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WEB APPENDIX A

Here we provide the proofs of Results 1 and 2. The necessary notation was introduced in

Sections 2 and 3. Recall that V and V̄ denote the sets of vaccine and non-vaccine strains,

respectively, and V̄0 = V̄ ∪ {0}. Given the set W ⊆ V of the target strains, sets V̄0, W and

R define a partition of the colonisation states S (Figure 2).

The proof of results 1 and 2 is based on the reversibility of the underlying processes of

colonisation in the vaccinees (T ) and controls (C) and is given here in full detail for model

A. The applicability of these results under model B is then discussed. Recall that conditions

(A1) and (A2) are true also in the vaccinated group under the assumed vaccine model

(A3)–(A4). In the proof of the following lemma the superscripts T and C are omitted for

simplicity.

Lemma. The Markov process satisfying conditions (A1) and (A2) is reversible, i.e., the

condition of detailed balance, p[h]q[h][k] = p[k]q[k][h], holds for all [h], [k] ∈ S. Here p is the

stationary distribution of the respective process.

Proof. Consider the set of equations: p0q0,j = pjµ, j = 1, . . . , n, and piqi,ij = pijqij,i,

i = 1, . . . , n−1; j = i+1, . . . , n. Together with the normalising condition
∑n

i=0 pi+
∑n

i<j pij =

1, these n(n + 1)/2 + 1 equations have a unique solution vector p. The detailed balance

with respect to distribution p thus applies between state 0 and any of the states j ∈ S as

well as between any state i and (i, j) when i < j. It follows from assumptions (A1) and

(A2) that the detailed balance also applies between state i and (i, j) when i > j, since

piqi,ij = pi(q0,j/q0,i)qj,ij = pjqj,ij = pijµ = pijqij,i.

It follows from reversibility and the fact that the hazards of colonisation (q0,i) are the
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same in vaccinees and controls for any of the non-vaccine strains (i ∈ V̄ ) that the following

equalities hold for all i ∈ V̄ (non-vaccine strains), for all j ∈ S (any strain), and for k = T,C

(for both vaccinees and controls):

(a) pki /p
k
0 = qk0,i/µ = qC0,i/µ,

(b) pkij/p
k
0 = (pkij/p

k
j )(p

k
j/p

k
0) = (qkj,ij/µ)(q

k
0,j/µ)

= (qCj,ij/µ)(q
k
0,j/µ),

(c) (pki /p
k
0)(q

k
i,ij/q

k
0,j) = (pkij/p

k
0)(p

k
i q

k
i,ij/p

k
ij)(1/q

k
0,j)

= (pkij/p
k
0)(µ/q

k
0,j) = qCj,ij/µ.

Starting from the definition of VEW |V̄0
in equation (2), and applying equalities (a) and (c)

it follows that

VEW |V̄0
= 1−

pT0
∑
j∈W

qT0,j +
∑

i∈V̄ ,j∈W

pTi q
T
i,ij

pT0 +
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pTi
×

pC0 +
∑
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pCi

pC0
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qC0,j +
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pCi q
C
i,ij

= 1−

pT0
∑
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qT0,j

(
1 +

∑
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(pTi /p
T
0 )(q

T
i,ij/q
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0,j)

)

pC0
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(pCi /p
C
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C
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C
0,j)
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(
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∑
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C
0 )
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pT0

(
1 +

∑
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(pTi /p
T
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= 1−

∑
j∈W

qT0,j

(
1 +

∑
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qCj,ij/µ

)
∑
j∈W

qC0,j

(
1 +

∑
i∈V̄

qCj,ij/µ

) . (E1)

This can be written as a weighted average of strain-specific efficacy values, with weights

qC0,j(1 +
∑

i∈V̄ qCj,ij/µ), j ∈ W .

