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1 Active Hair-Bundle Mechanics

In the absence of stimulation a “silent current” flows through an active OHC [1]. We define

this configuration for a fixed set of parameters to be the reference state. All the equations

of motion for the OHC represent expansions around this state.

In the cochlea the hair bundle of an OHC is directly loaded by the mass mtm of the

tectorial membrane, the effective damping λtm of the tectorial membrane, reticular lamina,

and fluid between these structures, and the effective stiffness Ktm of the tectorial membrane

and reticular lamina. Feedback from somatic motility can result in a reduction in the effective

damping of the bundle [2], which is taken into account by specifying a negative value for

λtm. An active, loaded hair bundle is described by

mtmẌhb = −(λhb + λtm)Ẋhb −Kgs(Xhb −Xa −Xgs −DPo)

− (Ksp +Ktm)(Xhb −Xsp) + Fhb (S1)

λaẊa = Kgs(Xhb −Xa −Xgs −DPo)−Ka(1− αPo)(Xa −Xr) (S2)

Po =
1

1 + Ae−(Xhb−Xa)/δ
, (S3)

in which Xhb and Xa are respectively the displacement of the hair bundle and the ex-

tension of the adaptation springs and Fhb is the external force on the bundle (Fig. 1B).

The gating springs are parameterized by their effective stiffness Kgs, reference extension

Xgs, and gating swing D [3]. The reference extension of the stereociliary-pivot springs,

which underlie the bundle’s linear stiffness Ksp, is denoted by Xsp. The damping coefficient

of the hair bundle is λhb. The open probability Po of the mechanoelectrical-transduction

channels is a nonlinear function of Xhb and Xa in which 1/(1 + A) is the probability

when the gating springs are cut and δ is the length scale for channel opening. Both A

and δ depend upon the number N of transduction channels, the energy ∆G for chan-
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nel opening, a geometric factor γ, the Boltzmann constant kB, and the temperature T as

A = exp [∆G+KgsD
2/(2NkBT ) +KgsDXgs/(γNkBT )] and δ = NkBT/(KgsD) [3, 4]. All

the relevant variables and parameters refer to measurements made at the hair bundle’s top

along its axis of maximal sensitivity.

The activity of the hair bundle results from the dynamics of the adaptation springs

with damping λa, reference extension Xr, and maximal stiffness Ka. The stiffness of the

adaptation springs declines upon Ca2+ binding with a sensitivity α, in which 0 ≤ α ≤ 1. As

is evident from their distinct mathematical formulations, this adaptation mechanism differs

from a previous proposal that made the gating-spring stiffness Ca2+-dependent [3,5,6]. The

essential difference is that the gating spring’s stiffness constrains the difference between

hair-bundle displacement and adaptation-spring extension, whereas the adaptation spring’s

stiffness and viscosity constrain the extension of the adaptation spring itself.

2 Hair-Bundle Activity

The change in the local intracellular Ca2+ concentration C is described by

Ċ = −JPoVohc − J(Po − P ref
o )(V ref

ohc − Vsm − ECa)− ρC, (S4)

in which Vohc is the receptor potential, P ref
o is the reference open probability of the transduc-

tion channels, V ref
ohc is the resting potential, Vsm is the potential of the scala media, ECa ≈ 0 is

the reversal potential for Ca2+, and ρ is the rate constant for removal of free Ca2+ by pumps

and buffers. The parameter J = gmax
Ca /(2ewNA), in which gmax

Ca is the hair bundle’s maximal

Ca2+ conductance, e is the charge of the electron, w is an effective volume, and NA is Avo-

gadro’s number. The formulation of the adaptation-spring model (Eqs. S1-S3) assumes that

the intrinsic Ca2+ dynamics is sufficiently fast that Ċ ≈ 0. A further simplification can be
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made by noting that |(Po − P ref
o )(V ref

ohc − Vsm − ECa)| � |PoVohc|, for |V ref
ohc − Vsm| � |Vohc|.

These two approximations yield C = −J(Po − P ref
o )(V ref

ohc − Vsm − ECa)/ρ. The adaptation

spring’s stiffness is then given to linear order in the Ca2+ concentration by

κa = κref
a + κ′aC = Ka(1− αPo), (S5)

in which κref
a is the stiffness of the adaptation spring in the reference state, κ′a < 0 is the

derivative of the stiffness with respect to the Ca2+ concentration in the reference state,

Ka = κref
a + κ′aJP

ref
o (V ref

ohc − Vsm − ECa)/ρ, and α = (1 − κref
a /Ka)/P ref

o . Thus Ka and α

both depend upon the processes that maintain the OHC’s resting potential V ref
ohc and the

endocochlear potential Vsm − Vst ≈ Vsm, the Ca2+ reversal potential ECa, and Ca2+ pumps

that contribute to the rate ρ. In a passive system V ref
ohc = 0 and Vsm = 0 such that Ka ≈ κref

a

and α ≈ 0.

