
Supporting Information
Zwanikken and Olvera de la Cruz 10.1073/pnas.1302406110
SI Text
Details Algorithm. We developed an algorithm to calculate the
anisotropic pair-correlation functions and mean densities by
means of the anisotropic hyper-netted chain. The dimension of
the pair-correlation functions can be reduced from six to three
thanks to the translational symmetry in the direction parallel to
the boundaries: h(x, x′) = h(r, z, z′). First, the z coordinate is
discretized, and the Ornstein–Zernike equation (Eq. 3) is con-
sidered as a matrix equation, where each matrix element of the
pair-correlation matrices corresponds to two z coordinates,
hij(r) = h(r, zi, zj). An interpretation of the method is shown in
Fig. S1. Typically, we divide the r axis and z axis in 40–100 grid
points each, such that the pair-correlation functions store up to
106 numbers. We defined a shorter-ranged direct correlation
function c*ijðrÞ ≡ cijðrÞ+ βu*ijðrÞ to be able to perform the Hankel
transformation over a shorter domain. The function u*ijðrÞ is the
Coulomb potential between two particles with z coordinates zi
and zj and distance r parallel to the boundary, with a correction
for large values near the origin for i ∼ j. The function is in-
troduced purely for mathematical/numerical convenience and
not an approximation in the theory. To numerically solve the
Ornstein–Zernike equation (Eq. 3), we Hankel-transform the
matrix elements hij(r) of the total correlation function matrix and
solve an algebraic matrix equation in k space to obtain the direct
correlation functions. The direct correlation functions are con-
sequently used to calculate the new total correlation functions by
using the hyper-netted chain closure (Eq. 4) without the bridge
function and a term uijðrÞ− u*ijðrÞ, setting straight our rescaling of
c that was performed for numerical convenience during the
Hankel transformations and a convenient inclusion of the image
charge effects. Iteratively, we calculate the density profile (Eq.
5), which requires the pair-correlation functions as an input, and
the pair-correlation functions, which require the density as an
input. The iteration is continued until a self-consistency is ob-
tained with a relative precision of typically 10−8. A simple Picard
iteration scheme sufficed for convergence in 1 min to 2 h on
a single CPU. To optimize the efficiency of the code, we typically
chose an r range of 4–5 Debye lengths or bulk correlation
lengths. Both the routines for the matrix inversion and the
Hankel transformation were obtained from the GNU scientific
library. More background and a very detailed discussion can be
found in refs. 1 and 2, which have been very helpful during the
development.

Method of Images. As explained in ref. 1, the introduction of the
correlation function c* also has the advantage that it facilitates
the method of images. The image contributions to the pair in-
teractions need only be known in k space in the evaluation of the
ĉ*ijðkÞ from the Ornstein–Zernike equation. In the evaluation of
hij(r) from the hyper-netted chain closure, the contributions are
cancelled out because of the term uijðrÞ− u*ijðrÞ. In k space, the
contribution can be given analytically by explicit terms, which can
be evaluated before the iteration procedure. The electrostatic
pair potential between two particles consists of a direct contri-
bution and the interactions with the images, which can be sum-
med as follows. Every time a charge is reflected by the boundary
between phase 1 and phase 2 or 3, its charge is modified by
a factor A12 or A13, respectively, such that the total Coulomb
potential is a summation,
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that includes the direct interaction (first line), the even number of
reflections (second line), and the odd number of reflections (third
line). The boundaries are located at z = z0 and z = zM. After the
Hankel-transform, the summation reads

βûijðkÞ = 2πqiqjlB
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and can be performed by recognizing the geometric series,
leading to

βûijðkÞ= 2πqiqjlB
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The notation of the second line of Eq. S3 can be simplified even
further by recognizing a hyperbolic cosine, but it is not done in
the algorithm for numerical safety to avoid multiplication of an
extremely small number with an extremely large number. The
self-interactions with the images (Eqs. 1 and 2) can be consid-
ered as an additional external potential that needs to be evalu-
ated only one time in r space.
The image contributions are large if the factors A12 and A13

approach one (i.e., when the dielectric contrast is large between
phase 1 and phases 2 and 3). The divergence in the limit of A12 =
A13 = 1 is, in reality, avoided by the finite polarizability and thick-
ness of the boundaries between two fluids or a fluid and a solid,
but large values of the potential can be encountered, especially near
the boundaries, and require extra care in the numerical algorithm
(e.g., by adapting the function u* near the boundary).
Some variations in the algorithm have been made, including

annealing procedures, to deal with strong interactions (e.g., by
lowering the temperature gradually, selectively increasing the ion
charge, or changing the size of the ion or the dielectric constants
to the desired value).
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Fig. S1. From a perspective along the z axis, the inhomogeneous system (Left) appears homogeneous (Right). One can map the 3D inhomogeneous system to
a 2D homogeneous system without loss of information about the coordinate that is lost by projection by labeling the particles in parallel layers as a distinct
species. One exchanges inhomogeneity for polydispersity.

Fig. S2. Visualization of the method of images applied to a system of two charges that are confined between two parallel dielectric boundaries. Two con-
ducting boundaries, or two boundaries with a stronger dielectric medium, invert the charge with every reflection, resulting in an alternating pattern of positive
and negative image charges (Left; teal mirrors). Two different boundaries, one with a positive and one with a negative dielectric jump, invert and mirror the
charge subsequently, resulting in a pattern where two negative images are followed by two positive ones and vice versa (Right; purple mirrors). The total
electrostatic potential is obtained by summing the interactions between all of the images, which can be done conveniently in Fourier space as shown above.
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