Alternatively, starting from expression (6) and applying equalities (a) and (b) it follows
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that

1−

∑
[j]∈W

pTj

/ ∑
[j]∈V̄0

pTj∑
[j]∈W

pCj

/ ∑
[j]∈V̄0

pCj
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pT0
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(pTj /p
T
0 ) +
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T
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) . (E2)

This equals the expression of VEW |V̄0
as derived above, completing the proof of Result 2.

Result 1 for VEW |0 follows by omitting the terms
∑

i∈V̄ ,j∈W (pij/p0) in the numerator and

denominator of equation (E2), which then reads as

1−

∑
[j]∈W

pTj

/ ∑
[j]∈V̄0

pTj∑
[j]∈W

pCj

/ ∑
[j]∈V̄0

pCj

= VEW |0.

Efficacy against the non-vaccine strains. It follows from equality (a) that the expres-

sion (5) of the vaccine efficacy against the non-vaccine strains is 0:

VEV̄ |0 = 1−

∑
[i]∈V̄

pTi

/
pT0∑

[i]∈V̄

pCi

/
pC0

= 1−

∑
i∈V̄

qC0,i/µ∑
i∈V̄

qC0,i/µ
= 0.

Cross-sectional estimation under model B. Above, cross-sectional estimators were
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considered under model A (Figure 1A). Result 1 holds also under model B (Figure 1B) which

fulfils conditions (B1)–(B4). The proof follows from equation (E2) by omitting all terms that

involve doubly-colonised states. Of note, estimator (6) is not defined under model B so that

cross-sectional estimation of VEW |V̄0
is not possible under model B. In this paper, model

B was applied to three aggregated states V0, W , and R for estimation of vaccine efficacy

against a subset of strains W (see Section 5).

Relation of the two efficacy estimands. The two efficacy estimands, VEW |0 and

VEW |V̄0
, are both weighted averages of strain specific efficacy estimands. According to equa-

tions (1) and (E1), the weights are qC0,j and wj = qC0,j(1 + aj), respectively, where aj =∑
i∈V̄ qCj,ij/µ. The following crude approximations hold:

1 + amin

1 + amax

VEW |0 =
1 + amin

1 + amax

∑
j

qC0,j · VEj∑
j

qC0,j
≤

∑
j

wj · VEj∑
j

wj

≤ 1 + amax

1 + amin

∑
j

qC0,j · VEj∑
j

qC0,j
=

1 + amax

1 + amin

VEW |0.

It follows that

1 + amin

1 + amax

≤
VEW |V̄0

VEW |0
≤ 1 + amax

1 + amin

.

The ratio of the two estimands is close to one if there is little variation in the weights aj

or they are all small. According to equation (c), aj =
∑

i∈V̄ (p
C
i /p

C
0 )(q

C
i,ij/q

C
0,j). The first

possibility thus occurs if between-strain competition is homogeneous across all strains, i.e.,

the relative reduction (qCi,ij/q
C
0,j) in the acquisition hazard due to current colonisation has

the same value for all strain pairs. The second possibility occurs in a setting in which non-

vaccine strain and double colonisation are not very common. For example, if p0 ≥ 1/3 and

qCi,ij/q
C
0,j < 0.1 for all i, j, aj < 0.3pV̄ (for all j) where pV̄ is the prevalence of non-vaccine
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strains.

The aggregated model.

Here we prove that estimand (8) of vaccine efficacy under the aggregate model is equivalent

to estimand (2) for VEW |V̄0
. Starting from (8) and using the fact that qT[h],[k] = qC[h],[k] = 0 for

all [h] ∈ V̄\V̄0 (doubly-colonised states with non-vaccine strains), we find that

1−
qTV̄0,W

qCV̄0,W

= 1−

∑
[h]∈V̄0

p̄T[h]|V̄0

∑
[k]∈W

qT[h][k]


∑
[h]∈V̄0

p̄C[h]|V̄0

∑
[k]∈W

qC[h][k]

 = 1−

∑
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∑
[k]∈W
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∑
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∑
[k]∈W
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∑
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 = VEW |V̄0
.

