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A Model A (adapted from Amonlirdviman et al. [1])

A.1 One spatial dimension

We assume a row of ten two-sided cells. On each side of a cell there are certain concentrations of
the four proteins Dsh, Fz, Vang and Pk. At the two ends of the row we apply periodic boundary
conditions. Intracellular diffusion takes place as exchange between the two sides of a cell of all proteins
and protein complexes that are not cell-bridging. Applying the law of mass action to reactions (1)–(10)
in the main text yields a system of ODEs for cell i, which describes the protein interactions taking
place. Here, we present two sample equations:

d [Dsh]li
d t

= −R1 [Dsh]li [Fz]li + λ1B
l
i [DshFz]li −R5 [Dsh]li [FzV ang]ri−1

+ λ5B
l
i [DshFzV ang]ri−1 −R8 [Dsh]li [FzvV angPk]ri−1

+ λ8B
l
i [DshFzV angPk]ri−1 + µ1([Dsh]ri − [Dsh]li),

d [Dsh]ri
d t

= −R1 [Dsh]ri [Fz]ri +M1λ1B
r
i [DshFz]ri −R5 [Dsh]ri [FzV ang]li+1

+M1λ5B
r
i [DshFzV ang]li+1 −R8 [Dsh]ri [FzV angPk]li+1

+M1λ8B
r
i [DshFzV angPk]li+1 + µ1([Dsh]li − [Dsh]ri ),

(S1)

with

Bl
i = 1 +Kb(KPk [Pk]li + [V angPk]li + [FzV angPk]li + [DshFzV angPk]li

+Kva([V ang]li + [FzV ang]li + [DshFzV ang]li))
Kp

Br
i = 1 +Kb(Kpk [Pk]ri + [V angPk]ri + [FzV angPk]ri + [DshFzV angPk]ri

+Kva([V ang]ri + [FzV ang]ri + [DshFzV ang]ri ))
Kp

and
M1 < 1.

The superscripts l and r refer to the cell sides, left and right, respectively, while the subscripts
refer to the number of the cell. The square brackets indicate that we are dealing with concentrations.
Bridging complexes are always counted as if they belong to the cell in which their Vang-part is located.
Diffusion is introduced by the parameter µ1 = µ̃1

∆x2 with the diffusion coefficient µ̃1 and the spatial
extension of the model cell from left to right ∆x = 8µm [2].
As mentioned above and indicated by (S1) the proposed mechanism relies on intracellular protein
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movement. Protein movement between cells and production or degradation of proteins are not consid-
ered, i.e. the model is conservative. There are four conservation laws, one for each protein. We found
that using these laws to reformulate the equations does not give us more insight into the model and
therefore we omit it.
The parameter values chosen by Amonlirdviman et al. for their simulations in [1] vary in orders of
magnitude between 10−5 and 105. Such a set of parameter values would considerably slow down our
simulations. Furthermore, these values are not based on experimental estimates. Therefore, we chose
different parameter values as shown in Table S1. However, Amonlirdviman et al. conducted a sen-
sitivity analysis which gave them a range for each parameter value in which it could vary such that
the model still yields wild-type polarity. Except for µ5 and λ5 all our parameter values lie within the
respective ranges.

A.2 Two spatial dimensions for compartmentalised cells

In the second discretisation, we consider one hexagonal cell in two spatial dimensions, which is divided
into six compartments. To represent a whole field of cells with identical initial conditions, we apply
periodic boundary conditions for the intercellular interactions. Within the cell, diffusion occurs be-
tween a given compartment and its two neighbours for all proteins and protein complexes that do not
bridge cells. Applying the law of mass action to the reactions (1)–(10) in the main text and omitting
the persistent global bias, we get a system of ODEs describing the rate of change of a protein or
protein complex concentration in compartment j of cell i. As an example, we present the equation for
the change of [Dsh] in compartment j (mod 6) of cell i represented by [Dsh]i,j . It is

