Supporting Information for

Synthesis of Odd Generation Triazine Dendrimers Using a Divergent, Macromonomer Approach

Jongdoo Lim, Meredith A. Mintzer, Lisa M. Perez, and Eric E. Simanek*

Department of Chemistry, Texas A&M University, College Station TX 77843

Table of Contents

	Page
Computational Details	S2
MALDI-TOF MS Protocol	S3
General Procedures	S4
Experimental Procedures	S4
Spectra	S7

Computational Details

Computational results were obtained using the software package Materials Studio (MS) 5.0 (Accelrys, Inc). The dendrimers were built in an extended conformation using the dendrimer builder tools in MS. The conformational space of each dendrimer was sampled via 300 Simulated Annealing (SA) cycles over a period of 840 ps using the Forcite Plus program and the polymer consistent force-field (pcff) as implemented in MS 5.0. The SA runs utilized contant volume and temperature (NVT) molecular dynamics (MD) over a temperature range of 300-1000 K using the Nosé thermostat, $\Delta T = 50$ K, untruncated atom-based electrostatic and van der Walls interactions, and a time step of 1 fs. The dendrimer was minimized after each annealing cycle, resulting in 300 minimized structures per dendrimer.

MALDI-TOF MS Protocol

Instrument:	Applied Biosystems Voyager STR
Mode of operation:	Reflector for molecular weight >5 kDa
	Linear for molecular weight above 5 kDa
Extraction mode:	Delayed
Polarity:	Positive
Accelerating voltage:	20000 V
Grid voltage:	65%
Mirror voltage ratio:	1.12
Guide wire:	0.002%
Extraction delay time:	275 nsec
Number of laser shots:	100/spectrum
Laser Rep Rate:	3.0 Hz
Sample concentration:	roughly 0.1 mg/ml
Matrix:	2',4',6'-Trihydroxyacetophenone monohydrate (THAP) Concentration 20 mg/ml

Matrix:Analyte ratio (1:1 v/v), 1μ l of the matrix and sample mixture was spotted on a stainless steel MALDI plate.

Di(**Boc-piperazyl**) **monochlorotriazine** (**pip-MCT**) was synthesized by the method of Simanek, et al.^{s1} Other chemicals were purchased from Aldrich and Acros and used without further purification. All solvents were ACS grade and used without further purification. NMR spectra were recorded on a Varian Mercury 300 MHz or Inova 300 MHz spectrometer in CDCl₃. All mass spectral analyses were carried out by the Laboratory for Biological Mass Spectrometry at Texas A&M.

Experimental Procedures

Compound 1. A solution of di(Boc-piperazyl) monochlorotriazine (5.0 g, 10.33 mmol), 4,7,10-trioxa-1,13-tridecanediamine (15.0 g, 68.09 mmol), and DIPEA (3.0 mL, 17.1 mmol) in THF (100 mL) was stirred for 3 h at room temperature and then refluxed for 20 h. The solution was evaporated under vacuum. The residue was dissolved in dichloromethane, washed with brine, dried over MgSO4, filtered, and evaporated under vacuum. The crude product was purified by silica gel chromatography (from DCM:MeOH = 47:3 to DCM:MeOH = 7:1 w/ 1% NH₄OH) to give 1 (5.8 g, 84%) as a white solid. ¹H NMR (300 MHz, CDCl₃) δ 3.67 (br, 8H, NCH₂CH₂NBoc), 3.60-3.49 (m, CH₂OCH₂CH₂OCH₂CH₂OCH₂). 3.37 (br. 10H. NHCH₂CH₂CH₂CH₂O. 12H. NCH₂CH₂NBoc), 2.74 (t, 2H, OCH₂CH₂CH₂NH₂), 1.78 (m, 2H, OCH₂CH₂CH₂NH), 1.67 (m, 2H, OCH₂CH₂CH₂NH₂), 1.45 (s, 18H, C(CH₃)₃); ¹³C NMR (75 MHz, CDCl₃) δ 166.4 (C₃N₃), 165.3 (C₃N₃), 154.9 (CO), 79.9 (C(CH₃)₃), 70.7 (OCH₂CH₂O), 70.3 (OCH_2CH_2O) , 70.2 (OCH_2CH_2O) , 69.5 (two lines. NHCH₂CH₂CH₂O. OCH₂CH₂CH₂NH₂), 43.0 39.7 $(NHCH_2CH_2CH_2O),$ (piperazine), 38.3 33.2 (OCH₂CH₂CH₂NH₂), 29.7 $(NHCH_2CH_2CH_2O),$ $(OCH_2CH_2CH_2NH_2),$ 28.5 $(C(CH_3)_3)$; MS (ESI) calcd for $C_{31}H_{57}N_9O_7$ 667.4381, found 668.3845 $(M + H)^+$.

