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I. INTRODUCTION

Communication and technological networks have become the backbone of modern soci-

eties. Currently, economic transactions, transportation systems, web services such as Google,

social interactions, including those from Facebook and Twitter, as well as the spread of bi-

ological and mobiles viruses are largely driven by networks. Similarly, our own bodies are

composed of interdependent organs and cells, which depend on the fundamental molecu-

lar networks of highly interconnected neurons, proteins, metabolites and regulatory genes

that cooperate to maintain an internal equilibrium and address significant changes in the

environmental conditions and complex disorders. Although these networks perform specific

functions in disparate systems, the idea of pursuing the controlling system’s entire dynam-

ics and being able to redirect its functionality at will is common among all of them, from

reverting negative spreading opinions and rumours in social networks to suppressing a set

of oncogenes that are expressed at high levels in a gene regulatory network. Although the

processes that occur on real-world networks are mostly non-linear, canonical linear, time-

invariant nodal dynamics [1] has been proposed for studying the controllability of networks

dx(t)

dt
= Ax(t) + Bu(t) (1)

where u(t) is the vector of the input signals and B is the input matrix, which indicates how

the signals are coupled to the network nodes. The state of a system x(t) of N nodes at time

t, can indicate positive/negative opinions or high/low expression levels that change with

time according to the transpose of the adjacency matrix A that represents the interaction

between the system’s nodes. The reason for this simplification in modelling non-linear

systems is because the structural controllability [2] of a given system is equivalent to the

controllability of a continuum of linearised systems; therefore, the analytical results could

provide sufficient controllability conditions for most nonlinear systems [1, 3].

This system is controllable if the N × NM controllability matrix C =

(B,AB,A2B, ..., AN−1B) has a full rank of rank(C) = N . Several problems prevent the

direct application of the controllability matrix to an arbitrary network. The weights of the

edges (i.e., the elements of the adjacency matrix A) are not always known for real networks,

and even if they were known, we would still compute the rank C for 2N − 1 combinations,

which may not be computationally feasible for large networks.
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To address network controllability, models based on nodal [1] and edge dynamics [4] were

recently proposed. In nodal dynamics, the minimum number of input signals necessary to

control the whole network is determined by finding the maximum matching in a bipartite

graph obtained from the original network. The number of unmatched nodes is the number

of driver nodes.

In this approach, the input signals (or driver nodes) tend to avoid the high-degree nodes

[1]. As a result, random networks without hubs are easier to control. An alternative view

tackles the problem by evaluating a dynamical process defined that is defined on the edges

of a network rather than on the nodes [4]. In this edge dynamics approach, each node i

acts as a simple switchboard-like device, mathematically represented as a mixing matrix Mi

with the rows (columns) being equal to the out-degree (in-degree), which receives information

through its inbound edges and transmits the outcome or decisions to the neighbouring nodes

by means of the outbound edges. In sharp contrast to the nodal dynamics approach, this

approach concludes that a scale-free degree distribution, in which hubs are present, is easier

to control. However, despite the fact that bipartite networks represent a type of networks

that is often used to represent the interactions of distinct units in real-world systems, both

nodal and edge dynamics frameworks only address simple (unipartite) graphs.

Here we address the controllability of unidirectional bipartite networks, but instead of

using nodal dynamics we attempt the problem from a different angle by, considering a

modified version of the minimum dominating set (MDS) [5, 6]. A set S ⊆ V of nodes in

a graph G = (V,E) is a dominating set if every node v ∈ V is either an element of S or

is adjacent to an element of S [7]. This dominant set (DS) of nodes plays the role of the

set of driver nodes in the sense of [1, 4]. In our companion work, the MDS was suggested

as a method to investigate the controllability of complex networks under the assumption

that each node can control its outgoing edges separately [5]. The presented conceptual

approach, based on edges rather than nodes, was similar to the edge dynamics that was

independently proposed in [4]. Our findings showed that as the network degree distribution

becomes increasingly heterogeneous, the entire system also becomes easier to control.

Here, we exploit the powerful framework of the MDS, which in bipartite graphs is known

as the Set Covering Problem, to tackle the controllability of unidirectional bipartite networks.

The developed analytical tools, combined with the evaluation of real-world networks from

socio-technical and biological systems, offer a promising framework to control unidirectional
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bipartite networks with the minimum number of driver nodes. Our analysis unveils the role

of the maximum degree H in addressing the network controllability, and how this dependence

significantly changes when the power-law degree exponent (γ1) of the set of nodes that exert

the control is above or below the value 2. The theoretical analysis shows that the maximum

degree has a significant influence on the size of the DS. Additionally, the analysis also

derives the order of nodes (upper bound) necessary to control the network. Among all of the

topologies, unidirectional bipartite networks with scale-free degree distribution with γ1=1.5

lead to a smaller upper bound of the number of nodes to be controlled. The dynamics model

corresponding to the MDS approach for unidirectional bipartite networks is also presented.

This document is organised as follows. Section II describes the network datasets used

in this study as well as the data sources. Section II also includes the main statistical

features of the real-world bipartite networks analysed in the study. Section III describes in

more detail some of the results derived in this study from the data analysis. Section IV

contains the dynamics model and the details of the mathematical tools derived from the

theoretical analysis for the controllability of bipartite networks. Finally, Section V describes

the controllability problem in the case of bi-directional bipartite networks.

II. DATASETS

Here we introduce the network datasets used in this work. We have collected ten bipartite

networks to investigate the minimum number of nodes required to control the entire network.

These datasets correspond to the network representation of social and biological systems.

A. Fit of power-law distributions using real-world data

The collected networks were fitted to power-law distributions to determine the degree

exponent γ and the lower bound of power-law behaviour xmin. By following [8, 9], let x

represent a sequence of observations of some variable that can only take a discrete set of

values whose distribution we wish to fit as a power-law. We then consider the case of integer

values with a probability distribution that follows

p(x) = Pr(X = x) = Cx−γ (2)
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Because this distribution is divergent at zero, a lower bound xmin > 0 should exist for the

power-law behaviour. By calculating the normalising constant, we can write

p(x) =
x−γ

ζ(γ, xmin)
, (3)

where

ζ(γ, xmin) =
∞∑

n=0

(n + xmin)−γ (4)

is the Hurwitz zeta function. Here, we note that the complementary cumulative distribution

function defined as P (x) = Pr(X ≥ x) can take the form in the discrete case as

P (x) =
ζ(γ, x)

ζ(γ, xmin)
. (5)

The method for fitting power-law distributions to the observed data is the method of

maximum likelihood. By assuming that the data set corresponds to a distribution that

follows a power-law exactly for x ≥ xmin, it is possible to derive the maximum likelihood

estimators (MLEs) of the scaling parameter.

For the general case xmin > 1, we can write the log-likelihood function as

L = ln
n∏

i=1

x−γ
i

ζ(γ, xmin)
= −n ln ζ(γ, xmin) − γ

n∑
i=1

ln xi. (6)

By taking ∂L
∂γ

= 0, we obtain

−n

ζ(α, xmin)

∂

∂γ
ζ(γ, xmin) −

n∑
i=1

ln xi = 0. (7)

Then, the MLE γ̂ for the scaling parameter can be obtained as a solution of

ζ ′(γ̂, xmin)

ζ(γ̂, xmin)
= − 1

n

n∑
i=1

ln xi. (8)

This equation can be solved numerically. Here, the hatted symbol denotes the estimates

derived from data and the hatless symbol denotes the true values, which may not be known

in practice. Implementations for this algorithm can be found in [10]. Although there is no

exact closed-form expression for γ̂ in the discrete case, an approximate expression can be

derived as
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γ̂ ≃ 1 + n

[
n∑

i=1

ln
xi

xmin − 1
2

]−1

. (9)

When xmin ≥ 6, it gives results that are accurate to approximately 1% or better. For details

on the derivation, fitting procedure and implementations, we refer to [9, 10]. The maximum

likelihood, as described above, estimates the scaling parameter γ for each possible value

of xmin. Then, the Kolmogorov-Smirnov goodness-of-fit statistic KS is computed. This is

achieved by computing the maximum distance between the cumulative distribution function

(CDF) of the data and the fitted model. The estimate of xmin is determined as the value that

gives the minimum value KS over all values of xmin. The results for the scaling exponent γ

are shown in Figs. 1S-4S and Table 2, including the standard errors of γ which are derived

from the width of the maximum likelihood as well as the xmin values [9].