d [Dsh]i,j
d t

= −R1 [Dsh]i,j [Fz]i,j + λ1Bi,j [DshFz]i,j −R5 [Dsh]i,j [FzV ang]+i,j

+ λ5Bi,j [DshFzV ang]+i,j −R8 [Dsh]i,j [FzV angPk]+i,j

+ λ8Bi,j [DshFzV angPk]+i,j + µ1([Dsh]i,j+1 + [Dsh]i,j−1 − 2[Dsh]i,j),

(S2)

with

Bi,j = 1 +Kb(Kpk[Pk]i,j + [V angPk]i,j + [FzV angPk]i,j + [DshFzV angPk]i,j

+Kva([V ang]i,j + [FzV ang]i,j + [DshFzV ang]i,j))
Kp ,

where + indicates that the reactants are in adjacent compartments of neighbouring cells. The param-
eter µ1 = µ̃1

∆x2 , where µ̃1 is the diffusion coefficient and ∆x is the distance between two neighbouring
compartments within a cell. We assume ∆x = 2µm.
To obtain the steady states of the system exemplified by (S2) for different parameter values, we con-
duct a parameter scan as described in the main text. The parameter values are shown in Table S2
and we vary Kp and m to investigate the impact of the feedback strength and the diffusion on the
stability of the different polarised steady states.

A.3 Full spatial model

Here, we consider the full spatial model on one hexagonal domain. Instead of compartmentalising the
cell as in Section A.2 we now approximate the full system of partial differential equations for diffusion
within the cell and the membrane. Applying reaction kinetics to the reactions (1)–(10) in the main text
and omitting the persistent global bias, we obtain the desired system of partial differential equations.
Here, we present the equation for [Dsh] as an example. To this end, we have

∂ [Dsh]

∂t
= −R1 [Dsh][Fz] + λ1B [DshFz]−R5 [Dsh][FzV ang]+ + λ5B [DshFzV ang]+

−R8 [Dsh][FzV angPk]+ + λ8B [DshFzV angPk]+ + µ1 ∇2[Dsh]
, (S3)
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where

B = 1 +Kb(Kpk[Pk] + [V angPk] + [FzV angPk] + [DshFzV angPk]

+Kva([V ang] + [FzV ang] + [DshFzV ang]))Kp .
(S4)

The superscript + indicates that the reactants are in different cells and µ1 is the diffusion coefficient.

We assume that the side length of a cell is 2µm.

We simulated the system exemplified by (S3) in Matlab applying the finite element method [3].

We assumed a hexagonal domain and periodic boundary conditions for the intercellular interactions

to represent a whole field of cells with identical initial conditions. The different partial differential

equations underlying the model are numerically approximated on different parts of the hexagonal

domain, depending on where the corresponding proteins and protein complexes occur in the biological

cell. In this respect, the ten proteins and protein complexes can be divided into three groups. Dsh

and Pk have been observed in the cytoplasm, i.e. in the whole hexagonal domain in our simulations;

they are freely diffusible in this region. Therefore, we simulate the partial differential equations

corresponding to these proteins on the whole of the two-dimensional hexagonal domain, applying

Neumann boundary conditions which are determined by the reaction equations of interactions of Dsh

and Pk with membrane located proteins. The components Fz, Vang, DshFz and VangPk are found in

the cell membrane, diffusing within these constraints. The corresponding partial differential equations

for these quantities are therefore simulated on a one-dimensional domain with periodic boundary

conditions. The cell bridging complexes FzVang, DshFzVang, FzVangPk and DshFzVangPk occupy

only the part of the membrane which is common to the two cells they connect. They can diffuse in

this part but cannot move past a vertex of the biological cell. Therefore, the corresponding partial

differential equations for these complexes are simulated on six one-dimensional domains, one for every

edge of the biological cell, together with homogeneous Neumann boundary conditions.

Figure S1 shows two initial conditions and the corresponding final states for the sum of the Dsh

complexes. All the proteins and protein complexes shown in this figure only occur on the membrane.

For clarity, we show a line plot and a two-dimensional representation in each case.

The initial condition in row A of Figure S1 has a weak initial vertex polarity whereas the initial

condition in row B is weakly polarised to the side. In contrast to the previous sections we found that

an initial imbalance in Fz could not yield significant polarity (not shown). Figure S1 row A shows that

a weak initial vertex polarity in the Vang concentration yields vertex polarity. Figures S1 B1 and B2

show a weak initial side polarity in Vang. The other proteins are initially distributed homogeneously.