3 Transduction-Channel Sensitivity

The sensitivity of the mechanosensitive channel’s open probability Po to hair-bundle deflec-

tion is determined by its characteristic width δ (Eq. S3). The channel’s open probability

Po can be found experimentally by measuring the current through the bundle relative to

the maximal value [7, 8]. One method for calculating δ is to measure the peak responses

of the hair bundle to step forces of various magnitudes [7]. Applying this analysis to nu-

merical simulations of hair-bundle responses to step stimuli (Fig. 1C) we obtain the value

δapp = 30.3 ± 0.9 nm (Fig. S1A), which accords with a recent experimental measurement

of δexpt = 35 nm [8]. The apparent value for δ, however, is severalfold the value of δ actu-

ally used in simulations, δ = 4.2 nm. This disparity arises because Po depends upon the

adaptation process that recloses the channels during the period of stimulation. Our analy-
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Figure S1: (A) The open probability Po of mechanoelectrical-transduction channels
(Eq. S3) is shown as a function of bundle displacement for Xa = 220 nm (blue line). The
normalized magnitude of the transduction current It/I

max
t in response to step stimulation

(Fig. 1C and four other determinations) is plotted against bundle displacement (red dots).
These data are fit to Eq. S3 with Xa fixed (red line) and yield δapp = 30.3±0.9 nm (R2 = 1.00,
p-value < 10−11). (B) The real part (solid blue line) and imaginary part (solid red line) of
the OHC’s dynamic modulus after treatment with 9AC are portrayed as a function of the
stimulus frequency. The real part of the dynamic modulus changes when somatic motil-
ity is restored (dashed blue line) whereas the imaginary part remains constant. (C) The
extension of the adaptation spring is shown as a function of the stimulus frequency for dif-
ferent conditions (Table S1): (1) an active, unloaded OHC; (2) an active OHC with its soma
loaded by the basilar-membrane stiffness Kbm and damping λbm, its hair bundle loaded by
the effective stiffness Ktm of the tectorial membrane and basilar membrane, and a negative
damping coefficient λtm to capture the effect of somatic feedback; (3) a similar configuration
after addition of the basilar-membrane mass mbm; (4) a similar configuration including the
tectorial-membrane mass mtm; and (5) after removal of hair-bundle activity by reduction of
Ka and α. (D) The transduction current is shown as a function of the stimulus frequency
for the same five conditions.
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sis suggests that the nonlinearity of transduction has been significantly underestimated by

contemporary experimental techniques owing to the speed of the adaptation process. The

single-channel gating force Z = kBT/δ has therefore been underestimated by more than an

order of magnitude [9–11]. We find that the gating force increases from Z = 10 pN at 4

kHz to Z = 19 pN at 14 kHz primarily owing to the decrease in the hair bundle’s length

(Sections 1 and 8).

4 Resonant Frequency of the Loaded Hair Bundle

The resonant frequency fr of a loaded hair bundle depends on the properties of the bundle

in a complex fashion and also exhibits a nonlinear dependence on the amplitude of external

forcing. If we consider the response in the limit of zero forcing and the operating point of the

hair bundle is at a supercritical Hopf bifurcation, however, it is possible to find an expression

for fr with a simpler parameter dependence.

There is a real, steady-state solution to Eqs. S1 and S2 in the absence of forcing (Fhb = 0)

at a supercritical Hopf bifurcation. To linear order near this solution Eqs. S1 and S2 may

be written as
Ẋhb

V̇hb

Ẋa

 =


0 1 0

−(KGS +Ksp +Ktm)/mtm −(λhb + λtm)/mtm KGS/mtm

(KGS +KA)/λa 0 −Ka,eff/λa



Xhb

Vhb

Xa

 , (S6)

in which Vhb = Ẋhb is the hair bundle’s velocity, KGS = Kgs(1−DP ′o), KA = KaαP
′

o(X?
a−Xr),

Ka,eff = KGS+KA+Ka(1−αP ?
o ), P ′o = ∂XPo(X)?, and the asterisk signifies that an expression

is to be evaluated at the steady-state solution. The eigenvalues µ of the matrix satisfy the
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characteristic equation