B. Social networks

We analysed six social networks to evaluate our controllability approach based on dom-

inating sets for bipartite networks. A Facebook-like social network was originated from an

online community for students at the University of California, Irvine. Here we do not focus

on the emails between users. Instead, we consider the users’ activity in the forum [11]. This

forum can be represented as a bipartite network, in which a user is linked to a topic based

on whether the user posted messages to that topic. More messages will assign a higher

weight to that edge. Because we are considering unweighted networks, we omit the weight

of each edge and assume binary interactions among users and topics. This example fits

well with the assumption of our DS approach. As stated before, a network is structurally

controllable if a dominating set is selected as a set of control nodes under the assumption

that each driver node can control its outgoing edges separately. In the Facebook network,

V⊤ is the users set, and each user can decide the topic in which a new message is posted.

The cover size for this network represents 10% of all users (see Table 2). This small set

of nodes may have an influence on the opinions circulating in the forums. Although we

have not considered the network that connects individuals, the analysed bipartite network

can be considered to be complex. In fact, current analyses only focus on complex bipartite

networks without considering the connections between the same type of nodes [12–18]. In
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our Facebook network, two users (A and B) are not connected to each other (if they were, it

would not be a bipartite graph); hence, it is true that the opinions do not circulate between

users directly. However, user A can post a message in topic (1), and then this message is

read by B, which triggers him/her to post a message in either the same (1) or different topic

(2).

Note also that the bipartite graph representations and set cover algorithmic framework

have already been used in many applications, some of which are related to clinical analysis.

In a recent work, a minimal hitting set algorithm, which is equivalent to set cover, is applied

on a bipartite strain-drug response network, which successfully targets the whole population

of 60 tumour derived cell lines, uncovering 14 anticancer drug combinations [35].

Next, we focus on the firms-world cities network. These data represent the services

(indicating the importance of a city in the office network of a firm) of 100 global service

firms distributed across 315 cities worldwide. Each firm supplies a variety of producer

services, such as accountancy, advertising, banking/finance, insurance, law, and management

consultancy through offices in worldwide cities [19]. Although a weighted network was

already available from the raw data where high weights were assigned to links between

strong firms and highly populated cities (they tend to offer more services in larger cities),

here we consider the unweighted network representation. The computation of the cover set

in this bipartite network, where V⊤ represents the firms, shows that a very small set of firms

(8%) offers services in all 315 cities. This shows that these firms have a prominent role in

controlling the socio-economic development in the world. Additionally, each firm is able to

establish its offered services separately and satisfies the structural controllability assumption

for DS.

The cond-mat scientific collaboration consists of a network of scientists and research

papers. For example, two scientists are considered connected to the same paper if they

coauthored the paper together. The network corresponds to a subset of the Los Alamos

Archive, covering the condensed matter physics (cond-mat) research field, including 16,726

scientists and 22,016 papers [12]. Here, the structural controllability assumption is reason-

able because each scientist can choose to investigate each research subject independently.

Therefore, the scientists are the V⊤ set in this network.

The cover size is not large and shows that 25% of scientists may induce research opinions

and new scientific routes by leading and participating in all of the research conducted in
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the field. It also should noted that in this case, the V⊥ set of nodes does not follow a clear

enough power-law but instead shows faster exponential decay (see Fig. S1 for the degree

distributions). As shown in Table 1, the cover size tends to grow with the degree exponent

γ2. Because the cond-mat network undergoes rapid exponential decay, its equivalent degree

exponent would be relatively large leading to a higher percentage for the cover set.

The Davis’ Southern Women Club dataset was collected by Davis and colleague in the

1930s [20]. It contains the observed attendance at 14 social events by 18 Southern women.

In this case, although the size of the network is small, both degree distribution seems more

compatible with a random network with exponential decay rather than with a scale-free

network (see Fig. S4). In this network, only two women dominate the entire network.

The network corresponding to the bibliography of the book Graph Products by Imrich and

Klavzar also was investigated [21]. This network represents an author-by-paper bipartite

network, in which edges eij indicate that an author i is the co-author of the paper j. While

the V⊤ set of nodes (authors) follows a power-law, the V⊥ follows a faster exponential decay.

Here, a bit more than half of the authors (174) are necessary to cover all of the papers cited

in the bibliography.

Finally, we analysed the network data on the administrative elite in The Netherlands in

April 2006 [22]. Here, individuals are connected to administrative bodies through member-

ships. This topology is the opposite case of the bibliography network discussed above. Here,

the V⊤ (persons) network decays exponentially, and the V⊥ follows a clear power-law distri-

bution showing that few key administrative bodies have memberships for many persons. In

this case, only 14% of the persons are necessary to cover all of the administrations.

The rest of the social networks show asymmetric behavior characterised by a power-law

for V⊤ and faster exponential decay for V⊥. Therefore, we performed extensive computer

simulations, which allowed us to investigate with higher accuracy the cover size in the

more suited large-scale computer-generated scale-free networks, i.e., the networks with up

to 100,000 nodes (see Table 1). The lower bound is shown in Table 1 and it is always smaller

than the observed cover size.
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C. Biological networks

On the biological side, we analysed four bipartite networks, including a transcriptional

regulatory network, ncRNA-protein interactions and the human drug-target protein network.

The transcriptional network can be represented as a bipartite network with sets of nodes

as transcriptional factors (TFs) and regulated (or controlled) genes. A direct interaction be-

tween these molecules indicates that a TFs regulates a gene. We analysed the S. cerevisiae

transcriptional network [23] and computed the cover set of this network, which represents

approximately 57% of the TFs. The structure of this network resembles that of the non-

coding RNA (ncRNA)-protein interaction network, where only the degree of V⊤ nodes (TFs

or ncRNAs) follows a power-law and the degree of regulated molecules in V⊥ decays approx-

imately exponentially (see Fig. S3). A non-coding molecule is a transcribed molecule that

is not translated into a protein. Recent studies have shown that non-coding molecules may

play relevant roles in the genetic regulatory level [24]. The cover set analysis of the human

ncRNA-protein network reveals that 71% of the ncRNAs are needed to dominate the whole

network. This ratio does not change significantly (68%) when we combine six organisms

(E. coli, S. cerevisiae, C. elegans, D. melanogaster, M. musculus and H. sapiens) within

the network to enlarge the dataset. All of these datasets were downloaded from NPInter

Database [25].

Because of its importance and potential implications, a more extensive statistical analysis

is performed on the drug-target network. Network medicine is emerging as a new framework

to not only identify novel disease gene candidates and distinct disease-specific functional

modules but also elucidate the deeper roots of a human disease or complex disorder [26].

The recent works have offered rich and promising findings by not only including the analysis

the genes and molecules corresponding to a single disease but also considering the whole

set of human disease genes (disease genome) and their associated disorders (disease phe-

nome) [27]. The analysis of the diseasome network showed that distant and, in principle,

different diseases share an unexpectedly high number of disease genes, suggesting that ap-

parently distinct pathophenotypes are more linked at the molecular level than expected by

common medical knowledge. This finding not only opens new avenues to understand the

deeper origins of complex diseases but could also aid drug discovery because newly developed

drugs could be aimed for targeting the disease gene-products that molecularly link distinct
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disorders.