The equivalence on the second line above is based on the fact that the ratio of the normalising
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constants pertaining to sets V̄0 and V̄0 are equal by (a) and (b):

∑
i∈V̄0

pTi +
∑

i,j∈V̄ ;i ̸=j

pTij∑
i∈V̄0

pCi +
∑

i,j∈V̄ ;i̸=j

pCij
=

(
∑
i∈V̄0

qC0,i +
∑

i,j∈V̄ ;i̸=j

qCi,ijq
C
0,j/µ)p

T
0

(
∑
i∈V̄0

qC0,i +
∑

i,j∈V̄ ;i̸=j

qCi,ijq
C
0,j/µ)p

C
0

=

(
∑
i∈V̄0

qC0,i)p
T
0

(
∑
i∈V̄0

qC0,i)p
C
0

=

∑
i∈V̄0

pTi∑
i∈V̄0

pCi
.

Convergence to stationarity. The speed of convergence towards stationarity depends

on the second largest eigenvalue of the transition intensity matrix of the underlying Markov

chain (Levin, Peres and Wilmer, 2009). Assume that conditions (A1)-(A4) hold and there

is strong between-strain competition in the sense that qj,ij/q0,i = 0 for all i, j. For n = 2

strains, the transition probability matrix of the approximating Markov chain is

D = (dij) =


d11 p0,1 p0,2

p·,0 d22 0

p·,0 0 d33

 ,

where pi,j is the transition probability from state i to state j over a short (infinitesimal) time

interval ∆t, and dii = 1−
∑

j;j ̸=i dij. The eigenvalues of D are 1, 1−p·,0, and 1−p·,0−p0,1−p0,2

so that the second largest eigenvalue is 1−p·,0 = 1−µ∆t. Likewise, in a model with n strains,

the second largest eigenvalue can be shown to be 1 − µ∆t (with multiplicity n − 1). This

implies that under strong competition (qj,ij/q0,i ≃ 0) the parameter with the most influence

on convergence is the clearance rate of colonisation.

Additional reference:
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Levin D. A., Peres Y., Wilmer E. L. Markov chains and mixing times (2009). American

Mathematical Society, Providence, Rhode Island.



WEB APPENDIX B

This Appendix provides the R code that can be used to analyse the 9-strain example as

presented in Table 3 in the main text.

# This is the main R file for the estimation of vaccine efficacy

# against colonisation with multiple strains. The program with its

# example data set is implemented for a setting with 9 strains, analogous

# to the setting presented in Table 3 of the article (Auranen K,

# Rinta-Kokko H, Halloran ME. "Estimating strain-specific and overall efficacy of

# polyvalent vaccines against pathogens with recurrent dynamics from a

# cross-sectional study").

#

# HR-K & KA, May 31, 2012

#

# For the vaccine strains, three different estimands can be considered,

# either (a) for VE_{W|0} (estimand (1) of the article), or

# (b) VE_{W|V0} (estimand (2) of the article).

# (c) "HRK" (a simple odds ratio, see the article for details).

#

# For the non-vaccine strains, the estimand is always given by expression (3)

# in the article. See the article for more details.

#

# The following scripts are used:

source("VE_grouping.R") # To group the states of colonisation

# and to call function VE_publ.R

source("VE_estimate.R") # To estimate the vaccine efficacy

# Simulated example data sets for vaccinees and controls, based on one

# cross-section of 1000 individuals in both groups, are provided below

# in the data file data_vaccinees_controls.csv.

#

# There are nine strains in this example, strains 1-4 being the vaccine strains

# and strains 5-9 the non-vaccine strains. In the simulation of these data,

# the vaccine efficacies against strains 1-4 and the overall vaccine

# efficacy against types 1-4 combined are 0.7, 0.4, 0.7, 0.4, 0.61, respectively.

#

# N.B. This is a simulated example data. The results in Table 3 are based on

# 1000 repetitions from the model.

# Read in the data sets in vector format (states of colonisation coded as explained below)

datav = data.frame(read.table("data_vaccinees_controls.csv",header=TRUE,sep=";"))[,1] # vaccinees

datac = data.frame(read.table("data_vaccinees_controls.csv",header=TRUE,sep=";"))[,2] # controls

