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Sketch of proof of equation (3)

Informally, trees are approximately independent when separated by sufficiently large physical distance
on the chromosome or by sufficiently many recombination events. In fact, “knowledge of the history”,
i.e. correlation between trees, vanishes rather quickly and with only a few recombination events (see
Results (e)) and the process is ergodic [22]. Therefore, the empirical distributions of trees along a given
sequence Sx (Sf ) converge to the probability densities p

(c)(T ) (p(r)(T )) with increasing L.
We denote by T a measurable set of trees of non-zero measure, by nx(T ) and nf (T ) the number of

occurrences of trees of T in Sx and Sf , respectively, by Ef the average over fragments in Sf and by Nf

the total number of fragments in Sf . We have

E(nx(T )/L) −→
L→∞

p(c)(T ) . (S1)

Furthermore,

E(nx(T )/L) = E(nf (T )Ef (Lf (T ))/L) = E((nf (T )/Nf )Ef (Lf (T ))/(L/Nf )) (S2)

and
E((nf (T )/Nf )Ef (Lf (T ))/(L/Nf )) −→

L→∞
p(r)(T )Er(1/l|T )/Er(1/l) (S3)

where the convergence follows from ergodicity. Therefore p(c)(T ) = p(r)(T )Er(1/l|T )/Er(1/l). By in-
verting this relation and taking the Radon-Nikodym derivative (i.e., passing to the probability density)
we obtain (3).

Note that for sequences of finite length, the distribution of random trees in Sf depends on the length
of the sequence. For large sequences it converges to p(r)(T ) as discussed above, while in general the
distribution interpolates between p(r)(T ) and p(c)(T ) and for very short sequences it resembles closely
p(c)(T ). However, here we consider only the limit of large sequences.

Proofs of equations (14), (15) and (40)

Equation (14): Events of type D originated from a pruning event from a root branch to the other. The
prune and re-graft can occur at level 2; in this case, integrating over all possible events we obtain a
contribution
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that depends only on t2. If the pruning occurs at another level, then we have to sum the probability
of not coalescing before ν1 over all possible levels with a root branch (i.e. with Nk(ν0) = 1) and then

multiply by the probability 1−e−4t2

2 of a coalescence on the other root branch, obtaining a contribution
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that summed to the previous one, gives eq. (14).
Equation (15): Events of type S originated from a pruning event from a root branch (at level higher

than 2) that regrafts on the subtree of ν1. We have to sum over all possible pruning levels k as in the
case above. The branch could regraft at the same level, giving a contribution
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or at an higher level. In this case we have to sum the probability of regrafting at level j over all levels
2 < j < k:
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that summed to the previous one, gives eq. (15).
Equation (40): We need to count the number of ARGs with a single recombination event at level k

compatible with root imbalances ω0 and ω, which are denoted by An,k,ω0,ω,S and An,k,ω0,ω,R, and then
divide by the total number An,k,ω0

of ARGs with a recombination at level k and root imbalance ω0 for the
original tree. The resulting probabilities should be averaged over the probability Pk of a recombination
event at level k, that is ktk(T )/l(T ), where T is the original tree. Averaging over all waiting times in
p(r)(T ), we obtain Pk = 1/((k − 1)an).

Since the time of the recombination event does not depend on ω0, the number of ARGs An,k,ω0

is simply |Ln,ω0
| multiplied by all possible pruned branches k and all possible re-grafts at all levels

�k
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The Ω-changing terms of An,k,ω0,ω,R can be computed by averaging over the number of topologically
in-equivalent re-graft events y at level j and summing over all levels. We consider only the events where
pruning and re-grafting occur in different subtrees of the root, thus potentially changing Ω. The number
of ARGs for ω �= ω0 is given by

An,k,ω0,ω,R = |Ln,ω0 |k
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Finally, taking the ratio of equation (S9) and An,k,ω0 and averaging, we obtain equation (40).
The above number An,k,ω0,ω,R of ARGs with a single recombination event of type R and root imbal-

ances ω0 and ω can be obtained as follows. We consider all possible trees with ω0 and a recombination
event at level k, that is, kLn,ω0

possibilities, then we multiply by the average number of possible prune
and regraft events at levels k and j respectively, with j ≤ k, then summing over all j, k. We use the
notation of Figure S4. Pruning occurs at level k and we denote by i the size of the pruned branch.
Assume first that the pruning occurs in the left, smaller subtree of the root of size ω0. The probability
that this occurs is x/k and the probability that the pruned branch has size i is P (i|x, ω0) as discussed
before. The number of possible regraft events at level j is y, that is however a random variable whose
probability distribution is P (y|k−x, j, k) defined in equation (35), since it is defined by the same process
restricted to the upper part of the tree above level k. We average over y and sum over j, then we average
over the probability distribution of x. Finally, the value of ω should be ω0−i since ω0−i < n/2, therefore
i = ω0−ω. Putting together this contribution and the two similar contributions from the pruning events
on the right, larger subtree of the root, we obtain the result (S9).
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Moments

Here we report the moments involved in the computation of the probabilities P (c) using the Taylor
expansion (eq 19). The moments of the waiting times are
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