which

reports one approximate position of one nucleosome endpoint. With DNA breathing at each

end of the nucleosome and the stochastic nature of MNase cutting, the spacing between

the cutting point and the nucleosome dyad is variable. However, this is equally true for

every nucleosome at each end, and therefore should simply lead to a smearing of nucleosome

positions. To study whether this affects our inferred effective nucleosome size (i.e. the

parameter b within the HNG model), we used the data of Weiner et al. [8], which provides

three levels of MNase digestion (typical, overdigested, and underdigested) for a single species

(S. cerevisiae).

We performed our data analysis and fitting procedure identically on all three data sets

and obtained b = 143 bp for typical digestion, b = 140 bp for overdigestion, and b = 138 bp

for underdigestion, see Fig. S19A-C and Table S2. The value for the typical digestion

level compares well with the b = 142 bp we obtained for the S. cerevisiae data set from

the Tsankov et al. study. The variation of b with digestion level is weak and also does

not display a trend. In contrast, the variation of b from species to species in Fig. 2B is

significantly stronger and displays a clear trend. Furthermore, any unintentional variation

in digestion level in the Tsankov et al. study would have been significantly less than the

intentional variation in the Weiner et al. study, since the amount of MNase digestion for

each species was determined by the same criterion in the Tsankov et al. study, thereby

ensuring consistent digestion levels. Taken together, this indicates that our inference of b-

values is robust and that the correlation observed in Fig. 2B is a real phenomenon and not

an experimental or computational artifact. Note that the inference of the other parameter

of Fig. 2B, the average repeat length, is also robust, since it is directly related to the period

of the pattern.

As an additional independent test, we also tried to estimate an effective nucleosome size

for each species in the Tsankov et al. data set directly from the primary data by performing
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a cross-correlation analysis between the positions of the sequence reads on the Watson and

the Crick strands. On average, the start points of sequence reads belonging to opposite

ends of the same nucleosome should be shifted by a distance that may serve as a proxy for

the effective nucleosome size. We therefore determined the distance ∆xWC that leads to

the maximal cross-correlation and compared it to the effective nucleosome size b discussed

above. As the plot in Fig. S19D shows, the two measures are indeed correlated (Pearson

correlation coefficient 0.51 for all species, and 0.66 for all species except K. lactis). However,

it is also clear from Fig. S19A that ∆xWC is not a quantitative proxy for b. A possible

interpretation of this finding is that the MNase assay acts also as an experimental probe

for nucleosome breathing, similar to the first experimental assay, which used cleavage by

restriction enzymes as probes of the transient site-exposure within nucleosomal DNA [13].
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Supplementary Tables

Model Parameter Min. value Max. value Mesh spacing

HNG (fixed b) b = 147 bp - - -

(for each species) 1/ρ [bp] 150 220 1

HNG (variable b) b [bp] 120 1/ρ− 1 1

(for each species) 1/ρ [bp] 150 220 1

SNG ε [kBT/bp] 0.1 0.17 0.0025

(for each species) w [bp] 76 105 1

µ [kBT ] 2 8 0.1

unified SNG ε [kBT/bp] 0.1 0.17 0.0025

(all species simultaneously, w [bp] 76 105 1

except K. lactis) µS. cer., . . . [kBT ] 2 8 0.1

unified SNG ε = 0.1525 kBT/bp - - -

(applied to K. lactis) w = 83 bp - - -

µK. lac. [kBT ] 2 8 0.1

TABLE S1: Ranges and mesh sizes for optimizing parameters in the four different scenarios con-

sidered: HNG model with fixed and variable particle width b as well as the SNG model and the

SNG model with simultaneous optimization (unified SNG model, K. lactis treated separately as

indicated).
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Species HNG model (fixed b) HNG model (variable b)