0 = aµ3 + bµ2 + cµ+ d, (S7)

in which

a =
mtm

λhb + λtm

(S8)

b = 1 +
mtm

λhb + λtm

(
Ka,eff

λa

)
(S9)

c =
Ka,eff

λa

+
KGS +Ksp +Ktm

λhb + λtm

(S10)

d =

(
Ka,eff

λa

)(
KGS +Ksp +Ktm

λhb + λtm

)
−
(

KGS

λhb + λtm

)(
KGS +KA

λa

)
. (S11)

A Hopf bifurcation is defined to occur when an eigenvalue of the system is imaginary and

can therefore be written as µ = i2πfr. Substituting this expression into Eqs. S8-S11 yields

fr =
1

2π

√
d

b
=

Keff√
(λhb + λtm)λa +mtmKa,eff

, (S12)

in whichKeff =
√

(KGS +Ksp +Ktm)Ka,eff − (KGS +KA)KGS/(2π). Even though this equa-

tion has been derived for an unstimulated hair bundle operating at a Hopf bifurcation, it

is approximately correct for a quiescent bundle operating near such a bifurcation for weak

forcing [12].

5 Somatic Electromechanics

In most experiments on isolated OHCs the membrane potential and force on an OHC are

controlled and the resulting axial extension or charge displacement across the basolateral

membrane of the cell is measured [13, 14]. The extension of an OHC is weakly nonlinear
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within the physiological range of the membrane potential of ±20 mV [8] around the reference

potential of−35 mV [13]. To a good approximation within this range, the steady-state charge

displacement across the OHC’s basolateral membrane Q(F, V ) and the steady-state OHC

extension X(F, V ) are given in terms of their linear response to changes in the axial force

applied to the OHC F and the basolateral membrane potential V as

Q−Qref =
∂Q

∂F

∣∣∣∣
ref

(F − Fref) +
∂Q

∂V

∣∣∣∣
ref

(V − Vref) (S13)

X −Xref =
∂X

∂F

∣∣∣∣
ref

(F − Fref) +
∂X

∂V

∣∣∣∣
ref

(V − Vref) , (S14)

in which the subscript ref indicates that the expression is to be evaluated at the reference

state. These equations may be rewritten as

q = eFs + CVohc (S15)

Xohc = K−1Fs + eVohc, (S16)

in which the capacitance C, stiffness K, and negative piezoelectric coefficient e depend on

the reference state and have been measured experimentally. In particular, the capacitance

C depends on the reference membrane potential. This voltage dependence over very large

changes in membrane potential has been termed nonlinear capacitance and has been used

to indicate the presence of somatic motility in many experiments [13, 14]. In other words,

C is not constant for large changes in the reference potential and can be greatly increased

by the presence of somatic motility [14]. The value for this capacitance used here (14 pF)

is accordingly more than twice [14] the linear capacitance of a 14 kHz cell at −35 mV (5

pF) [8] and is about twice the value owing solely to the geometry of the basolateral wall of

the 25 µm OHC (8 pF).

In the cochlea, the membrane potential and the force applied on an OHC result from
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charge displacement arising from the changing conductance of the transduction channel and

from contact with surrounding cochlear structures, rather than being inputs to each OHC.

Equations S15 and S16 may be rearranged to yield

Fs =

(
C

CK−1 − e2

)
Xohc −

(
e

CK−1 − e2

)
q (S17)

Vohc = −
(

e

CK−1 − e2

)
Xohc +

(
K−1

CK−1 − e2

)
q, (S18)

which may be rewritten as

Fs = KpXohc + pq (S19)

Vohc = pXohc + C−1
b q. (S20)

This formulation for somatic motility is used in this paper. When CK−1 � e2, Kp ≈ K,

Cb ≈ C, and p ≈ −eK/C. The values C = 14 pF [8,14], K = 10 mN·m−1 [14], and e = −20

µm·V−1 [13] determine the values for Cb, Kp, and p listed in Table S1.