Compound 2. Cyanuric chloride (0.54 g, 2.93 mmol) was added to a solution of 1 (4.0 g, 5.99 mmol) and DIPEA (2.0 mL, 11.4 mmol) in THF (70 mL) at 0 °C, The solution was warmed to room temperature, stirred for 24 h, and then evaporated under vacuum. The residue was dissolved in dichloromethane, washed with brine, dried over $MgSO_4$, filtered, and evaporated under vacuum. The crude product was purified by silica gel chromatography (DCM:MeOH = 15:1) to give 2 (3.8 g, 90%) as a white solid. ¹H NMR $(300 \text{ MHz}, \text{ CDCl}_3)$ δ 3.70 (br, 16H, NCH₂CH₂NBoc), 3.63-3.53 (m, 24H, CH₂OCH₂CH₂OCH₂CH₂OCH₂), 3.40 (br, 24H, NHCH₂CH₂CH₂O, NCH₂CH₂NBoc), 1.81 (m, 8H, OCH₂CH₂CH₂NH), 1.45 (s, 36H, C(CH₃)₃); ¹³C NMR (75 MHz, CDCl₃) δ 166.4 (C₃N₃), 165.9 (C₃N₃), 165.4 (C₃N₃), 154.9 (CO), 80.0 (C(CH₃)₃), 70.7 (OCH₂CH₂O), 70.4 (OCH₂CH₂O), 69.5 (NHCH₂CH₂CH₂O), 43.1 (piperazine), 39.1 38.4 (NHCH₂CH₂CH₂O), 29.7 (NHCH₂CH₂CH₂O), (NHCH₂CH₂CH₂O), 29.0 (NHCH₂CH₂CH₂O), 28.5 (C(CH₃)₃); MS (MALDI-TOF) calcd for C₆₅H₁₁₂ClN₂₁O₁₄ 1445.8386, found 1446.8088 $(M + H)^+$.

Compound 3. A solution of **1** (1.79g, 2.68 mmol), **2** (1.32 g, 0.91 mmol), and DIPEA (1 mL, 5.70 mmol) in THF (20 mL) was refluxed for 24 h. The solution was evaporated under vacuum. The residue was dissolved in dichloromethane, washed with brine, dried

^{s1} Chen, H. -T.; Neerman, M. F.; Parrish, A. R.; Simanek, E. E. J. Am. Chem. Soc. 2004, 126, 10044-10048.

over MgSO₄, filtered, and evaporated under vacuum. The crude product was purified by silica gel chromatography (DCM:MeOH = 10:1) to give **3** (1.53 g, 81%) as a white solid. ¹H NMR (300 MHz, CDCl₃) δ 3.65 (br, 24H, NCH₂CH₂NBoc), 3.59-3.46 (m, 36H, CH₂OCH₂CH₂OCH₂CH₂OCH₂), 3.36 (br, 36H, NHCH₂CH₂CH₂O, NCH₂CH₂NBoc), 1.75 (m, 12H, OCH₂CH₂CH₂NH), 1.40 (s, 54H, C(CH₃)₃); ¹³C NMR (75 MHz, CDCl₃) δ 166.2 (C₃N₃), 165.2 (C₃N₃), 154.7 (CO), 79.8 (C(CH₃)₃), 70.5 (OCH₂CH₂O), 70.2 (two lines, OCH₂CH₂O), 69.2 (two lines, NHCH₂CH₂CH₂O), 42.8 (piperazine), 38.2 (NHCH₂CH₂CH₂O), 38.1 (NHCH₂CH₂CH₂O), 29.6 (NHCH₂CH₂CH₂O), 28.4 (C(CH₃)₃); MS (MALDI-TOF) calcd for C₉₆H₁₆₈N₃₀O₂₁ 2077.3000, found 2078.3853 (M + H)⁺.

