Supporting Information

Foit et al. 10.1073/pnas.1222458110

PNAS PNAS

CLUSTAL 2.1 multiple sequence alignment

gi_226939674_ref_YP_002794747_	MKTRSATVLAALALALGAGMAHAADAAGK	29
gi 3660012 pdb 1BG8 A	ADADAQKA	6
gi 324115328 gb EGC09292.1	MKKAISILLGGLLLMPVISNAAETQKA	27
g1 365848927 ref ZP_09389398.1	QA	21
gi 339763595 gb AEJ99815.1	AHA	22
g1 31/494458 ref ZP_0/9528/2.1	IGHA	22
gi 183600608 ref 2P_02962101.1	MKKYF1VG11AASLTSLSAMAEDK	24
g1 268591600 ref 2P_06125821.1	AAT-	23
g1 354594842 ref ZP_09012879.1	AAEK	9
gi 187479095 ref YP_787120.1	MKKAMLAVTMLG-LASLAGAAH	21
gi 293604620 ref ZP_06687022.1	MLIPHFGEIEMKKRIFTLALVA-MAAVSGAAN	31
gi 187479269 ref YP_787294.1	MKKIIISLSIAAATLSFSGTAL	22
gi 323139382 ref ZP_08074433.1	MKLRYFAFVACLLAAQGAVAD	21
gi 323139170 ref ZP_08074226.1	MKTLYLAAAVAAVFATTAQAD	21
gi 226939974 ref YP_002795047.	MQRSLALSGLALALFATMSVAG	22
gi 225628791 ref ZP_03786825.1	MIKALFNKNTALAAVAILALSGGAMAESAKTHKT	34
gi 188584311 ref YP_001927756.	MRTGFLKTHLLPAIAVVLSAGLVQAETSGGKSADKHQE	38
gi 357939260 gb AET92817.1	MKFSKSIAAAMCVLVIGASGVARA	24
gi 238023991 ref YP_002908223.	MKKITMWYMAAALAGIATANVAFAQT	26
gi 326314934 ref YP_004232606.	MRVLARLSVLTLSSLAAAAAMAQTPSPAAPSAAATNPAAATAPAPA	46
gi_226939674_ref_YP_002794747_	TASPKGYYKWTCQDFLDLDESFKPKVVYWAEGFNNKGKPDAAM-VDVQGV	78
gi 3660012 pdb 1BG8 A	ADNKKPVNSWTCEDFLAVDESFQPTAVGFAEALNNKDKPEDAV-LDVQGI	55
gi 324115328 gb EGC09292.1	ADNQKPVNSWTCEDFLALDATFQPTAVGFAEALNKKDKPEDAV-MDVQGI	76
gi 365848927 ref ZP_09389398.1	AETQKPVNNWTCEDFLALDSSFQPTAVGFAEALNSKDKPEDAI-MDVKGI	70
gi 339763595 gb AEJ99815.1	ADHKKPVNSWTCEDFLAVNEDFQPTAVGVAEALNSKDKPEDAV-LNVSGI	71
gi 317494458 ref ZP_07952872.1	AENKKPVKSWTCEDFLALDESFKPTAIGFAEALNKKDKPEDAV-LDVDGT	71
gi 183600608 ref ZP_02962101.1	KNDTKPLAEWTCEEFLAIDDNFYPTAVGFGELLTKKDKVEDAV-LDVDGI	73
gi 268591600 ref ZP_06125821.1	DAKPVSQWTCEDFLAIDDAFYPTAIGAAEIITQKGKVEDPT-LDISGI	70
gi 354594842 ref ZP_09012879.1	TQAQKPINQWTCQDFLMLDENFQPTAVGFAEGITKKDKVVDPT-LDVQGI	58
gi 187479095 ref YP_787120.1	ADTKKPVQLWLCSDYLEVNETYRPTALGFAEAVNKKGKVEDAV-VDLEGI	70
gi 293604620 ref ZP_06687022.1	ADSKKPVSLWLCSDYLAVDETYQPTVLGFAEAVNRKGEPKDAV-LDVEGI	80
gi 187479269 ref YP_787294.1	ADAKKPMPLWQCSDYLQLNESYRPVALGFAEAVNRKGKPEDDV-VDIEGI	71
gi 323139382 ref ZP 08074433.1	TKKPVSKWTCEEFLAVESDFQPKVVYFATAKERPARPT	59
gi 323139170 ref ZP_08074226.1	TKKPVSKWTCEEFLAVEDQFQPKVIYWSSAQGKGGKPTGFV-DIEG-A	67
gi 226939974 ref YP_002795047.	TPPKKPVSQWTCEEFLTLDDQFKPNAVYFSEGLNKKHQPVDAV-MDETGA	71
gi 225628791 ref ZP 03786825.1	DMAKKKVSELTCEDFNGLEESFKPTVVGWVVGFNKKGKEEDAV-IDVDGI	83
gi 188584311 ref YP_001927756.	KLASKPLEKVTCEEFNGFEDTFKPKVVAWAAGYKOGOKKPDAVAIDIAGV	88
gi 357939260 gb AET92817.1	AEOKITPAKMTCADFVOVDDAYKPALVYWVAGVDKLGVTGTET-TVVDTM	73
gi 238023991 ref YP 002908223.	AAKTISPAKMVCADFETLDDAYKPAVIYWATGVDKLGVRETDO-ITIDTA	75
gi 326314934 ref YP_004232606.	AKARKPLVKTTCSDYVGMDETIKPKFIYYAVGHTOGGKKEAVFEEDAI	94
3-1	* :: .: * :	
g1_226939674_ref_YP_002794747_	EKIIPVVVDQCKLKPTEKLMKIMKSAKMTAGH 110	
gi 3660012 pdb 1BG8 A	ATVTPAIVQACTQDKQANFKDKVKGEWDKIKKDM 89	
gi 324115328 gb EGC09292.1	ETVTPAIVQACTQDKKASFKEKAQGEWAKIKKDL 110	
gi 365848927 ref ZP_09389398.1	ETVTPAVVQACTENQKASFKDKVKSEWDKFKQHI 104	
gi 339763595 gb AEJ99815.1	EKVTPTIVQACQKDKKMSFKDKVRAEWDNLKKEIY 106	
gi 317494458 ref ZP_07952872.1	EKVIPLVIEACKQNPKESFAQKVKSEWKKVKKDM 105	
gi 183600608 ref ZP_02962101.1	QTLTPVVIDACKKDTKANFVEQVKNAKK 101	
gi 268591600 ref ZP_06125821.1	ATSTPLIVEACEKAPKESFIQKVEAHLKKM 100	
gi 354594842 ref ZP_09012879.1	AQVVPVLVQECKKSPKDNFVNKVKTNLTDKK 89	
gi 187479095 ref YP_787120.1	EKIKPSLLTYCKENPKIALRDALDNVRK 98	
gi 293604620 ref ZP_06687022.1	TKVKPEVLTYCKENPKIALRDALVQSWGKVKK 112	
gi 187479269 ref YP_787294.1	AQITPTLVTYCQENPKVALTDALAQTKANAANTTSKTPPTSSTTAK 117	
gi 323139382 ref ZP_08074433.1	63	
gi 323139170 ref ZP_08074226.1	EKVVPMVIDDCKKAPQESYWSKLKAAWKKVEADAKALEKKM 108	
gi 226939974 ref YP_002795047.	LKVTPMVVTECQKDRKASFWSKLKTTWQHIEQKM 105	
gi 225628791 ref ZP_03786825.1	ETVTP-CHHRSLQAGAESIVLEKG 106	
gi 188584311 ref YP_001927756.	EKVTPLIAEECRKAPAASLWSKIDGELKKVF 119	
gi 357939260 gb AET92817.1	QPVAATVAQECQKDPQTKFMSKVRSMIKSKQIALFDHH 111	
gi 238023991 ref YP_002908223.	HPVAEQVTEECKATPKVKIVDKIRMMAKAGKLSIYKRN 113	
gi 326314934 ref YP_004232606.	EKIKPELDOYCSVHLTKSAYAKVMASSMASEGTAAHGHSKAK 136	