The final state in B3 and B4 shows that the side polarity remains throughout the simulations.

If we increase the diffusion in Figure S1, the imbalance between the different parts of the cell becomes

weaker and for a sufficiently large diffusion we get the unpolarised steady state.

The results show that vertex polarity is not stable to asymmetric perturbations which is consistent

with the findings in the main text.

B Model L (adapted from Le Garrec et al. [4])

B.1 One spatial dimension

In the one-dimensional discretisation of Model L, we consider a row of two-sided cells. On each side

of a cell there are certain amounts of the proteins and protein complexes. All proteins and protein

complexes that do not bridge between neighbouring cells are free to diffuse, i.e. change position from

one side of the cell to the other. Applying the law of mass action to reactions (11)–(18) in the main

text yields a system of ODEs for the rates of change of the protein and protein complex concentrations
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in cell i. We present two sample equations:

d [Pk]li
d t

= −inh5liKf5 [Fz∗FmiFmiV ang]ri−1 · [Pk]li + en5liKd5 [Fz∗FmiFmiV angPk]ri−1

− inh8liKf8 [Dsh∗FzFmiFmiV ang]ri−1 · [Pk]li

+ en8liKd8 [Dsh∗FzFmiFmiV angPk]ri−1

+ µ7 ([Pk]ri − [Pk]li),

d [Pk]ri
d t

= −inh5riKf5 [Fz∗FmiFmiV ang]li+1 · [Pk]ri + en5riKd5 [Fz∗FmiFmiV angPk]li+1

− inh8riKf8 [Dsh∗FzFmiFmiV ang]li+1 · [Pk]ri

+ en8riKd8 [Dsh∗FzFmiFmiV angPk]li+1

+ µ7 ([Pk]li − [Pk]ri ),

(S5)

where

inh5li =
1

1 +A5([Dsh∗FzFmiFmiV ang]li + [Dsh∗FzFmiFmiV angPk]li)
,

inh5ri =
1

1 +A5([Dsh∗FzFmiFmiV ang]ri + [Dsh∗FzFmiFmiV angPk]ri )
,

en5li = 1 +B5([Dsh∗FzFmiFmiV ang]li + [Dsh∗FzFmiFmiV angPk]li),

en5ri = 1 +B5([Dsh∗FzFmiFmiV ang]ri + [Dsh∗FzFmiFmiV angPk]ri ),

and inh8 and en8 are defined analogously. The parameter µ7 =
µ̃7
∆x2 , where µ̃7 is the diffusion

coefficient and ∆x = 8µm the spatial extension of a cell from left to right [2]. The equations describe

the variation of the protein concentrations, indicated by the square brackets. Subscripts refer to the

cell number, superscripts to the cell side, left or right. Bridging complexes do not diffuse and they are

counted as if they belong to the same cell as their Fz-part. The system exemplified by (S5) conserves

the total concentration of each protein in a cell. However, reformulating the equations using the

conservation laws would not simplify the system significantly.

To use the parameter values chosen in [4] for our setting, we require the appropriate scaling for the

diffusion coefficient. In [4] they consider 150 roughly hexagonal cells on a screen of 175 by 175 pixels,

whereby each pixel has a size of 1 µm. Hence, the side length ∆xhex of one cell is about 9 µm. Let

µL denote the dimensionless diffusion coefficient for the hexagonal cells in [4] and µ the dimensionless

diffusion coefficient for our one-dimensional analysis. With µL =
µ̃L

81µm we then get

µ =
µ̃L

64µm
= µL

81µm

64µm
= 1.27µL.

The parameter values are shown in Table S4.