In this bipartite network of drug-protein interactions, a drug and a protein are connected

to each other if the protein is a known target of the drug. Here, the V⊤ set of nodes is

represented by the drugs that can alter the activity of the targeted protein. The background

data corresponds to the DrugBank database and the same dataset shown in [26, 28] was

used to construct the drug-target network with 888 approved drugs that target 394 human

proteins in total.

A small fraction of validated disease genes encodes the drug-target proteins. The drug

targets were assigned a human disorder class if the protein was a disease-gene product. Each

gene was assigned to a disorder class as shown in SI, Table S3 in [27]. This information

is available in the OMIM database, which reports on human disorders and disease-related

genes. The target proteins encoded by disease genes are coloured based on the disorder class

to which they belong. A complete map of the giant component of the bipartite network with

a mapping of the identified dominating set of drugs is shown in Figure 4. Figure S5 shows

the isolated components of the network. To satisfy the controllability assumption for DS,

we have assumed that each drug is designed to interact with specific targets and that these

interactions are independent to some extent. The computation of the cover size shows that

only 21% of the approved drugs could control the entire known druggable proteome.

The network features of the relationships between all drugs and drug targets are important

for organising the current knowledge of the relationships between the drug targets and

disease-gene products and even then human therapies [26, 28, 37, 38]. This kind of network

representation could aid drug discovery because newly developed drugs could target the

disease-gene products that molecularly link the roots of distinct disorders [27]. Here, we

raise questions on the controllability of the human drug-target protein (DT) network, the

system’s minimum number of driver drugs as well as their topological role in the network.

III. RESULTS OF THE DATA ANALYSIS

A. Cover set of bipartite drug-target protein network targets high-degree drugs

The computation of the cover size showed that only 21% of the drugs could control the

entire known druggable proteome. Based on the linkage of the genes to disparate disease
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pathophenotypes [27] and the reduced size of driver drugs identified, we suggest that a

relatively small number of the drugs could address the common genetic origin of these

diseases. Morever, if we consider only the giant connected component, the fraction of drugs

required to control the target proteins is significantly reduced to 8%. Although the average

degree of the drugs is 1.81, the drugs cover set shows < k >=2.2, showing that the DS

targets, on average, the more highly connected drugs. Furthermore, this value increases to

3.59 when only the giant component is considered. Unfortunately, most of the current drugs

are not etiology-specific, and therefore, they do not act on the actual disease-associated

protein. In contrast, most of the drugs that we use are palliative and tend to act on the

proteins in the network neighbourhood of the disease genes [28].

The analysis of the drug-target interactions indicates that high-degree drugs tend to

belong to the dominating set (see Fig. S6). However, this analysis also shows that the

DS does not exclusively include hubs. Low-degree drugs also play an important role in the

control of the whole network (see Fig. 1 and Fig. S5).

B. Disease-gene products are inhomogeneously targeted by the cover set of drugs

A classification of disorders based on the fraction of the disease-gene products targeted

by the cover set is shown in Figure S7. A high fraction of the proteins that belong to

dermatological, neurological and psychiatric disorders tend to be targeted by the 12 most

highly connected drugs in the DS. In contrast, cancer, immunology and renal disorders tend

to be targeted by the low-degree drugs in the DS.

C. Drug projection of the bipartite drug-target network

To shed light on the topological role of the cover set in the drug-target network, we

projected the giant component of the network onto the drug space. In the resulting drug

network, two drugs are connected if they target at least one common protein. Here, we first

mapped the identified cover set of drugs (DS) onto this unipartite network (see Fig. S8).
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D. The DS of drugs hits bridged locations in the network

Next, we computed various topological metrics, such as the closeness centrality, the be-

tweenness centrality, the degree correlation and the node degree. The results are again

mapped in the drug network (See Figs. S9-S12). The computation of the average values

of these metrics for the full network and for the set of nodes that belong to the DS indi-

cates that there is no specific correlation between the cover set of drugs and their degree

correlation and closeness centrality in the projected network (see Fig. S13). However, this

computation clearly reveals that the cover set tends to select the nodes with a high between-

ness centrality. A similar correlation is shown in Figure S14, where the degree correlations

and the closeness and betweenness centralities are plotted against the degree. Although the

set of drugs in the DS and the rest of drugs tend to show a similar pattern for the degree

correlation and the closeness centrality, the distribution shows significantly differences when

the betweenness function is considered, showing that drugs with a high betweenness only

belong to the DS (see Fig. S14). These drugs contribute to a higher average betweenness

centrality (see Fig. S13). It also can be seen that nodes belonging to the DS (see Fig. S10)

play the role of bridges, connecting the groups of drugs in the unipartite network.

E. Drugs in the DS are also among the most influential spreaders

The previous finding connecting the driver nodes with a high betweenness centrality also

suggests that the topological features shown by the cover set and the so-called influential

spreaders could be similar [29]. It was shown that many shortest path crossings through one

node (high betweenness) indicate a high spreading capability if the node does not exists at

the end of a branch at the periphery of the network or lower shells. The node location can

then be classified using the k-shell decomposition method. The analysis assigns an integer

index ks to each node. A high value indicates a high shell; i.e., the node is in the core of the

network [30]. A low value indicates a low shell; i.e., the node occupies peripheral locations.

Our findings then suggest that the dominating sets in networks can not only control the

entire network but could also be the most influential spreaders of information in a network.

Because the DS represents drugs in this case, it could be thought that the DS represents the

most influential nodes for eradicating the disorders or perturbations across the network. To
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verify this unexpected finding in more detail, we also performed a k-shell decomposition of

the network. The result shown in Fig. S15 indicates that many of the most highly connected

drugs in the DS occupy the core (or higher shells) of the network. In contrast, fewer drugs

are located in the periphery (or lower shells) of the network. As shown in [29], the nodes in

the higher shells of several social networks tend to have higher betweenness values.

F. Implications of dominating set of drugs for network medicine

The application of structural controllability to social and biological systems could be of

significant importance. The control of neuronal signals and transcription factor concentra-

tions could revolutionise neurology, molecular biology and medicine. Despite the breathtak-

ing advances in our molecular understanding of cellular processes and new drug targets, the

number of drugs that receive approval by the US Food and Drug Administration (FDA) is

significantly decreasing each year. The screening for single-target drugs is in part responsible

for this slow development [31, 32]. While the genes that are linked to two distant diseases

were thought to be important to understand the deep roots of complex disorders [27], here

we have found that the minimum set of drugs controlling disease-gene products share some

unique properties, which could be used to develop future drugs. For example, the drugs

that belong to the DS occupy core locations in the network such that they bridge multiple

disease-gene products, with many shortest paths crossing between these drugs, showing that

these drugs have specific chemical features for treating distant disorders.

This property should be examined in detail because it may aid in the design of influen-

tial drugs that disable multiple network pathways in distant parts of the network that are

responsible for different disorders with a few drugs.

Use of the network framework in medicine has become a necessity because diseases are

not caused by single genes but by larger disease-specific functional modules and pathways.

Multi-target and optimal combinations of drugs in cancer and HIV have been suggested as

new courses of action to address with such complex disease modularity and to aid in drug

design [33–35]. The drawbacks could be in the possible antagonistic drug combinations,

where the strength of two drugs in the same treatment is weaker than that of either drug

alone in addition to the unwanted side effects [36].

