Supplementary Information

Run number	Glucan	Xylan	AIL
1	80.6	4.8	13.4
7	53.3	1.1	23.9
8	70.2	1.2	19.0
9	80.0	1.7	16.2
10	71.8	1.5	19.4
SG	36.2	20.1	20.4

Table S1 Compositions of the major components in the solid residue

Standard deviation is within 10% of the measured value. SG: switchgrass

AIL: acid insoluble lignin

Figure S1. Chromatograms of the upper IL-rich phase (red, 5x dilution) and lower salt-rich phase (blue, 3000x dilution) for standard sugars.

Figure S2. The addition of water at different time intervals. More water is needed at 10 min to achieve high sugar yields.

Figure S3a. ¹³C NMR of the original IL, upper (IL rich) phase, and lower (salt rich) phase.

Figure S3b. ¹H NMR of the original IL, upper (IL rich) phase, and lower (salt rich) phase.

Figure S4. Lignin integration results based on 2D NMR spectra. Blue: raw switchgrass, Red: solid residue after processing.

Figure S5 SEC chromatogram of EMAL lignin from switchgrass (green), supernatant after acidolysis (blue) and IL phase (red)

Neutralized for fuel synthesis

Figure S6. Process of biomass pretreatment, acid hydrolysis and sugar extraction using alkaline solutions.