Compound 4. A solution of 3 (0.14 g, 0.0674 mmol) in concentrated HCl (3 mL) and methanol (3 mL) was stirred for 12 h at room temperature and then evaporated under vacuum. The residue was dissolved in chloroform, washed with 5 M NaOH (aq), dried over MgSO₄, filtered, and evaporated under vacuum to give 4 (0.10 g, quantitative) as a white product. ¹H NMR (300 MHz, CDCl₃) δ 3.64 (br, 24H, NCH₂CH₂NH), 3.57-3.51 (br m, 36H, CH₂OCH₂CH₂OCH₂CH₂OCH₂), 3.37 (br, 12H, NHCH₂CH₂CH₂O), 2.78 (br, 24H, NCH₂CH₂NH), 1.74 (br, 12H, OCH₂CH₂CH₂NH); ¹³C NMR (75 MHz, CDCl₃) δ 166.3 (C₃N₃), 165.2 (C₃N₃), 70.6 (OCH₂CH₂O), 70.2 (OCH₂CH₂O), 69.3 (NHCH₂CH₂CH₂O), 69.2 $(NHCH_2CH_2CH_2O),$ 46.0 (NCH₂CH₂NH), 44.2 38.1 (NHCH₂CH₂CH₂O), 38.0 29.7 (NCH₂CH₂NH), (NHCH₂CH₂CH₂O), (NHCH₂CH₂CH₂O); MS (MALDI-TOF) calcd for C₆₆H₁₂₀N₃₀O₉ 1476.9855, found $1478.1023 (M + H)^+$.

Compound 5. A solution of **2** (0.80 g, 0.553 mmol), **4** (0.10 g, 0.0677 mmol), and DIPEA (0.30 mL, 1.71 mmol) in THF (3.0 mL), methanol (0.2 mL), and H₂O (0.2 mL) was refluxed for 48 h. The solution was evaporated under vacuum. The residue was dissolved in dichloromethane, washed with brine, dried over MgSO₄, filtered, and evaporated under vacuum. The crude product was purified by silica gel chromatography (from DCM:EA:MeOH = 10:10:1 to DCM:MeOH = 10:1) to give 5 (0.605 g, 90%) as a white solid. The excess/unreacted **2** was recovered from the purification step and reused. ¹H NMR (300 MHz, CDCl₃) δ 3.67 (br, 144H, NCH₂CH₂NBoc, NCH₂CH₂N), 3.61-3.47 (m, 180H, $CH_2OCH_2CH_2OCH_2CH_2OCH_2$), 3.38 (br, 156H, NHCH₂CH₂CH₂CH₂O, NCH₂CH₂NBoc), 1.78 (m, 60H, OCH₂CH₂CH₂NH), 1.43 (s, 216H, C(CH₃)₃); ¹³C NMR $(75 \text{ MHz, CDCl}_3) \delta 166.3 (C_3N_3), 165.2 (C_3N_3), 154.8 (CO), 79.8 (C(CH_3)_3), 70.6$ 70.2 (OCH_2CH_2O), 69.3 (two lines, $NHCH_2CH_2CH_2O$), $(OCH_2CH_2O),$ 42.9 (piperazine). 38.2 $(NHCH_2CH_2CH_2O),$ 38.1 (NHCH₂CH₂CH₂O), 29.6 (NHCH₂CH₂CH₂O), 28.4 (C(CH₃)₃); MS (MALDI-TOF) calcd for C₄₅₆H₇₈₆N₁₅₆O₉₃ 9936.16, found 9945.30 $(M + H)^+$.