1/ρ [bp] δ2 b [bp] 1/ρ [bp] δ2

S. cerevisiae 171 0.82 · 10−6 142 170 0.29 · 10−6

S. paradoxus 169 0.90 · 10−6 143 168 0.38 · 10−6

S. mikatae 171 1.22 · 10−6 141 170 0.42 · 10−6

S. bayanus 171 0.86 · 10−6 144 171 0.55 · 10−6

C. glabrata 169 0.95 · 10−6 144 168 0.69 · 10−6

S. castellii 168 0.43 · 10−6 146 168 0.37 · 10−6

K. lactis 183 2.50 · 10−6 158 180 0.57 · 10−6

K. waltii 169 4.10 · 10−6 138 163 0.63 · 10−6

S. kluyverii 171 0.48 · 10−6 145 171 0.37 · 10−6

D. hansenii 171 1.59 · 10−6 140 168 0.36 · 10−6

C. albicans 182 0.29 · 10−6 149 182 0.23 · 10−6

Y. lipolytica 171 0.36 · 10−6 146 171 0.33 · 10−6

S. cerevisiae typical digestion - - 143 169 0.41 · 10−6

S. cerevisiae overdigestion - - 140 171 0.31 · 10−6

S. cerevisiae underdigestion - - 138 177 0.18 · 10−6

TABLE S2: Best-fit parameters for the HNG model (fit range starting at x = 200 bp, convolution

over the range up to a quarter of the +1 peak height). These values are the basis for all plots in

the main paper and this supplement.
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Species SNG model unified SNG model

ε

[kBT/bp]

w [bp] 1/ρ [bp] δ2 ε

[kBT/bp]

w [bp] 1/ρ [bp] δ2

S. cerevisiae 0.1550 81 166 0.28·10−6 0.1525 83 165 0.32·10−6

S. paradoxus 0.1625 81 165 0.37·10−6 0.1525 83 164 0.37·10−6

S. mikatae 0.1475 81 166 0.41·10−6 0.1525 83 164 0.51·10−6

S. bayanus 0.1625 81 167 0.52·10−6 0.1525 83 166 0.53·10−6

C. glabrata 0.1650 82 165 0.68·10−6 0.1525 83 165 0.71·10−6

S. castellii 0.1700 84 164 0.33·10−6 0.1525 83 165 0.57·10−6

K. lactis 0.1700 89 177 0.41·10−6 0.1525 83 179 2.05·10−6

K. waltii 0.1700 78 159 0.60·10−6 0.1525 83 158 0.66·10−6

S. kluyverii 0.1575 83 167 0.35·10−6 0.1525 83 167 0.36·10−6

D. hansenii 0.1475 81 163 0.34·10−6 0.1525 83 161 0.41·10−6

C. albicans 0.1275 88 175 0.19·10−6 0.1525 83 178 0.20·10−6

Y. lipolytica 0.1675 82 168 0.30·10−6 0.1525 83 168 0.33·10−6

TABLE S3: Best-fit parameters for the SNG model (fit range starting at x = 200 bp, convolution

over the range up to a quarter of the +1 peak height). These values are the basis for all plots in

the main paper and this supplement.
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Species SNG model unified SNG model

ε

[kBT/bp]

w [bp] 1/ρ [bp] δ2 ε

[kBT/bp]