Initial ligand gradient To facilitate the comparison of the results of the two models, we used the

same deterministic approach as before to analyse Model L, although Le Garrec et al. used a stochastic

approach in their work [4]. To ensure that our modified version of the model gives similar results to

the original one we commenced our analysis by simulating the model in Matlab for the initial ligand

gradient and the parameter values given in [4], adapted to the geometry in our simulations.
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We chose the concentrations of the proteins in each membrane pixel in [4] as our initial protein

concentrations. Hence, initially Fz, Fmi, Vang, Dsh and Pk are distributed homogeneously in every

cell, with [Fz]li = [Fz]ri = 4, [Fmi]li = [Fmi]ri = 4, [V ang]li = [V ang]ri = 2, [Dsh]li = [Dsh]ri = 2 and

[Pk]li = [Pk]ri = 2 for all cells i. As boundary conditions we assumed that at both ends of the row

we have boundary cells (cells 1 and N) in which cl1 = 0, cr1 = cl2, c
l
N = crN−1 and crN = 0, where cli

and cri are the concentrations of any protein or protein complex in cell i on the left and right side,

respectively. Furthermore, all intracellular diffusion coefficients in cell 1 and cell N are zero; the

remaining interactions in these cells are governed by the same equations as for the rest of the cells.

In [4] there are roughly 13 cells in each row. Therefore, we simulated the system for 11 cells plus 2

boundary cells. Figure S2 shows the corresponding results. We present the final distribution of the

sum of the Dsh* complexes, since in [4] this is assumed to determine the direction of the hair growth;

the hairs are assumed to grow at the end of the cell with the highest Dsh* concentration. We see that

our modified version of the model gives similar results to the original model in [4], in that we obtain

polarity to the right in every cell. Due to the boundary conditions, the polarity of the cells at the two

ends of the row is weaker than that of cells in the middle of the row.

Weak initial ligand imbalance in every cell In the second part of the one-dimensional analysis

of Model L we consider a row of ten cells with periodic boundary conditions and an initial weak ligand

imbalance in every cell. Figure S3 shows that for the parameter values in Table S4, even for a strong

initial cue the system exemplified by equation (S5) cannot generate polarity. This is supported by

linear stability analysis; we calculated the homogeneous unpolarised steady state for the given total

amounts of the proteins and the parameter set in Table S4. Subsequently, we evaluated the eigenvalue

with the greatest real part λ. In this case it is λ = −1.4 · 10−4 < 0, i.e. the unpolarised steady state

is stable to any small perturbation. Hence, linear stability analysis does not predict instabilities that

can yield polarisation for this set of parameter values.

The aim then was to find a parameter set for which the system polarises for a small initial ligand

imbalance in every cell. To this end, we applied the Nelder-Mead method to identify a set of parameter

values, for which the unpolarised steady is unstable and the eigenvalue with the largest real part λ
corresponds to an eigenvector which is associated with a polarised state. The value of the objective

function f for a given parameter set xi was obtained by calculating the corresponding homogeneous

unpolarised steady state and the eigenvalue with the largest real part λi. Then f(xi) = −λi and f
was minimised. The resulting parameter set and its corresponding λ are shown in Table S5, while

the eigenvector associated to λ is presented in Table S6. Figures 7 and 8 in the main text show that

indeed for the parameter values in Table S5 the system exemplified by (S5) can generate polarity from

a weak initial ligand imbalance in every cell.

B.2 Two spatial dimensions for compartmentalised cells

In this discretisation, we assume one hexagonal cell which contains six compartments. Proteins and

protein complexes that do not bridge the membrane can diffuse between neighbouring compartments.

By applying periodic boundary conditions our setup represents a whole field of cells with identical

initial conditions in every cell. To obtain the relevant system of equations we apply reaction kinetics

to the reactions (11)-(18) in the main text. We present one sample equation.
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d [Pk]i,j
d t

= −inh5i,jKf5 [Fz∗FmiFmiV ang]+i,j · [Pk]i,j

+ en5i,jKd5 [Fz∗FmiFmiV angPk]+i,j

− inh8i,jKf8 [Dsh∗FzFmiFmiV ang]+i,j · [Pk]i,j

+ en8i,jKd8 [Dsh∗FzFmiFmiV angPk]+i,j

+ µ7[Pk]i,j+1 + [Pk]i,j−1 − 2[Pk]i,j ,

(S6)

where

inh5i,j =
1

1 +A5([Dsh∗FzFmiFmiV ang]i,j + [Dsh∗FzFmiFmiV angPk]i,j)
,

en5i,j = 1 +B5([Dsh∗FzFmiFmiV ang]i,j + [Dsh∗FzFmiFmiV angPk]i,j)

and inh8 and en8 are defined analogously. The superscript
+
indicates binding over the cell membrane,

i is the cell number and j (mod 6) the number of the compartment. The diffusion is introduced by

µ7 =
µ̃7
∆x , where µ̃7 is the diffusion coefficient and ∆x = 2µm is the distance between two neighbouring

compartments within a cell.