Compound 6. A solution of **5** (0.58 g, 0.0583 mmol) in concentrated HCl (5 mL) and methanol (5 mL) was stirred for 12 h at room temperature and then evaporated under vacuum. The residue was dissolved in chloroform, washed with 5 M NaOH (aq), dried over MgSO₄, filtered, and evaporated under vacuum to give **6** (0.44 g, quantitative) as a white product. ¹H NMR (300 MHz, CDCl₃) δ 3.65 (br, 144H, NCH₂CH₂NH, NCH₂CH₂N), 3.57-3.45 (m, 180H, CH₂OCH₂CH₂OCH₂CH₂OCH₂), 3.38 (br, 60H,

NHC**H**₂CH₂CH₂O), 2.79 (br, 96H, NCH₂C**H**₂NH), 1.76 (m, 60H, OCH₂C**H**₂CH₂NH); ¹³C NMR (75 MHz, CDCl₃) δ 166.3 (C₃N₃), 165.2 (C₃N₃), 70.6 (OCH₂CH₂O), 70.2 (OCH₂CH₂O), 69.3 (NHCH₂CH₂CH₂O), 69.2 (NHCH₂CH₂CH₂O), 46.0 (NCH₂CH₂NH), 44.2 (NCH₂CH₂NH), 42.9 (NCH₂CH₂N), 38.1 (NHCH₂CH₂CH₂O), 29.7 (NHCH₂CH₂CH₂O); MS (MALDI-TOF) calcd for C₃₃₆H₅₉₄N₁₅₆O₄₅ 7534.90, found 7520.91 (M + H)⁺.

Compound 7. A solution of **2** (1.0 g, 0.691 mmol), **6** (0.10 g, 0.0133 mmol), and DIPEA (0.30 mL, 1.71 mmol) in THF (4.0 mL), methanol (0.25 mL), and H₂O (0.25 mL) was refluxed for 48 h. The solution was evaporated under vacuum. The residue was dissolved in chloroform, washed with brine, dried over MgSO₄, filtered, and evaporated under vacuum. The crude product was purified by silica gel chromatography (from EA:MeOH = 40:1 to DCM:MeOH = 9:1) to give **7** (0.49 g, 89%) as a white solid. The excess/unreacted **2** was recovered from the purification step and reused. ¹H NMR (300 MHz, CDCl₃) δ 3.69 (br, 624H, NCH₂CH₂NBoc, NCH₂CH₂N), 3.62-3.49 (m, 756H, CH₂OCH₂CH₂OCH₂CH₂OCH₂CH₂OCH₂), 3.40 (br, 636H, NHCH₂CH₂CH₂O, NCH₂CH₂NBoc), 1.79 (m, 252H, OCH₂CH₂CH₂NH), 1.45 (s, 864H, C(CH₃)₃); ¹³C NMR (75 MHz, CDCl₃) δ 166.4 (C₃N₃), 165.3 (C₃N₃), 154.9 (CO), 79.8 (C(CH₃)₃), 70.7 (OCH₂CH₂OL), 70.3 (OCH₂CH₂O), 69.4 (two lines, NHCH₂CH₂CH₂O), 42.9 (piperazine), 38.3 (NHCH₂CH₂CH₂O), 29.7 (NHCH₂CH₂CH₂O), 28.5 (C(CH₃)₃); MS (MALDI-TOF) calcd for C₁₈₉₆H₃₂₅₈N₆₆₀O₃₈₁ 41371.59, found 41258.42 (M + H)⁺.