Fig. S1. ClustalW (1) sequence alignment of HdeA sequences. For *Escherichia coli* HdeA (Protein Data Bank ID code 1BG8), only the protein sequence reflecting the mature protein is shown. All other protein sequences contain their respective signal sequences.

1. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680.

Fig. S2. Chaperone activity of WT HdeA and HdeA D20A D51A variant after neutralization. Guanidine denatured malate dehydrogenase (MDH) was diluted in aggregation buffer (pH 2.2) to a final concentration of 4 μ M and incubated for 30 min. MDH aggregation was induced by neutralization with 2 M K₂HPO₄ and measured by monitoring light scattering at 350 nm in the presence or absence of various HdeA variants. Indicated is the extent of aggregation 30 min after neutralization, normalized to the aggregation of MDH in the absence of HdeA.

Fig. S3. Analytical ultracentrifugation sedimentation velocity analysis of WT HdeA (*B*, *D*, *F*, *H*, and *J*) and HdeA D20A D51A (*A*, *C*, *E*, *G*, and *I*) at pH 5. The molecular mass of WT HdeA is 9.7 kDa (monomer) and 19.5 kDa (dimer). Fractions of the monomeric and dimeric species are indicated. The K_d of dimerization for HdeA D20A D51A at pH 5 is in the range of 30 μ M. (*C*) In addition to a species of about 10 kDa, a species of high molecular mass (about 90 kDa) was detected (11%), but no species corresponding to the HdeA dimer was detected.

Protein concentration, μM	HdeA WT		HdeA D20A D51A	
	Apparent molecular mass, kDa	Frictional ratio, f/f0	Apparent molecular mass, kDa	Frictional ratio, f/f0
4	23.33	1.43	n.a.	n.a.
8	21.16	1.29	n.a.	n.a.
17	19.50	1.20	21.80	1.29
24	19.00	1.18	22.91	1.35
40	18.61	1.16	23.20	1.37
70	19.10	1.19	22.08	1.32

Table S1. Predicted molecular mass and frictional ratios for putative dimeric species of differentHdeA variants at different concentrations

The apparent molecular mass and the frictional ratios at pH 5 for HdeA WT and HdeA D20A D51A, respectively, were determined using analytical ultracentrifugation. Due to low signal extensity, the fractional ratio and molecular mass are approximate for protein concentrations of 4 and 8 μ M. n.a., not applicable.

PNAS PNAS