For a complete description of somatic dynamics, the full mechanical impedance of an

OHC, the electrodynamics of the cell, and the load afforded by the basilar membrane must

be taken into account. The equations of motion corresponding to the loaded soma of an

OHC (Figs. 1 and 2A, C) are

q̇(1 + Ca/Cb) = −CapẊohc − q(gmax
t P ref

o + gb)/Cb − pXohc(g
max
t P ref

o + gb) + It (S21)

mbmẌohc = −Kc(Xohc −Xc)− (Kp +Kbm)Xohc − pq

− λc2(Ẋohc − Ẋc)− λbmẊohc + Fs (S22)

λc1Ẋc = λc2(Ẋohc − Ẋc) +Kc(Xohc −Xc) (S23)

Vohc =
q

Cb

+ pXohc, (S24)
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in which Xc is the extension of the dashpot λc1 (Fig. 2A), Xohc is the change in the OHC

length, q is the change in the charge on the somatic membrane, and Vohc is the receptor

potential. The two external forces on the system are the current It through the transduction

channels and the mechanical force Fs on the soma. All the other parameters are defined in

Figs. 1A and 2A, C. This formulation utilizes the approximation that Vsm and Vst are constant

such that the changes in the potentials across the apical and basolateral membranes of the

OHC are the same.

The axial mechanical impedance of an unloaded OHC treated with 9AC is given by

Zohc(f) = F̃s(f)/ṽohc(f), in which the tildes denote the Fourier transform, f is the forcing

frequency, and the velocity vohc ≡ Ẋohc. The impedance of the model OHC is computed

from Eqs. S22–S23 by setting mbm = 0, Kbm = 0, λbm = 0, p = 0, and Kp = Kc.

6 Dynamic Modulus

The axial dynamic modulus G(f) of the cylindrical OHC is given by

G(f) = 2πifZohc(f)Xref
ohc/Aohc, (S25)

in whichXref
ohc is the reference length and Aohc is the reference cross-sectional area of the OHC.

The dynamic modulus of a 14 kHz OHC is calculated for Xref
ohc = 25µm and Aohc = 25π µm2

[8, 15].

7 Somatic Responses to Electrical Stimulation

The response of the OHC’s soma to sinusoidal changes in the hair bundle’s conductance is

found from Eqs. S21–S24 with It = (Vsm − V ref
ohc)(g

max
t /2) cos(2πft), in which gmaxt is the

maximal conductance of the transduction channels.
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8 Hair-Bundle Scaling

Hair-bundle motility is expected to change between the 4 kHz and 14 kHz places because

the bundle length L decreases from 2.9 µm to 1.6 µm [16] and the maximal transduction

conductance increases from 40 nS to 75 nS [8]. The change in length affects hair-bundle

mechanics significantly: Ksp ∼ L−2, Kgs ∼ L−2, D ∼ L, λhb ∼ L−1 and γ ∼ L−1. The rise

in conductance increases the values of both Ka and α, for the adaptation spring becomes

more sensitive to changes in the open probability (Section 2). These considerations inform

the choices of the parameter values at the 14 kHz place (Table S1).

9 Coupling Active Hair-Bundle Motility and Somatic

Motility

To disentangle the various contributions to the cochlear amplifier we hold the cell’s apical

surface in a fixed position, thereby preventing somatic motility and basilar-membrane motion

from influencing the hair bundle. We subsequently reintroduce the key effects of the normal

coupling by forcing the bundle to mimic its response to basilar-membrane motion in the

actual cochlea. We render the effective damping of the tectorial membrane negative to

reflect the effect of somatic feedback on the bundle [2] and increase the stiffness of the

tectorial membrane to include the bundle’s coupling to the basilar membrane by the organ

of Corti. We align the resonances of the hair bundle and tectorial membrane with that of

the OHC and basilar membrane. When the OHC’s apex can move, however, at least two

modes of vibration are possible with resonant frequencies depending upon the properties of

the entire cochlear partition [17–19].

The hair bundle of an OHC and the cell’s soma are linked by the transduction current

It = (Vsm−V ref
ohc)g

max
t (Po−P ref

o ) such that an active OHC is described by Eqs S1–S3 and S21–
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S24. The response of the system to sinusoidal forcing of the bundle Fhb = Fmax
hb cos(2πft) in

the absence of somatic forcing (Fs = 0) is shown in Fig. 3.

The transduction current, which depends upon the difference Xhb−Xa (Eq. S3), is shown

in Fig. S1D under the same conditions considered in Fig. 3. The current of an isolated OHC

displays a maximum at 11.1 kHz because Xhb−Xa attains a maximum even though both Xhb

and Xa are low-pass filtered (Figs. 3B and S1C). As a consequence of the low-pass filtering of

the receptor potential by the OHC’s membrane, there is a maximum in the receptor potential

and thus in the OHC’s extension at a lower frequency of about 5.1 kHz (Fig. 3C, D). The

effect persists when the load’s stiffness and damping are introduced, but is overwhelmed by

the influence of cochlear inertia.