# The number of strains in the example data

n_s = 9

# The n_s*(n_s-1)/2 = 45 states of colonisation (in the 9-strain model)

states = c(1,2,3,4,5,6,7,8,9,12,13,14,15,16,17,18,19,23,24,25,26,27,28,29,34,35,36,37,38,39,45,46,47,48,49,

56,57,58,59,67,68,69,78,79,89)

# Sub-sets of colonisation states (defined for the 9-strain model below)

# (a) single colonisation with a vaccine strain;

# (b) single colonisation with a non-vaccine strain;

# (c) double colonisation with two vaccine strains;

# (d) double colonisation with a vaccine strain and a non-vaccine strain

# (e) double colonisation with two non-vaccine strains



vt = c(1,2,3,4) # (a)

nvt = c(5,6,7,8,9) # (b)

vtvt = c(12,13,14,23,24,34) # (c)

vtnvt = c(15,16,17,18,19,25,26,27,28,29,35,36,37,38,39,45,46,47,48,49) #(d)

nvtnvt = c(56,57,58,59,67,68,69,78,79,89) # (e)

# The target set of strains referst to those strains against which

# the vaccine efficacy is to be estimated. In the current implementation,

# this set of strains must be chosen so that all strain belong to either

# to the vaccine of non-vaccine strains.

#

# In the following, vaccine efficacy is estimated against each of the individual

# strains (1,2,...,9) as well as ’overall’ against all vaccine-strains (1,2,3,4)

# and against all non-vaccine strains (5,6,7,8,9).

#

# In general, the estimand is defined by choosing the input parameter ’estimand’

# as either "W|V" or "W|0" in the routine that calculates the efficacy (see below).

# (a) "W|V" (this yields an estimate for estimand (2), i.e. VE_W\vert\bar V_0)

# (b) "W|0" (this yields an estimate for estimad (1), i.e. VE_W\vert 0)

#

# In the following example, the estimate for the vaccine strains is calcualated for "W|V".

#

# The output is a matrix with 11 rows (vaccine efficacy (VE) for each of

# 9 strains individuals, overall VE against the vaccine strains,

# and overall VE against the non-vaccine strains). The columns are:

# VE and the lower and upper bounds of a 90\% confidence interval.

# Initialise the output matrix

resmat = matrix(0, ncol=3, nrow=n_s+2, dimnames=list(c(seq(1:n_s), "VT", "NVT"),

c("VE", "CI_VE_low", "CI_VE_high")))

# Choose the esimator (the other option estimator = "W|0")

estimand = "W|V"

resmat[1,] = VE_grouping(datav, datac, estimand, target = 1, vt, nvt, nvtnvt) # strain 1

resmat[2,] = VE_grouping(datav, datac, estimand, target = 2, vt, nvt, nvtnvt) # strain 2

resmat[3,] = VE_grouping(datav, datac, estimand, target = 3, vt, nvt, nvtnvt) # strain 3

resmat[4,] = VE_grouping(datav, datac, estimand, target = 4, vt, nvt, nvtnvt) # strain 4

resmat[5,] = VE_grouping(datav, datac, estimand, target = 5, vt, nvt, nvtnvt) # strain 5

resmat[6,] = VE_grouping(datav, datac, estimand, target = 6, vt, nvt, nvtnvt) # strain 6

resmat[7,] = VE_grouping(datav, datac, estimand, target = 7, vt, nvt, nvtnvt) # strain 7

resmat[8,] = VE_grouping(datav, datac, estimand, target = 8, vt, nvt, nvtnvt) # strain 8

