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I. The network of interbank money market

I. A Data set

Our data set is composed of 2750 daily snapshots of the Italian interbank money market, from

January 4th, 1999 to September 30th, 2009. This data has been collected by “e-MID”, the only

electronic market for Interbank Deposits in the Euro Area and US 1. For the most part, the trans-

actions correspond to overnight exchanges of deposits among banks. The amounts of transactions

between parties, as well as their directions are recorded individually on a daily basis. Generally,

any two banks i and j exchange liquidity in multiple tranches in both directions.

All these daily transactions form an oriented graph G(1)(Vt, Et), with t = 1, 2, . . . 2750,

whose vertices are the banks taking part in the deals and the links have a weight given by the corre-

sponding cash flow. We name Vt and Et the sets of nodes and edges respectively, their cardinalities

|Vt| , |Et| giving the number of nodes and edges of the graph. All these quantities depend on time

because the number of banks entering and exiting the market as well as the amounts exchanged

change considerably. In particular, we denote wt(i, j) the aggregate lending of bank i to j on day

t. It is worth mentioning that we may well have also j lending to i, corresponding to wt(j, i) 6= 0,

that is flows are generally bidirectional. Fig. S1 illustrates the evolution of G(1) in terms of number

of nodes, number of edges and total lending volumes (the sum of all link weights, indicated as vt).

1e-MID Sim S.p.A, Milan, Italy.
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Figure S1: Evolution of the daily interbank lending network G(1)(V,E). The system experimented a

sensible shrinking in both the number of agents (|V |) and the number of links (|E|); a credit crunch process

is also clear starting in 2007, with a volume (v) drop of roughly 80% with respect to 1999. Curves are

rescaled by the values of the first point of the corresponding quantity |V0| , |E0| , v0 respectively.

I. B Network aggregation

As we can see from Fig. S1, the size of the network shrinks steadily over time, losing about half

of the nodes and links. In contrast, the lending volume increases by 50% from 1999 to 2007.

Afterwards, it experiences a fast drop between 2007 and 2009, decreasing by about 80%. So,

we see that the network under examination undergoes important changes in terms of size and

volumes flowing through the agents. However, some topological properties related to the ”fitness”

of vertices seem to be preserved despite the shrinking process. For instance, the network remains

scale free throughout the whole period, as shown in1. Remarkably, the density of links remains

also around similar values (2.8% in 1999, 2.3 % in 2005, again 2.8% in 2009).

On a daily basis, the set of transactions Et is highly volatile. However we can aggregate
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the daily loans over a number of trading days ∆, and define links and weights at this time scale as

wu,∆(i, j) =
∑∆−1

s=0 wu+s(i, j), where u = 1, 1+∆, 1+2∆, . . . . In this way, we obtain the network

G(∆)(Vu,∆, Eu,∆), which is representative of the banking system during the time span [u, u + ∆).

In our empirical study we compare results for five different time scales ∆ = 1, 5, 21, 63, 126 days,

roughly corresponding to daily, weekly, monthly, three and six months time scales. It is worth

noting that the recent Basel Committee proposals (Basel III) includes a 30-day liquidity coverage

ratio requirement whose purpose is to ensure banks maintain adequate levels of unencumbered

high quality assets against net cash outflows under stress.

I. C Centrality measures

The systemic relevance of banking institutions is key when designing regulation and monetary

policies2, 3. A reasonable assumption is to consider the case of the “too connected to fail”, even

though the precise notion of systemic relevance has not been defined yet and different measures

have been proposed4–6. The degree k(i) of a vertex provides information about the centrality in

terms of number of connections to other nodes. This feature determines the properties of resilience

of the network against link failure and epidemic spreading7, 8. Another measure of importance

is the closeness centrality. We introduce a notion of distance as follows. First we define the

average lending w̄u of the graph as the average weight of its edges. This represents the average

amount of money which is exchanged between two banks on that period and provides a convenient

measure unit. Given two connected nodes i → j, we define their distance as the inverse of the
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(normalized) edge weight d(i, j) = 1/(w(i, j)/w̄), so that the more i is lending to j, the closer is i

to j. In this respect, this distance is a proxy of how much j is exposed towards i. For an oriented

shortest path (k1 → k2 → · · · → kn−1 → kn) connecting k1 to kn we define the distance as

d(k1, kn) =
∑n−1

s=1 d(ks, ks+1). The closeness centrality ct(i) of a vertex is defined as the inverse of

the average distance from the other nodes 2. It measures the strengths of the credit relations among

a bank i and its direct and indirect borrowers, also providing an indicator of potential spillover due

to inefficient liquidity provision from bank i. In principle (but also in practice) we may have banks

with very small degree (few connections) but with very tight links (large loans) or hub nodes which

exchange very small amounts with many banks.

II. Network controllability

II. A General framework

It is possible to gain control of a directed network by identifying the “driver” nodes through the

Minimum Input Theorem9: the minimum number of nodes to be controlled (drivers) corresponds

to the number of uncovered nodes in a maximum matching of the corresponding graph.

For directed graphs a matching M ⊆ E is a subset of directed edges such that any two edges

do not share the same start or end vertex (note that for two edges in M , the end vertex of one may

well be the start vertex of the other). The maximum matching Mmax is the one with the largest

possible cardinality among all the graph’s matchings. A vertex is uncovered or unmatched when

2To account for changes in the network shape, we normalize closeness to (|V | − 1)/(|E| − 1).
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no edge in Mmax reach it.