In this work, although we have assumed that no interactions exist between drugs in the
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drug-target network, it would be possible to adapt the MDS algorithm to include constraints

such that certain drugs cannot appear in the MDS at the same time. With respect to clinical

applications, a recent work has already explored the optimal drug combination using a

minimal hitting set algorithm, which is equivalent to cover set, that successfully targets the

whole population of 60 tumour-derived cell lines, uncovering 14 anticancer drug combinations

[35]. Our approach also could be applied to future drug-patient networks in the context of

personalised medicine [37, 38]. Interestingly, given the significant amount of data related to

genomics and medicine, it is expected that systems medicine data integration may lead to

novel and larger bipartite networks, the controllability of which could be predicted by the

presented methodology.

IV. METHODS

In this section, we explain in detail the derived mathematical tools used to study con-

trollability in bipartite networks. For the sake of clarity, we introduce once more the main

notation and the proposition presented in the main text. We first introduce the dynamic

model for our Minimum Dominating Set approach (MDS) on bipartite networks.

Next, we explain in detail the analytical results for structural controllability in bipartite

networks and how the results are linked to the controllability of networks in the sense of [1].

Then, we then make predictions on the minimum number of nodes necessary to control the

entire bipartite network for the cases γ1 < 2 and γ1 > 2. Finally, we perform a theoretical

analysis for the case of random bipartite networks.

A. Dynamics model

Let x(t) = (x1(t), x2(t), . . . , xn2(t))
T be the state of nodes in V⊥ at time t, where MT

denotes the transposed matrix of M .

Suppose that U = {u1, u2, . . . , uh} be the set of driver nodes (in our sense) selected from
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V⊤ and each ui has di edges. We define a state vector u for all edges from U by

u(t) = (u1,1(t), u1,2(t), . . . , u1,d1(t),

u2,1(t), u2,2(t), . . . , u2,d2(t),

. . . ,

uh,1(t), uh,2(t), . . . , uh,dh
(t))T .

We rename ui,js by u′
1, u

′
2, . . . , u

′
l and and rewrite u(t) by

u(t) = (u′
1(t), u

′
2(t), . . . , u

′
l(t))

T ,

where each node u′
i has only one outgoing edge that corresponds to the original edge.

Here, we assume that the dynamics is given by

dx(t)

dt
= Ax(t) + Bu(t)

where A is the diagonal matrix (i.e., Ai,j = 0 for all i ̸= j) and B satisfies that Bi,j ̸= 0 only

if u′
j is connected to wi. It is to be noted that A can be the null matrix (i.e., any node in

V⊥ does not have a self-loop).

Then, it is clear that this system is structurally controllable if each node w ∈ V⊥ has at

least one incoming edge (i.e., U is a dominating set).

Furthermore, there can be connections between nodes in V⊥ because addtion of non-zero

elements to A does not impair the structural controllability. However, in this case, the

number of required driver nodes may be fewer than that derived from our model.

In the above, we assumed that ui /∈ V⊤−U does not have any effect on vj ∈ V⊥. However,

this assumption can be removed if we can know the signals from nodes in V⊤ − U to V⊥.

Suppose that vj has incoming edges from ui0 , ui1 , . . . , uik where ui0 ∈ U and ui1 , . . . , uik /∈ U

(this case can be trivially extended for the case where there exist edges from multiple nodes

in U). Let the state vector from these nodes to vj be (uj
0(t), u

j
1(t), . . . , u

j
k(t))

T and the vector

of corresponding weights be (b0, b1, . . . , bk)
T . Then, in order to remove the effects from

ui1 , . . . , uik to vj, it is enough to add the following term to uj
0(t):

− 1

b0

(b1u
j
1(t) + · · · bku

j
k(t)).

It is worth mentioning that apart from dynamics, the MDS approach has control applica-

tions in several areas, ranging from engineering to systems biology, including clinical studies

focused on uncovering anticancer drug combinations to target specific tumour cells [35].
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Additionally, the control aspects of the problem follow directly from the fact that a

controlled edge applying a unique signal to a single integrator node is controllable. Conse-

quently, structural controllability is not even needed.

B. Dominating set and structural controllability in bipartite networks

We consider a bipartite graph G(V⊤, V⊥; E), where V⊤ is a set of top nodes, V⊥ is a set of

bottom nodes, and E is a set of edges (E ⊆ V⊤×V⊥). It should be noted that the directions

of all edges are from V⊤ to V⊥ in this definition. This assumption is reasonable for networks

such as drug-target networks because the activities of nodes in V⊤ are usually not affected

by those in V⊥. We discuss later in a different section the controllability of bi-directional

bipartite networks, which require a specific analysis.

In this work, we use a modified version of the dominating set, in which a set must be

selected from V⊤ and it is sufficient to dominate all nodes in V⊥ (i.e., for all node w ∈ V⊥,

there exists a node v ∈ V⊤ such that (v, w) ∈ E). This corresponds to a set cover problem

by associating a set Sv = {w|(v, w) ∈ E} for each v ∈ V⊤. We use MDS to denote the

minimum dominating set (i.e., the dominating set with the minimum number of nodes) in

the sense described above.

As proved in [5, 6], a network is structurally controllable if a dominating set is selected as

a set of control nodes under the assumption that each control node can control its outgoing

edges separately.

We also can consider structural controllability under the assumption in [1] that each driver

node can control only its own value. Figure 2 (i) shows a bipartite graph G(V⊤, V⊥; E) that

can be transformed into G′(V L, V R; E ′). To contruct G′, for each node v ∈ V⊤, we create

two nodes vL and vR. Similarly, for each node v ∈ V⊥, we create two nodes vR and vL. For

each edge (u, v) ∈ E, we create an edge between uL and vR. In such a case, the number

of driver nodes is determined by the number of nodes in V R not appearing in a maximum

matching of the adjunct bipartite graph G′(V L, V R; E ′) [1]. However, in this case, all nodes

in V R corresponding to V⊤ remain unmatched because there is no edge that connects any

of these nodes (see Fig. 2 (ii)). Therefore, we have

Proposition 1 The number of driver nodes in the sense of [1] is at least |V⊤| for a bipartite

network G(V⊤, V⊥; E) such that E ⊆ V⊤ × V⊥.
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Because |V⊤| is usually a very large number, in this study, we focus on the structural

controllability in terms of MDS.

Note that min(|V⊤|, |V⊥|) driver nodes are still required even if we only aspire to control

the nodes in V⊥ because there is no outgoing edge from V⊥.

C. Theoretical analysis of the MDS size in bipartite networks

First, we describe a relationship between DS and the structural controllability of a bipar-

tite network. As a direct consequence of Theorem 1 in [5], it can be seen that the following

proposition holds.

Proposition 2 Suppose that we need to control the states of nodes only in V⊥ and that every

node in the DS (⊆ V⊤) can control all of its outgoing links separately. Then, the network is

structurally controllable by selecting the nodes in the DS as the driver nodes.

Here we assume that the degree distributions of V⊤ and V⊥ follow P⊤(k) ∝ k−γ1 and

P⊥(k) ∝ k−γ2 , respectively. We let n1 = |V⊤| and n2 = |V⊥|.

We assume that all of the nodes in a dominating set DS must be selected from V⊤ and

that it is necessary to dominate all nodes in V⊥ (we need not dominate the nodes in V⊤),

which means that DS is a set cover for V⊥. In [5, 6], structural controllability was studied

in terms of MDS for unipartite graphs. In what follows, we present the analytically derived

predictions for the minimum number of drivers using the MDS controllability approach for

bipartite networks by considering two cases, γ1 > 2 and γ1 < 2.