w [bp] 1/ρ [bp] δ2

S. cerevisiae 0.1300 86 163 0.34·10−6 0.1400 85 163 0.39·10−6

S. paradoxus 0.1425 86 162 0.41·10−6 0.1400 85 163 0.40·10−6

S. mikatae 0.1275 86 163 0.51·10−6 0.1400 85 163 0.63·10−6

S. bayanus 0.1375 86 165 0.63·10−6 0.1400 85 166 0.64·10−6

C. glabrata 0.1475 85 164 0.71·10−6 0.1400 85 164 0.72·10−6

S. castellii 0.1625 84 165 0.36·10−6 0.1400 85 165 0.63·10−6

K. lactis 0.1600 90 177 0.46·10−6 0.1400 85 181 1.68·10−6

K. waltii 0.1500 81 158 0.66·10−6 0.1400 85 158 0.81·10−6

S. kluyverii 0.1400 87 166 0.37·10−6 0.1400 85 167 0.38·10−6

D. hansenii 0.1350 86 161 0.40·10−6 0.1400 85 161 0.43·10−6

C. albicans 0.1175 92 173 0.23·10−6 0.1400 85 179 0.35·10−6

Y. lipolytica 0.1425 86 167 0.37·10−6 0.1400 85 167 0.38·10−6

TABLE S4: As a test of the robustness of our results with respect to details of the fitting procedure:

Best-fit parameters for the SNG model with fitting range starting at a distance of 100 bp from the

+1 nucleosome, and convolution of the pattern over the shape of the +1 peak up to half of the

peak height.

20



Species SNG model unified SNG model

ε

[kBT/bp]

w [bp] 1/ρ [bp] δ2 ε

[kBT/bp]

w [bp] 1/ρ [bp] δ2

S. cerevisiae 0.1425 84 164 0.30·10−6 0.1525 83 165 0.33·10−6

S. paradoxus 0.1525 84 164 0.39·10−6 0.1525 83 164 0.39·10−6

S. mikatae 0.1375 84 164 0.45·10−6 0.1525 83 164 0.56·10−6

S. bayanus 0.1450 85 165 0.60·10−6 0.1525 83 166 0.60·10−6

C. glabrata 0.1625 83 164 0.76·10−6 0.1525 83 165 0.79·10−6

S. castellii 0.1700 84 164 0.37·10−6 0.1525 83 165 0.62·10−6

K. lactis 0.1700 89 177 0.44·10−6 0.1525 83 179 2.21·10−6

K. waltii 0.1600 80 159 0.65·10−6 0.1525 83 158 0.68·10−6

S. kluyverii 0.1500 86 165 0.38·10−6 0.1525 83 167 0.39·10−6

D. hansenii 0.1425 85 161 0.40·10−6 0.1525 83 162 0.46·10−6

C. albicans 0.1250 91 173 0.24·10−6 0.1525 83 179 0.31·10−6

Y. lipolytica 0.1550 84 168 0.33·10−6 0.1525 83 168 0.36·10−6

TABLE S5: As a test of the robustness of our results with respect to details of the fitting procedure:

Best-fit parameters for the SNG model with fitting range starting at a distance of 100 bp from the

+1 nucleosome, and convolution of the pattern over the shape of the +1 peak up to a quarter of

the peak height.
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Species SNG model unified SNG model

ε

[kBT/bp]

w [bp] 1/ρ [bp] δ2 ε

[kBT/bp]

w [bp] 1/ρ [bp] δ2

S. cerevisiae 0.1425 82 166 0.27·10−6 0.1475 83 165 0.33·10−6

S. paradoxus 0.1500 82 165 0.35·10−6 0.1475 83 164 0.35·10−6

S. mikatae 0.1375 82 166 0.41·10−6 0.1475 83 164 0.53·10−6

S. bayanus 0.1500 82 167 0.52·10−6 0.1475 83 166 0.53·10−6

C. glabrata 0.1575 82 166 0.63·10−6 0.1475 83 165 0.65·10−6

S. castellii 0.1675 83 165 0.29·10−6 0.1475 83 165 0.54·10−6

K. lactis 0.1625 90 177 0.40·10−6 0.1475 83 178 2.23·10−6

K. waltii 0.1575 79 159 0.58·10−6 0.1475 83 157 0.62·10−6

S. kluyverii 0.1450 84 167 0.34·10−6 0.1475 83 168 0.34·10−6

D. hansenii 0.1425 81 164 0.34·10−6 0.1475 83 162 0.43·10−6

C. albicans 0.1225 88 176 0.19·10−6 0.1475 83 178 0.22·10−6

Y. lipolytica 0.1625 82 169 0.30·10−6 0.1475 83 168 0.33·10−6

TABLE S6: As a test of the robustness of our results with respect to details of the fitting procedure:

Best-fit parameters for the SNG model with fitting range starting at a distance of 200 bp from the

+1 nucleosome, and convolution of the pattern over the shape of the +1 peak up to half of the

peak height.
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Supplementary Figures
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FIG. S1: S. cerevisiae: (A) Nucleosome density aligned to +1 nucleosome and averaged over

many genes (gray dots, normalized using estimated sequencing depth) and HNG model with fixed

b = 147 bp (green line), HNG model with variable b (red line), SNG model (orange line), and unified

SNG model (blue line) with parameters optimized (see Tables S2 and S3). (B) Read density when

averaging over all genes (black) and when averaging over those 20 % with lowest (cyan) / highest

(magenta) expression level or those genes which are longer than 3000 bp (green) / 2000 bp (red).
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S. paradoxus
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FIG. S2: Like Figure S1, but for S. paradoxus.
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S. mikatae
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FIG. S3: Like Figure S1, but for S. mikatae.
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S. bayanus
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FIG. S4: Like Figure S1, but for S. bayanus.
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C. glabrata
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FIG. S5: Like Figure S1, but for C. glabrata.
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S. castellii
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FIG. S6: Like Figure S1, but for S. castellii.
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K. lactis
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FIG. S7: Like Figure S1, but for K. lactis, except lower right of panel (A): Here, the SNG model

is applied with parameters obtained from the fit to all species simultaneously except K. lactis, see

Table S1 for more details. The mismatch illustrates the fact that the unified model cannot explain

the data from K. lactis.
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K. waltii
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FIG. S8: Like Figure S1, but for K. waltii.
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S. kluyverii
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FIG. S9: Like Figure S1, but for S. kluyverii.
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D. hansenii
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FIG. S10: Like Figure S1, but for D. hansenii.
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FIG. S11: Like Figure S1, but for C. albicans.
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FIG. S12: Like Figure S1, but for Y. lipolytica.
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FIG. S13: Comparison of how well the different models considered describe the data. For each

model and each species the mean squared deviation per data point, δ2, is displayed. K. lactis is

not included in the unified SNG model, as explained in the main text.
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FIG. S14: Read density averaged over (A) all genes, (B) those 20% of genes with lowest and

(C) those 20% with highest expression level for K. lactis (cyan) and S. cerevisiae (magenta).

Normalization has been introduced to account for different coverage among both species.
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FIG. S15: Pressure-induced unwrapping effect in the SNG model. Effective footprint size aeff as

a function of average repeat length 1/ρ for our consensus parameter values of ε = 0.1525 kBT/bp,

w = 83 bp (green line). Also indicated is the limiting value for large 1/ρ (gray line).
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FIG. S16: Active SNG model. Kymograph of nucleosome positions (black dots) in a periodic

system with fixed number of nucleosomes corresponding to an inverse density of (A),(B) 1/ρ = 175

bp and (C),(D) 1/ρ = 300 bp, and remodeler activity (A),(C) krm = 0 and (B),(D) krm = 0.08,

respectively. Remodeling evidently leads to clustering at low-density, while little change is observed

at high-density. ks = 1 serves as the basic time unit. In each case, the trajectory of a single,

randomly selected particle is traced in red.
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FIG. S17: Active SNG model. Nucleosome density close to a reference particle in a periodic

system with fixed number of nucleosomes corresponding to the inverse density 1/ρ as indicated

and a remodeler rate of krm = 0.08. Note the qualitative similarity with Figure 7 of Ref. [12].
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FIG. S18: Illustration of the state definitions for each site for nucleosome pairs either overlapping

or non-overlapping.
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FIG. S19: Additional analysis to exclude MNase digestion artefacts in the estimation of effective

nucleosome widths b based on the HNG model. See Section VI for a detailed description.
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