It has to be noted that, in general, a large multiplicity of maximum matchings exists. In the

scope of the analysis presented in the main text, we always select the matching for which the sum

of its edges’ weights is maximal. Indeed, a maximum matching provides a maximal set of paths

where some nodes are controlled indirectly (i.e. without external inputs) by their predecessors.

Through these paths, the effect of external controllers on the drivers is propagated to other nodes.

More precisely, if node i controls node j, the time variation of the matched node’s state xj gets a

contribution from i that is proportional to the edge weight wij , see Eq. (1). In this sense, the larger

the weight, the larger the impact of i upon j and, intuitively, maximising the sum of weights (all

weights are positive in our case) would mean maximising the sum of the impacts.

The above theorem builds on a linear dynamics of the form

dx(t)

dt
= Ix(t) + Cu(t) (1)

where xi=1,...,N is a state variable for the N nodes, I is an N ×N “influence” matrix representing

the way every node is influenced by its predecessors. The components of the vector u correspond

to external functions that are applied to a subset ofND nodes and C is anN×ND “control” matrix

of external weights. The structure of I corresponds to that of the transposed weighted adjacency

matrix (see9 for more details), so that the time variation of xi is determined, through I , by the state

of the nodes that points to i. Generally, the exact values of the entries in I are unobservable and

only the matrix structure is required in order to apply the theorem.
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For the interbank lending network, we identify xi with the aggregate lending of bank i, i.e.

the sum of its outgoing lending flows, and we assume that the arrows of the mutual influence

relationships among banks correspond to the observed flows. Indeed, it is reasonable to assume

that variations of the amount of lending from any bank depend on the lending of the others 10–12.

Moreover, the information a given bank is able to access concerns only the level of lending it

receives from its neighbors while information about all other deals is usually confidential. In

particular, during a credit crunch, a bank gets less credit from its counterparts; as a reaction, that

bank is likely to lower its lending to the others generating dangerous cascade effects. Even though

this dependence may have a quite complicated formalization, as a first order approximation we

will take it linear, so that we can postulate a dynamics of the form (1) for x(t), the functions u(t)

representing external actions from regulators.

Now let us focus on the fraction of drivers nD = |D| /N , where D = {ik1 , ik2 , . . . , ik|Dt|
} is

the set of the drivers given Mmax. A large value of nD would indicate that the interbank system

is problematic from a control perspective, since many banks would be responsible for variations

of the state of whole network. Conversely, regulators and policy makers would appreciate small

values of nD. Indeed, in this case it is enough to intervene only in a restricted number of banks.

II. B Effect of network aggregation

For temporal networks, the fraction of drivers increases, in general, in the process of aggregating

the edges of ∆ consecutive instances of the graph. However, the exact scaling of nD vs ∆ is
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difficult to predict. For the interbank lending system, our analysis detects a neat power-law scaling

(see Fig. 1 (c) in the main text), and we may wonder if this law is valid any times we add graph

instances and independently on the specific dynamics underlying the graph evolution. General

arguments, as developed below, show that this is not the case, at least when graph instances are

independent.

First, consider a sequence of independent Erdös-Renyi graphs with N nodes and linking

probability p and the graph G(∆) obtained by aggregating the links of ∆ instances (for the sake of

clarity, we limit the discussion to unweighted graphs.). It can ben shown that the average degree of

G(∆) would be 〈k〉(∆) = 2p(∆)(N−1), with p(∆) = [1−(1−p)∆], and the graph rapidly becomes

complete with nD approaching its lower limit 1/N . In 9 it has been shown that nD is approximately

an exponential function of 〈k〉, both for random and scale-free graphs. In our example we would

then expect nD ≈ e−c(1−p)
∆ , with c constant, rather than a power-law decay.

In the case of identical, independent scale-free graphs, we haven’t got a closed-form expres-

sion for 〈k〉(∆). For large 〈k〉, we would expect log nD ≈ −c
∑kmax

k=0 k(F∆
k − F∆

k−1), where Fk is

the cumulative distribution function of the nodes’ degree evaluated in k. To get an insight of what

scaling should be expected, we simulate H = 100 instances of a scale-free graph with N = 200

nodes and average degree approximately 6. These numbers correspond (approximately) to the av-

erage number of active nodes and their average degree for the interbank lending system. Graphs

are generated from the static model 13 with in-degree and out-degree tail exponents equal to 2.7

and 2.15 respectively, as observed empirically in 1. In Fig. S2 we plot the scaling of nD vs ∆.
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Figure S2: Average fraction of drivers for a network obtained aggregating ∆ independent instances of a

scale-free graph. Instances are generated from the static model with N = 200 nodes, instance’s average

degree 〈k〉 = 6, in-degree and out-degree tail exponents γin = 2.7 and γout = 2.15 respectively.

Comparing with Fig. 1 (c) in the main text, here we see a rather different scaling; in particular,

when adding independent scale-free graphs, the aggregated network saturates at a much higher

speed than for the interbank system.

We conclude that the scaling we observe empirically is a genuine feature of the dynamics

and topology of the interbank lending network. In particular, the process of aggregation involves

instances that can not be considered realizations of the same graph and, furthermore, the underlying

financial dynamics is likely to generated correlations among those instances.
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II. C Driver persistence

For a temporal network, like the interbank lending one, a critical aspect is represented by the

stability of the set of drivers with respect to time. In order to investigate this issue, we define the

drivers’ resilience as the average fraction of drivers which persists in the network control set after

a time lag τ (in days)

rD,τ =

〈
Du+τ ∩Du

| Du |

〉
(2)

where the average is taken with respect to the time index u.
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