Here, we note that in our theoretical analysis we use a standard mean-field approach

which assumes a continuum approximation, in which the degree k becomes a continuous

real variable. This approach is often used in the field of complex networks to evaluate

mathematical models and obtain relatively easily analytical expressions [39–44]. However, it

should also be noted that this approximation may not give the exact value for the normalising

constant α. The exact normalising constant α considering a discrete degree distribution can

be obtained from (ζ(γ, 1)−ζ(γ, kmax))
−1 [9, 44]. In this study, we discuss the order of number

of driver nodes, not the exact number of driver nodes. Because the value of normalising

constant α does not affect the order of n, we did not use the exact value of α. Moreover,
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as shown in [44], in the tail of the distribution the sum over k is well approximated by an

integral so that the normalising constant can be written as α ≃ 1
R ∞

kmin
k−γ = (γ − 1)kmin

γ−1.

1. Case of γ1 > 2

We assume P⊤(k) follows α1k
−γ1 with cut off at k = n1, where γ1 > 2. From

α1n1

∫ n1

1
k−γdk = n1, we have α1 ≈ γ1 − 1.

For S ⊆ V⊤, Γ(S) denotes the set of edges between S and V⊥ (i.e., Γ(S) = {(u, v) | u ∈

S and v ∈ V⊥}). The following property is trivial

if |Γ(S)| < n2, S can not dominate V⊥.

Let S be the set of nodes whose degree is greater than or equal to K. It is to be noted that

S is chosen so that the total degree (i.e., the number of edges incident to S) is maximized

among the sets with the same cardinality.

We estimate the size of Γ(S) as follows.

|Γ(S)| < αn1

∫ n1

K

k · k−γ1dk ≈ n1(γ1 − 1)

∫ n1

K

k−γ1+1dk

= n1 ·
(

γ1 − 1

γ1 − 2

)
·
(

1

Kγ1−2
− 1

nγ1−2
1

)
< n1 ·

(
γ1 − 1

γ1 − 2

)
· 1

Kγ1−2
. (10)

If S is a dominating set, the last term should be no less than n2. Therefore, the following

inequality should be satisfied:

n1 ·
(

γ1 − 1

γ1 − 2

)
· 1

Kγ1−2
≥ n2. (11)

By solving this inequality, we have

K ≤
[(

γ1 − 1

γ1 − 2

)
·
(

n1

n2

)]1/(γ1−2)

. (12)

Then, the size of S is estimated as

|S| ≈ αn1

∫ n1

K

k−γ1dk ≈ n1

(
1

Kγ1−1
− 1

n1
γ1−1

)
≈ n1 ·

1

Kγ1−1

>

[(
γ1 − 1

γ1 − 2

)]− γ1−1
γ1−2

·
(

n2

n1

) γ1−1
γ1−2

· n1. (13)

From this inequality and the fact that V⊤ is a trivial dominating set, we can see that the size

of the minimum dominating set is Θ(n1) (for fixed γ1 if n2 is the same order as n1). As a
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difference from the case of γ1 < 2, the maximum degree does not largely influence the above

lower bound. If the maximum degree is H, it is enough to simply replace 1

n
γ1−2
1

with 1
Hγ1−2

and 1

n
γ1−1
1

with 1
Hγ1−1 in Eqs. (10) and (13), respectively which would result in negligible

changes.

2. Case of γ1 < 2

In this section, we focus on degree distribution for V⊤ and thus we let γ = γ1, n = n1,

and m = n2.

We assume that the maximum degree is H. Then, we have

n = αn

∫ H

1

k−γdk =
αn

1 − γ

[
k−γ+1

]H

1
=

αn

γ − 1
(1 − H1−γ) ≈ αn

γ − 1
(14)

from which α = γ − 1 follows.

Let DS be the set of nodes with degree between B and H. Then, the number of nodes

NDS in DS is given by

NDS = αn

∫ H

B

k−γdk =
α

−γ + 1
· n ·

[
k−γ+1

]H

B
= n

(
B1−γ − H1−γ

)
= O(nB1−γ). (15)

On the other hand, the total number of edges EG is

EG = αn

∫ H

1

k · k−γdk =
γ − 1

2 − γ
· n ·

[
k−γ+2

]H

1
=

γ − 1

2 − γ
· n · (H2−γ − 1) ≈ γ − 1

2 − γ
· nH2−γ

= < k > n, (16)

from which < k >≈ γ−1
2−γ

· H2−γ follows.

The number of edges ENDS not covered by DS is

ENDS = αn

∫ B

1

k · k−γdk =
γ − 1

2 − γ
· n · (B2−γ − 1) ≈ γ − 1

2 − γ
· n · B2−γ (17)

Therefore, the probability that an arbitrary edge is not covered by DS is

ENDS

EG

≈
(

B

H

)2−γ

(18)

Let V⊥ ⊖ DS denote the set of nodes in V⊥ that are not dominated by DS. Since a node is

dominated by DS if at least one edge connecting to the node is covered by DS, the expected

number of nodes (denoted by NV⊥⊖DS) of V⊥ ⊖ DS is bounded as

NV⊥⊖DS ≤ O

(
m ·

(
B

H

)2−γ
)

, (19)
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where m is the number of nodes in V⊥.

In order to dominate V⊥ ⊖ DS, it is enough to select at most NV⊥⊖DS nodes from V⊤.

Therefore, the size of a minimum dominating set is bounded by

|DS| + NV⊥⊖DS ≤ O

(
nB1−γ + m

(
B

H

)2−γ
)

. (20)

Then, in order to find B minimizing this order, we let

nB1−γ = m

(
B

H

)2−γ

, (21)

which results in B = n
m
· H2−γ.

Therefore, an upper bound of the size of the dominating set is estimated as

O

(
n2−γ · mγ−1

H(2−γ)(γ−1)

)
. (22)

It is to be noted that (2 − γ)(γ − 1) ≤ 0.25.

By using < k >≈ γ−1
2−γ

· H2−γ, this upper bound can also be written as

O

 n2−γ · mγ−1

< k >(γ−1)
(

2−γ
γ−1

)γ−1

 . (23)

On the other hand, if H = n, the upper bound becomes

O
(
n(2−γ)2 · mγ−1

)
. (24)

If m = cn where c is a constant, this order is O(nγ2−3γ+3), which takes the minimum order

(O(n0.75)) when γ = 1.5. Note that this upper bound might not be accurate when γ is close

to 1 or 2 because γ − 1 and 2 − γ appear as denominators in some equations.

Readers might wonder why γ2 is ignored in the above analysis. We briefly discuss this

point. The number of nodes with degree 1 or 2 in V⊥ is approximated by

α2n2

∫ 2

1

k−γdk =
α2n2

γ2 − 1

(
1 − 1

2γ2−1

)
. (25)

Since we have α2 = γ2 − 1 as in the case of V⊤, this number is equal to

n2

(
1 − 1

2γ2−1

)
. (26)

Therefore, a constant fraction of nodes in V⊥ have degree 1 or 2 if γ2 is a constant. Here,

we note that in the analysis of the MDS size, we only used V⊥, a property that every node
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in V⊥ has a degree of at least 1. If most nodes in V⊤ were of a high degree, the size of MDS

would be much significantly less. However, as mentioned above, a constant fraction of nodes

in V⊥ have degree 1 or 2; thus, we can only expect the reduction of a constant factor (i.e.,

not an exponent) of the MDS size, even if we make extensive use of γ2.

The finite size of the networks limits the maximum degree value for each node. Some real

networks show faster exponential decay in the tail that can be mathematically represented

by an exponential cutoff as k−γe−k/kc [40, 42]. However, this is not the case of all the real-

world networks and some networks conserve a well-defined power-law decay until the very

end of the tail and the cuffoff is simply the maximum degree (see also [43]). Here, we have

considered the effects of the maximum degree H in the MDS, as showed in Figure. 3. We

leave as a future work the computation of the effects of the exponential cutoff in the MDS.