Compound 8. A solution of **7** (0.48 g, 0.0116 mmol) in concentrated HCl (5 mL) and methanol (5 mL) was stirred for 12 h at room temperature and then evaporated under vacuum. The residue was dissolved in chloroform, washed with 5 M NaOH (aq), dried over MgSO₄, filtered, and evaporated under vacuum to give **8** (0.37 g, quantitative) as a white product. ¹H NMR (300 MHz, CDCl₃) δ 3.69 (br, 624H, NCH₂CH₂NH, NCH₂CH₂N), 3.58-3.47 (br m, 756H, CH₂OCH₂CH₂OCH₂CH₂OCH₂), 3.39 (br, 252H, NHCH₂CH₂CH₂O), 2.83 (br, 384H, NCH₂CH₂NH), 1.77 (br, 252H, OCH₂CH₂CH₂NH); ¹³C NMR (75 MHz, CDCl₃) δ 166.3 (C₃N₃), 165.2 (C₃N₃), 70.6 (OCH₂CH₂O), 70.2 (OCH₂CH₂O), 69.3 (two lines, NHCH₂CH₂CH₂O), 45.8 (NCH₂CH₂NH), 43.9 (NCH₂CH₂NH), 43.0 (NCH₂CH₂N), 38.2 (NHCH₂CH₂CH₂O), 29.7 (NHCH₂CH₂CH₂O); MS (MALDI-TOF) calcd for C₁₄₁₆H₂₄₉₀N₆₆₀O₁₈₉ 31766.55, found 31764.04 (M + H)⁺.

Figure S2. ¹³C NMR spectrum of **1** (75 MHz, CDCl₃).

Figure S3. ESI-TOF mass spectrum of 1.

Chemical Formula: $C_{31}H_{57}N_9O_7 + H^+$ Exact Mass: 668.4459 Molecular Weight: 668.8483 m/z: 668.4459 (100.0%), 669.4493 (33.5%), 670.4526 (5.4%), 669.4430 (3.3%), 670.4502 (1.4%), 670.4463 (1.1%) Error: 9 x 10⁻⁵; 90 ppm

Figure S5. ¹³C NMR spectrum of 2 (75 MHz, CDCl₃).

Figure S6. MALDI mass spectrum of **2**. Lines at lower m/z correspond to loss of a BOC group, a commonly observed feature in these traces.

Chemical Formula: $C_{65}H_{112}CIN_{21}O_{14} + H^+$ Exact Mass: 1446.8464 Molecular Weight: 1448.1780 m/z: 1446.8464 (100.0%), 1447.8498 (70.3%), 1448.8435 (32.0%), 1448.8531 (24.3%), 1449.8468 (22.5%), 1450.8502 (7.8%), 1447.8435 (7.8%), 1449.8565 (5.5%), 1448.8468 (5.5%), 1448.8507 (2.9%), 1449.8405 (2.5%), 1449.8540 (2.0%), 1449.8502 (1.9%), 1451.8536 (1.8%), 1450.8439 (1.7%), 1447.8527 (1.3%) Error: 2.6 x 10^{-5} ; 26 ppm

. MЗ File: Pulse Sequence: s2pul : cdcl3 temper : jdlin 300BB 75.4135063 MHz 299.9157791 MHz on lated G ng 1.0 Hz hr, 41 min, 54 sec .585

Figure S8. ¹³C NMR spectrum of dendrimer **3** (75 MHz, CDCl₃).

Figure S9. MALDI mass spectrum of dendrimer 3. Loss of a BOC group is seen.

Chemical Formula: $C_{96}H_{168}N_{30}O_{21} + H^+$ Exact Mass: 2078.3079 Molecular Weight: 2079.5575 m/z: 2079.3112 (100.0%), 2078.3079 (96.3%), 2080.3146 (51.4%), 2081.3179 (17.4%), 2080.3082 (11.1%), 2079.3049 (10.7%), 2081.3116 (5.7%), 2082.3213 (4.4%), 2081.3155 (4.3%), 2080.3121 (4.2%), 2082.3188 (2.2%), 2080.3175 (1.9%), 2082.3150 (1.9%), 2079.3141 (1.9%) Error: 4.5 x 10⁻⁴; 450 ppm

Figure S10. ¹H NMR spectrum of dendrimer 4 (300 MHz, CDCl₃).