For this setting we conduct a parameter scan to identify the stable steady states as described in the

main text. Thereby we focus on the effect of the feedback and diffusion strength on the steady state

of the system. We use the parameter values in Table S7, in which varying F changes the feedback

strength and varying D the diffusion strength. Figure S4 shows examples of steady states for a fixed

feedback strength and varying diffusion coefficients. We see that for a weak initial vertex polarity in

Ld and sufficiently weak diffusion the final Dsh* distribution is vertex polarised. However, for the

same parameter values and an inhomogeneous initial condition the model yields the triangular state

or side polarity, indicating that vertex polarity is unstable for these parameter values. For both initial

conditions, increasing the diffusion yields the homogeneous unpolarised steady state.

B.3 Full spatial model

In this section we consider a full spatial version of Model L on a hexagonal domain. Rather than

a coarse compartmentalisation of the cells as in Section B.2, we simulate the full partial differential

model for reaction and diffusion within the cell membrane. In [4] Le Garrec et al. assume that the cell

bridging complexes cannot diffuse. Furthermore, they found that in their model cytoplasmic diffusion

does not significantly alter the polarisation. Therefore, we assume that all proteins and complexes

occur in the membrane and diffuse within this domain unless they are bridging complexes. We obtain

the system of equations by applying the law of mass action to the reactions (11)–(18) in the main

text. Here, we present the equation for [Pk] as an example. To this end, we get

∂ [Pk]

∂t
= −inh5Kf5 [Fz∗FmiFmiV ang]+ [Pk] + en5Kd5 [Fz∗FmiFmiV angPk]+

− inh8Kf8 [Dsh∗FzFmiFmiV ang]+ [Pk]

+ en8Kd8 [Dsh∗FzFmiFmiV angPk]+ + µ7∇2
[Pk],

(S7)

where

inh5 =
1

1 +A5([Dsh∗FzFmiFmiV ang] + [Dsh∗FzFmiFmiV angPk])
,

inh8 =
1

1 +A8([Dsh∗FzFmiFmiV ang] + [Dsh∗FzFmiFmiV angPk])
,
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en5 = 1 +B5([Dsh∗FzFmiFmiV ang] + [Dsh∗FzFmiFmiV angPk]),

en8 = 1 +B8([Dsh∗FzFmiFmiV ang] + [Dsh∗FzFmiFmiV angPk]).

The superscript + indicates binding over the cell membrane and µ7 is the diffusion coefficient. The
side length of our hexagonal domain is 2µm. Our choice of parameter values is presented in Table
S8. This parameter set was also obtained by the Nelder-Mead optimisation of the eigenvalue with the
largest real part described in Section B.1.

We numerically approximated the system exemplified by (S7) in Matlab, applying the finite element
method. Since in this model all proteins and protein complexes that diffuse do so in the whole
membrane, our problem is essentially one-dimensional with periodic boundary conditions [3].
We consider one hexagonal cell and apply periodic boundary conditions for the cell bridging complex
formation. Therefore, our setup represents a whole field of cells with identical initial conditions and
dynamics.
Figure S5 shows different initial conditions and the corresponding final distributions of total Dsh*. In
each case we show a line plot and a two-dimensional representation. In Figure S5 row A, both the
initial condition and the final state show a vertex polarity. We see that an initial ligand imbalance in
the cell can lead to polarisation of the Dsh* distribution. Figure S5 row B shows that an initial ligand
distribution that is weakly side polarised yields a side polarised distribution of total Dsh*. The line
plots show the distributions on the top and bottom half of the cell separately. Increasing the diffusion
in row A and B weakens the difference of total Dsh* between the different parts of the cell.
These results are consistent with our findings in the main text; the vertex polarised state is unstable
to asymmetric perturbations.
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