D. Theoretical analysis of the MDS size in random bipartite networks

In this section, we consider random bipartite networks, that is, we assume that edges are

randomly drawn between V⊤ and V⊥ where n1 = V⊤ and n2 = V⊥. Let ⟨k⟩ be the average

degree of nodes in V⊤, which means that there exist ⟨k⟩n1 edges. Recall that S ⊆ V⊤ is a

dominating set for V⊥ if (∀w ∈ V⊥)(∃v ∈ S)((v, w) ∈ E) holds.

We use a well-known result on the coupon collector problem [45], which states that we

can collect all n kinds of coupons with probability greater than 1 − (1/n) if we randomly

draw 2n ln n coupons. In our case, since we are assuming that edges are drawn randomly,

nodes in V⊥ correspond to the kinds of coupons and each edge corresponds to a coupon.

Therefore, if S ∈ V⊤ has 2n2 ln n2 edges, it is highly expected that S is a dominating set for

V⊥.

First we estimate an upper bound of the size of DS. Since ⟨k⟩ is the average degree for any

integer C > 0, there must exist S ⊆ V⊤ such that |Γ(S)| ≥ ⟨k⟩|S| and |S| = C (otherwise,

the average degree would be smaller than ⟨k⟩). As discussed above, if |Γ(S)| > 2n2 ln n2, S

is a dominating set with high probability. Therefore, an upper bound of the size of DS is

estimated as
2n2 ln n2

⟨k⟩
. (27)

Next we estimate a lower bound of the size of DS. We show that the degree of any node

in V⊤ does not become much larger than the average. Since edges are randomly drawn, we
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can regard the assignment process of edges to each node v ∈ V⊤ as a Poisson process with

the success probability (per trial) 1/n1. Then, from Chernoff bound (see Thm. 4.4 in [45]),

we have

Prob(deg(v) ≥ 6⟨k⟩) ≤ 2−6⟨k⟩. (28)

Here we consider two cases: ⟨k⟩ ≥ log2 n1 and ⟨k⟩ < log2 n1. First we consider the former

case. Since there exist n1 nodes, the probability that at least one node has degree more than

6⟨k⟩ is bounded by

n1 · 2−6⟨k⟩, (29)

which is a negligibly small probability for sufficiently large n1 because ⟨k⟩ ≥ log2 n1. There-

fore, |Γ(S)| ≤ 6⟨k⟩|S| holds for any S ⊆ V⊤ with high probability. Since |Γ(S)| should be

no less than 2n2 ln n2, a lower bound of the size of DS is estimated as

2n2 ln n2

6⟨k⟩
=

n2 ln n2

3⟨k⟩
. (30)

Therefore, the size of DS is estimated as Θ(n2 ln n2

⟨k⟩ ) for ⟨k⟩ ≥ log2 n1. Next we consider the

case of ⟨k⟩ < log2 n1. Using Chernoff bound again, we have

Prob(deg(v) ≥ 2⟨k⟩ log2 n1) ≤ 2−2⟨k⟩ log2 n1 =
1

(n1)2⟨k⟩ (31)

and thus the probability that at least one node has degree more than 2⟨k⟩ log2 n1 is bounded

by

n1 · 2−2⟨k⟩ log2 n1 =
n1

(n1)2⟨k⟩ =
1

(n1)2⟨k⟩−1
, (32)

which is a negligibly small probability for sufficiently large n1 (assuming that ⟨k⟩ ≥ 1).

Then, as in the former case, a lower bound of the size of DS is estimated as

2n2 ln n2

2⟨k⟩ log2 n1

=
n2 ln n2

⟨k⟩ log2 n1

, (33)

which matches the upper bound except a factor of log2 n1.

E. Computational results

We consider the case of γ1 < 2, and we evaluate the relationship between H and the

cover size under the condition that γ1 = γ2 and |V⊤| = |V⊥| ≈ 20, 000, The simulation

results shown in Figure 3 show that the maximum degree of nodes in the network has a

significant impact on the cover size.
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By observing Figure 3, we also note that the exponent takes its minimum value at γ = 1.5,

which is in good agreement with our theoretical result. The reason for this is as follows: As

shown above, an upper bound on the size of the dominating set is estimated as

O

(
n2−γ · mγ−1

H(2−γ)(γ−1)

)
. (34)

It should be noted that (2 − γ)(γ − 1) ≤ 0.25.

From here, and by taking γ = γ1, it can be seen that the dependence of the minimum

number of drivers on H (maximum degree) is 1/(H(2−γ1)(γ1−1)). When γ1 = 1.5, the exponent

of H becomes -0.25, which is a minimum value. From Figure 3, we see that for γ1=1.3,1.5,1.6

the exponents are -0.20, -0.21, -0.18, respectively and among them γ1=1.5 corresponds to the

exponent with the minimum value. A comparison of the analytically predicted H exponent

and that calculated with computer simulations is shown in Figure S16. Because Figure 3

only considers the case γ1 < 2, we also performed computations for the case of γ1 > 2, as

shown in Figure S17. In this case, there is almost no dependence on the maximum degree

H. This different behaviour contrasts with the scaling-law observed in Figure 3 for γ1 < 2.

As discussed in SI IV-C, our analytical results indicate that the dependence on H is 1
Hγ1−2 ,

which vanishes for large H and γ1 > 2, in agreement with the computer simulations.

Here, we should note that we have analytically computed an upper bound; therefore the

exact value of γ1 attaining the minimum size MDS may differ from 1.5, although it will be

in the vicinity of this value. This shows that our finding is far from trivial and that the

computation of the exact value remains as future work.

In Figure S18, we investigate the effect of the size of |V⊥| on the controllability of bipartite

networks. The relationship between the cover size and n2 under the condition that H = 100

also shows a scaling-law for a variety of degree exponents γ1 = 1.1 to γ1 = 1.9 in fair

agreement with the theoretical predictions, except for γ1=1.1, where the observed exponent

0.45 for γ1 = 1.1 is significantly larger than the theoretically estimated exponent (0.1).

However, it can be observed that for m > 5000, the exponent is smaller than 0.45 and

is closer to 0.10. If γ1 is close to 1 and m is small, B = n
m
· H2−γ1 might be larger than H.

Because we assumed in our theoretical analysis that B is no larger than H, such a large B

might lead to a non-accurate estimate.

Finally, we also compared the cover set computed for the scale-free networks with that

from the random networks obeying the Poisson degree distribution. We generated sale-free
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networks with a variety of degree exponents as shown in Table S1. The results are discussed

in the main text.

V. CONTROLLABILITY OF BIDIRECTIONAL BIPARTITE NETWORKS

In this section, we briefly discuss on the case of controllability on bidirectional bipartite

networks. We focused on bipartite networks in which all of the edges are directed from

one side of the nodes (V⊤) to the other side of nodes (V⊥); thus, the driver nodes can

be selected only from V⊤. However, other types of bipartite graphs exist. One typical

example is the metabolic network. In this network, there exist two kinds of nodes [46, 47],

including nodes that correspond to chemical reactions and nodes that correspond to chemical

compounds. In this case, it also is reasonable to assume that only the values (activities) of

chemical reactions can be controlled because the activities of the chemical reactions might

be modified by controlling the concentrations of the corresponding enzymes via knockout or

overexpression of the genes, whereas it seems difficult to directly control the concentrations of

chemical compounds within a cell. However, edges exist in both directions; hence, we require

a smaller number of driver nodes. In the example shown in Figure S19, the transformed

bipartite network has a complete matching, and thus, we require only one driver node.

However, if we assume that all of the edges are directed from left to right, then there exist

three unmatched nodes in the transformed network, and hence, we need three driver nodes.