R =

Figure S12. MALDI mass spectrum of dendrimer 4.

Chemical Formula: $C_{66}H_{120}N_{30}O_9 + H^+$ Exact Mass: 1477.9933 Molecular Weight: 1478.8625 m/z: 1477.9933 (100.0%), 1478.9966 (71.4%), 1480.0000 (25.1%), 1478.9903 (11.1%), 1479.9937 (7.9%), 1481.0033 (5.8%), 1480.9970 (2.8%), 1479.9975 (1.8%), 1478.9996 (1.4%), 1481.0009 (1.3%) Error: 7.4 x 10⁻⁵; 74 ppm

Figure S13. ¹H NMR spectrum of dendrimer 5 (300 MHz, CDCl₃).

Figure S14. ¹³C NMR spectrum of dendrimer **5** (75 MHz, CDCl₃).

Figure S15. MALDI mass spectrum of dendrimer **5**. The minor ions correspond to loss of BOC (M+H-100).⁺ The ion at 3238 (m/z) is believed to derive from the fragmentation during ionization: The peak is not observed after the following deprotection step. It corresponds to no predictable side reaction, and results from fragmentation of the flexible linker.

Chemical Formula: C₄₅₆H₇₈₆N₁₅₆O₉₃ + H⁺ Exact Mass: 9937.1649 Molecular Weight: 9943.1174 m/z: 9942.1817 (100.0%), 9941.1783 (84.3%), 9940.1750 (70.7%), 9943.1850 (67.0%), 9939.1716 (38.8%), 9938.1683 (18.8%), 9937.1649 (7.9%) Error: 3.1 x 10⁻⁴; 310 ppm

Figure S16. ¹H NMR spectrum of dendrimer **6** (300 MHz, CDCl₃).

Figure S18. MALDI mass spectrum of dendrimer **6**. The doubly charged $[M + 2H^+]$ is observed with the expected peak at m/z ~3765.

Chemical Formula: $C_{336}H_{594}N_{156}O_{45} + H^+$ Exact Mass: 7535.9066 Molecular Weight: 7540.3377 m/z: 7538.9167 (100.0%), 7539.9200 (75.7%), 7537.9133 (68.3%), 7540.9234 (34.7%), 7536.9100 (33.1%), 7535.9066 (13.8%) Error: 2.3 x 10⁻³; 2300 ppm

Figure S19. ¹H NMR spectrum of dendrimer 7 (300 MHz, CDCl₃).

S19

Figure S21. MALDI mass spectrum of dendrimer **7**. Obtained at the analytical limits of the instrument, this data is more compelling considering the trace of the incompletely reacted material (next).

Chemical Formula: $C_{1897}H_{3258}N_{660}O_{381} + H^+$ Exact Mass: 41372.5931 Molecular Weight: 41397.3570 Error: 2.7 x 10⁻³; 2700 ppm

Figure S22. Mass spectrum of **7** shows the desired product $(m/z \ 41335)$ and features corresponding to targets missing 1-4 macromonomers. Additional clues of defects (targets missing 5 and 6 hypermonomers) are indicated with a *.

Figure S23. ¹H NMR spectrum of dendrimer 8 (300 MHz, CDCl₃).

Figure S24. ¹³C NMR spectrum of dendrimer 8 (75 MHz, CDCl₃).

Voyager Spec #1[BP = 15909.7, 3133]

Figure S25. MALDI mass spectrum of dendrimer **8**. The ions of $[M + 2H^+]$ appears at 15908. The line at 21286 could be attributed to $[2M + 3H^+]$, fragmentation or an impurity. We interpret this line presently to be a fragmentation product resulting from cleavage within the hydrophilic diamine linker.

Chemical Formula: $C_{1416}H_{2490}N_{660}O_{189} + H^+$ Exact Mass: 31767.5599 Molecular Weight: 31786.2383 Error: 1.1 x 10⁻⁴; 110 ppm