Hair-bundle activity amplifies the transduction current at the active 14.1 kHz resonance

by a factor of 186 in comparison with the passive response (Fig. S1D). This enhancement

leads to amplification of the receptor potential and thus the OHC’s extension by the same

factor (Fig. 3C, D).

10 Parameter Values

A list of parameter values is given in Table S1. The methodology for estimating most

parameter values from experimental measurements has been described previously [2]. Here

we clarify some additional points.

Most parameter values required for a complete model of cochlear mechanics are not

known for one species or at more than a few places along the cochlear partition. This

presents a major challenge in creating models of cochlear mechanics. Detailed global models

that include wave mechanics must include many assumptions about how parameter values

change from one cochlear position to another [28,29], leading to a lack of consensus as to how

the cochlea functions in vivo. To avoid this difficulty, we elect to focus on the two cochlear
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locations for which most parameter values are known.

Although all of the parameter values are constrained by experimental measurements,

there is some flexibility with regard to the exact values. For example, we choose values to

create resonant responses very close to 4 kHz and 14 kHz. Other possible choices would

produce resonances at the same frequencies or nearby frequencies. A systematic search

through all possible parameter combinations, however, is beyond the scope of this work.

There are two reasons why the tectorial and basilar membranes act as mass loads on an

OHC even though they have densities similar to that of the cochlear fluid. First, because the

membranes are cohesive structures, they do not flow with the fluid. They are not accelerated

in the same fashion as the fluid by an OHC and therefore they load an OHC differently. For

example, the fluid can flow around an OHC, but the membranes cannot. Second, the other

material properties of these membranes, such as their elastic and viscous moduli, are different

from those of the fluid; furthermore, the membranes are attached to the cochlear bone. The

model must therefore treat the membranes differently than the fluid.

We estimate the total mass of the tectorial and basilar membranes as the products of

their volumes and densities. Each membrane is a spatially distributed object, however, that

may not move as a unit with an OHC. The effective mass loads of an OHC may thus be less

than the membranes’ total mass. For example, in the gerbil the tectorial-membrane volume

for a cochlear segment one OHC diameter wide is 3.5×104µm3 [27,30] near the 14 kHz place,

yielding a total mass of 35 ng. We use a value of 26 ng in the model.
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Bundle motility 4 kHz Ref. 14 kHz Ref. Somatic motility 14 kHz Ref.

Xsp nm 285 20 285 20 λc1 µN·s·m−1 1.99 Fit B
Xr nm −285 Fit A −285 Fit A λc2 nN·s·m−1 104 Fit B
λa nN·s·m−1 140 Fit A 140 Fit A Kc mN·m−1 1.32 Fit B
λhb nN·s·m−1 150 16,21 100 16,21 K9AC

p mN·m−1 1.32 Fit B
∆G kBT 10 3 10 3 Kp mN·m−1 14.3 14
T K 300 3 310 8 p kV·m−1 20 22
Xgs nm −7.1 3 −8 3 Cb pF 10 8
N — 110 23 116 23 Ca pF Cb/5 8
D nm 24 3,9 14 Scale gb nS 285 8
Kgs mN·m−1 4.5 7 16 Scale gref

t nS 75 8
Ksp mN·m−1 1 7 3 Scale P ref

o — 0.5 8
γ — 0.25 9 0.44 Scale V ref

ohc mV −35 8
δ nm 4.22 Calc. 2.22 Calc. Vsm mV 85 24
A — 451 Calc. 143 Calc. Vst mV 0 24

Et mV 0 23

Bundle load 4 kHz Ref. 14 kHz Ref. Somatic load 14 kHz Ref.

Ktm mN·m−1 20 25,26 203 25,26 Kbm mN·m−1 300 26
λtm nN·s·m−1 −124 −60 λbm nN·s·m−1 104
mtm ng 32 27 26 27 mbm ng 40 27
Kf mN·m−1 2 7
λf nN·s·m−1 350 7

Bundle activity 4 kHz Ref. 4 kHz Ref. 14 kHz Ref. 14 kHz Ref.

Ka µN·m−1 400 Fit A 400 Pass. 640 400 Pass.
α — 0.988 Fit A 0 Pass. 0.924 0 Pass.

Table S1: The parameters of the OHC model and their values. Fit A and Fit B denote
values found from comparison with experiment (Figs. 1C and 2C, respectively). Calc. and
Scale indicate values calculated according to sections 1 and 8, respectively. Pass. refers to
values for a passive hair bundle.
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