Therefore, the structural controllability in bipartite networks strongly depends on the edge

directions.

The efficiency (the small number of driver nodes in non-heterogeneous networks) of nodal

dynamics relies on the existence of many long paths. However, in unidirectional bipartite

networks, all paths are of length 1 (or length 2 if self-loops are allowed in V⊥). Therefore,

nodal dynamics cannot be effectively applied to this kind of networks. However, nodal

dynamic may be effectively applied to the control of bidirectional networks, such as metabolic

networks.

The theoretical and simulation analyses of the bidirectional bipartite networks are ex-

pected to be more complicated than those of unidirectional bipartite networks because we

must consider four degree distributions (the indegree and outdegree of V⊤; the indegree and
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outdegree of V⊥). Hence, we leave this analysis for future work.
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Supplementary Figure captions and Tables

Fig. S1 The cumulative degree distributions of bipartite social networks. The

distribution for the top (bottom) set of nodes is shown in the left (right) figures. (a-b)

Firms-world cities network with the degre exponents γ1 = 3.27± 0.36 and γ2 = 2.40± 0.31.

(c-d) Facebook-like forum users-topics with the degree exponents γ1 = 3.25 ± 0.22 and

γ2 = 2.98± 0.29. (e-f) Cond-mat Scientific-collaboration network with the degree exponent

γ1 = 3.49±0.02. The distribution for the bottom set of nodes shows exponential decay. The

standard errors of γ are derived from the width of the maximum likelihood method as shown

in SI Section IIA. The lower bound on power-law behavior xmin is the starting point of

each fit (dashed-line). The exact values and the errors for each network are shown in Table 2.

Fig. S2 The cumulative degree distributions of the human drug-target protein network.

(a-b) The Drug-Target network with degre exponents γ1 = 2.96± 0.23 and γ2 = 1.84± 0.08.

The standard errors of γ are derived from the width of the maximum likelihood method as

shown in SI Section IIA. The lower bound of the power-law behavior xmin is the starting

point of each fit (dashed-line). The exact values and the errors for each network are shown

in Table 2.

Fig. S3 The cumulative degree distributions of bipartite biological networks. The

distribution for the top (bottom) set of nodes is shown in the left (right) figures. (a) The

degree of the top set of nodes (TFs) for the transcriptional network for S. cerevisiae follows

a power-law with the degre exponent γ1 = 2.45 ± 0.38. The degree of the top set of nodes

(ncRNAs) for the ncRNA-protein network for (c) human and (e) six organisms follows

a power-law with degree exponents γ1 = 2.04 ± 0.46 and γ1 = 1.97 ± 0.31, respectively.

(b,d,f) The bottom set of nodes shows a faster exponential decay. The standard errors

of γ are derived from the width of the maximum likelihood method as shown in SI

Section IIA. The lower bound of the power-law behavior xmin is the starting point of

each fit (dashed-line). The exact values and the errors for each network are shown in Table 2.

Fig. S4 The cumulative degree distributions of bipartite social networks. The distribu-

tion for the top (bottom) set of nodes is shown in the left (right) figures. (a) The degree of
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the top set of nodes (authors) follows a power-law with the degree exponent γ1 = 2.31±0.10.

(b) The degree of the bottom set of nodes (papers) shows exponential decay. (c) The degree

of the Dutch Elite (persons) decays exponentially. (d) The degree of the bottom set of nodes

(administrative bodies) scales as a power-law with degree exponent γ2 = 3.33 ± 0.16. (e-f)

The degree distributions of (e) the top nodes (Southern women) and (f) the bottom nodes

(events) tend to decrease faster than a power-law, although the network size is small. The

standard errors of γ are derived from the width of the maximum likelihood method as shown

in SI Section IIA. The lower bound of the power-law behaviour xmin is the starting point of

each fit (dashed-line). The exact values and the errors for each network are shown in Table 2.

Fig. S5 The small isolated components in the drug-target protein network. Drugs

(hexagons) belonging to the DS are indicated in red. The interactions between DS drugs

and target proteins (circles) are denoted by wavy red arrows. Colored nodes have the same

meaning as shown in Fig. 4.

Fig. S6 The fraction of drugs in the DS with degree k computed in the bipartite

drug-target protein network. The drugs with high degree tend to belong to the DS.

Fig. S7 The statistics of the twelve most highly connected drugs in the DS. The

histogram shows an inhomogenous distribution because the proteins belonging to specific

disorder classes, such as neurological or psychiatric disorders, generally can be controlled by

highly connected drugs in the DS. In contrast, other gene-products belonging to complex

disorders, such as cancer, immunology or renal disorders, can be controlled by weakly

connected drugs in the DS, which exhibits specialised mechanisms of drug action. Disorder

classes are the same as shown in the label of Fig. 4.

Fig. S8 The projection of the drug network constructed from the giant component of

the human bipartite drug-target protein network. Each node corresponds to a drug and

two drugs are connected to each other if they share at least one target protein. The names

of the drugs in the DS with highest degree in the bipartite network are highlighted (red

(highest) and orange (high-average) nodes). Green nodes represent drugs in the DS with

low connectivity in the bipartite network. Blue nodes denote drugs that not belong to the
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DS.

Fig. S9 The closeness centrality strength for each drug is indicated by colors in the

projected drug network.

Fig. S10 The betweeness centrality strength for each drug is indicated by colors in the

projected drug network. Note that nodes belonging to the DS (see Fig. S6) exhibit high

betweenness centrality and occupy bridged locations in the network.

Fig. S11 The degree correlation (average neighboor degree) for each drug is indicated

by colors in the projected drug network.

Fig. S12 The node degree for each drug is indicated by colors in the projected drug

network.

Fig. S13 The histogram with the average values of the analysed centrality mea-

sures for drugs belonging (green) and not belonging (red) to the DS computed in the

projected drug network. From left to right, average degree, average neighborhood (i.e., aver-

age number of links of the adjacent nodes), average betweeness and average closeness values.

Fig. S14 The functions of the neighborhood degree, closeness and betweenness

centralities versus node degree in the projected network. Triangles indicate drugs belonging

to the DS. Circles show the values for drug nodes that not belong to the DS. Drugs in DS

shows higher deviations for the betweenness centrality if compared with drugs that not

belong to the DS.

Fig. S15 the k-shell decomposition of the drug network. Names of the ten drugs in

the DS with highest degree computed in the bipartite network are highlighted. Each color

denotes a shell and shell number ks is denoted in figure legend. The analysis includes drugs

in the isolated components, which are shown in white color.

Fig. S16 The analytically predicted H exponent and the one calculated using computer
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simulations. The error bars, shown in the figure, are in some cases smaller than the symbols.

Fig. S17 The dependence between the cover size and H under the condition that

γ1 = γ2 > 2 and |V⊤| = |V⊥| ≈ 20, 000 nodes. The error bars are smaller than symbols.

Fig. S18 The dependence between the cover size and m under the condition that

H = 100, where n2 is controlled by varying γ2. Note that m = n2 and it corresponds to

the number of nodes of V⊥, and V⊤=20,000 nodes. The fitted functions are m(0.453±0.017)

(r = 0.9863) for γ1 = 1.1, m(0.560±0.003) (r = 0.9937) for γ1=1.3, m(0.706±0.022) (r = 0.9930)

for γ1 = 1.5, m(0.798±0.012) (r = 0.9987) for γ1=1.7 and m(0.878±0.016) (r = 0.9990) for

γ1 = 1.9. Statistical errors of the exponents are shown together with correlation coefficients

r in parentheses. The error bars are smaller than symbols.

Fig. S19 The relationship between a bidirectional bipartite network (left) and its

transformed network (right). In this example, G′(V L, V R; E ′) has a complete matching and

thus we need only one driver node.
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TABLE I: Computational results of cover set size for computer generated poisson bipartite net-

works (RAND) and scale-free networks (SF) with the same average degree. The network size is

n1=n2=100 and H = 90. The results were averaged over 10 realizations. The standard error of

the mean (s.e.m.) is also shown.

Type γ1 γ2 Edges Cover size s.e.m.(+/-)

SF 1.2 1.2 261 31 4

RAND 261 26 1

SF 1.5 1.5 121 42 2

RAND 121 75 3

SF 1.8 1.8 191 52 2

RAND 191 54 2

SF 2.2 2.2 155 63 2

RAND 155 63 5

SF 3.0 3.0 191 82 1

RAND 191 54 2
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FIG. 1: The cumulative degree distributions of bipartite social networks. The distribution for the

top (bottom) set of nodes is shown in the left (right) figures. (a-b) Firms-world cities network with

the degre exponents γ1 = 3.27± 0.36 and γ2 = 2.40± 0.31. (c-d) Facebook-like forum users-topics

with the degree exponents γ1 = 3.25 ± 0.22 and γ2 = 2.98 ± 0.29. (e-f) Cond-mat Scientific-

collaboration network with the degree exponent γ1 = 3.49± 0.02. The distribution for the bottom

set of nodes shows exponential decay. The standard errors of γ are derived from the width of

the maximum likelihood method as shown in SI Section IIA. The lower bound of the power-law

behavior xmin is the starting point of each fit (dashed-line). The exact values and the errors for

each network are shown in Table 2.
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FIG. 2: The cumulative degree distributions of the human drug-target protein network. (a-b) The

Drug-Target network with the degre exponents γ1 = 2.96±0.23 and γ2 = 1.84±0.08. The standard

errors of γ are derived from the width of the maximum likelihood method as shown in SI Section

IIA. The lower bound of the power-law behavior xmin is the starting point of each fit (dashed-line).

The exact values and the errors for each network are shown in Table 2.
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FIG. 3: The cumulative degree distributions of bipartite biological networks. The distribution

for the top (bottom) set of nodes is shown in the left (right) figures. (a) The degree of the top

set of nodes (TFs) for the transcriptional network for S. cerevisiae follows a power-law with the

degre exponent γ1 = 2.45 ± 0.38. The degree of the top set of nodes (ncRNAs) for the ncRNA-

protein network for (c) human and (e) six organisms follows a power-law with degree exponents

γ1 = 2.04 ± 0.46 and γ1 = 1.97 ± 0.31, respectively. (b,d,f) The bottom set of nodes shows a

faster exponential decay. The standard errors of γ are derived from the width of the maximum

likelihood method as shown in SI Section IIA. The lower bound of the power-law behavior xmin is

the starting point of each fit (dashed-line). The exact values and the errors for each network are

shown in Table 2.
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FIG. 4: The cumulative degree distributions of bipartite social networks. The distribution for the

top (bottom) set of nodes is shown in the left (right) figures. (a) The degree of the top set of

nodes (authors) follows a power-law with the degree exponent γ1 = 2.31 ± 0.10. (b) The degree

of the bottom set of nodes (papers) shows exponential decay. (c) The degree of the Dutch Elite

(persons) decays exponentially. (d) The degree of the bottom set of nodes (administrative bodies)

scales as a power-law with degree exponent γ2 = 3.33 ± 0.16. (e-f) The degree distributions of (e)

the top nodes (Southern women) and (f) the bottom nodes (events) tend to decrease faster than a

power-law, although the network size is small. The standard errors of γ are derived from the width

of the maximum likelihood method as shown in SI Section IIA. The lower bound of the power-law

behaviour xmin is the starting point of each fit (dashed-line). The exact values and the errors for

each network are shown in Table 2.
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FIG. 5: The small isolated components in the drug-target protein network. Drugs (hexagons)

belonging to the DS are indicated in red. The interactions between DS drugs and targets (circles)

are denoted by wavy red arrows. Colored nodes have the same meaning as shown in Fig. 4.
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FIG. 7: The statistics of the twelve most highly connected drugs in the DS. The histogram shows

an inhomogenous distribution because the proteins belonging to specific disorder classes, such as

neurological or psychiatric disorders, generally can be controlled by highly connected drugs in the

DS. In contrast, other gene-products belonging to complex disorders, such as cancer, immunology

or renal disorders, can be controlled by weakly connected drugs in the DS, which exhibits specialised

mechanisms of drug action. Disorder classes are the same as shown in the label of Fig. 4.
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FIG. 8: The projection of the drug network constructed from the giant component of the human bi-

partite drug-target protein network. Each node corresponds to a drug and two drugs are connected

to each other if they share at least one target protein. The names of the drugs in the DS with

highest degree in the bipartite network are highlighted (red (highest) and orange (high-average)

nodes). Green nodes represent drugs in the DS with low connectivity in the bipartite network.

Blue nodes denote drugs that not belong to the DS.

FIG. 9: The closeness centrality strength for each drug is indicated by colors in the projected drug

network.
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FIG. 10: The betweeness centrality strength for each drug is indicated by colors in the projected

drug network. Note that nodes belonging to the DS (see Fig. S6) exhibit high betweenness

centrality and occupy bridged locations in the network.

FIG. 11: The degree correlation (average neighboor degree) for each drug is indicated by colors in

the projected drug network.

FIG. 12: The node degree for each drug is indicated by colors in the projected drug network.
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FIG. 13: The histogram with the average values of the analysed centrality measures for drugs

belonging (green) and not belonging (red) to the DS computed in the projected drug network.

From left to right, average degree, average neighborhood (i.e., average number of links of the

adjacent nodes), average betweeness and average closeness values.
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FIG. 14: The functions of the neighborhood degree, closeness and betweenness centralities versus

node degree in the projected network. Triangles indicate drugs belonging to the DS. Circles show

the values for drug nodes that not belong to the DS. Drugs in DS shows higher deviations for the

betweenness centrality if compared with drugs that not belong to the DS.

FIG. 15: The k-shell decomposition of the drug network. Names of the ten drugs in the DS

with highest degree computed in the bipartite network are highlighted. Each color denotes a shell

and shell number ks is denoted in figure legend. The analysis includes the drugs in the isolated

components, which are shown in white color.
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FIG. 16: The analytically predicted H exponent and the one calculated using computer simulations.

The error bars, shown in the figure, are in some cases smaller than the symbols.

50 100 200 300 400
H

20

30

40

50

60

70
80
90

100

C
ov

er
 s

iz
e 

(%
)

γ1 = 3.0

γ1 = 2.2

γ1 = 2.5

FIG. 17: The dependence between the cover size and H under the condition that γ1 = γ2 > 2 and

|V⊤| = |V⊥| ≈ 20, 000 nodes. The error bars are smaller than symbols.
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FIG. 18: The dependence between the cover size and m under the condition that H = 100, where n2

is controlled by varying γ2. Note that m = n2 and it corresponds to the number of nodes of V⊥, and

V⊤=20,000 nodes. The fitted functions are m(0.453±0.017) (r = 0.9863) for γ1 = 1.1, m(0.560±0.003)

(r = 0.9937) for γ1=1.3, m(0.706±0.022) (r = 0.9930) for γ1 = 1.5, m(0.798±0.012) (r = 0.9987) for

γ1=1.7 and m(0.878±0.016) (r = 0.9990) for γ1 = 1.9. Statistical errors of the exponents are shown

together with correlation coefficients r in parentheses. The error bars are smaller than symbols.
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FIG. 19: The relationship between a bidirectional bipartite network (left) and its transformed

network (right). In this example, G′(V L, V R; E′) has a complete matching and thus we need only

one driver node.
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