resmat[9,] = VE_grouping(datav, datac, estimand, target = 9, vt, nvt, nvtnvt) # strain 9

resmat[10,] = VE_grouping(datav, datac, estimand, target = vt, vt, nvt, nvtnvt) # all vaccine strains

resmat[11,] = VE_grouping(datav, datac, estimand, target = nvt, vt, nvt, nvtnvt) # all non-vaccine strains

resmat

########################

# Subroutine VE_grouping

########################

VE_grouping = function(datavacc, datacontr, estimand, target, vt, nvt, nvtnvt){

#

# HR-K & KA, May 31, 2012

#

# This function calculates the vaccine efficacy against a select set of

# strains, i.e., the target set of strains. The strains of the target

# set must all belong to either the vaccine or non-vaccine sets of strains.



#

# If estimator "W|V" is used, the function first appropriately classifies

# the states of colonisation.

#

# This function call function VE_publ.R to actually estimate the vaccine efficacy.

#

# INPUT

# target: a vector of strain numbers for which the vaccine efficacy is to be estimated;

# eg., target = c(2) for strain 2; e.g., target = vt for all vaccine strains

# listed in the input list ’vt’

# datavacc: the observations from the vaccinees, in a vector

# datacontr: the observations from the controls, in a vector

# estimand: which vaccine efficacy estimand is considered: "W|0" or "W|V"

# vt: single vaccine strains in a list

# nvt: single non-vaccine strains in a list

# nvtnvt: states of double colonisation with two non-vaccine strains in a list

#

# OUTPUT = a vector of vaccine efficacy and the lower and upper bounds of the 90\% confidence interval.

#

# This funtion calls function "VE_estimate.R".

# Initialse the output matrix

res = rep(0,4)

###########################################

# Estimand (1) of the article (VE_{W|0})

###########################################

if(estimand=="W|0"){

target_set = target # the target set of colonisation states is equal to

# the singly colonised states with a vaccine strain

res = VE_estimate(target_set, datavacc, datacontr, nvt, nvtnvt, estimand)

}

##################################################

# Estimand (2) of the article (VE_{W|V_0})

##################################################

if(estimand=="W|V"){

if(target[1] \%in\% vt){

# Form the appropriate set of colonisation states from

# single colonisation with a target strain and double

# colonisation of a target srain with any of the non-vaccine strains

# Initialise

target_set = rep(0,length(target)*(length(nvt)+1))

h = 1

for(j in 1:length(target)){

target_set[h] = target[j] # single colonisation

h = h+1

k = 1

# Concatenate the target strain with the non-vaccine strain, one at a time

while(k <= length(nvt)){

d = as.numeric(paste(target[j],nvt [k], sep=""))

target_set[h] = d

h = h+1

k = k+1

}

}

}



if(target[1] \%in\% nvt){

target_set = target

}

res = VE_estimate(target_set, datavacc, datacontr, nvt, nvtnvt, estimand)

}

###########################################

# Estimand "HRK"

###########################################

if(estimand=="HRK"){

target_set = target # the target set of colonisation states is equal to

# the singly colonised states with a vaccine strain

res = VE_estimate(target_set, datavacc, datacontr, nvt, nvtnvt, estimand)

}

# Output: VE, the lower and upper bounds of the 90\% confidence interval

VE_grouping = c(res[1][[1]], res[2][[1]], res[3][[1]])

}

########################

# Subroutine VE_estimate

########################

VE_estimate = function(target_set, datavacc, datacontr, nvt, nvtnvt, estimand){

#

# HR-K & KA, May 31, 2012

#

# This function calculates the estimate of vaccine efficacy as an odds ratio.

# Estimator (1) or (2) of the article is used. This is defined by grouping of

# states of coloniation realised already in the calling subroutine (VE_groupind.R).

#

# INPUT

# target_set : the target *set* of colonisation states (realised by the calling subroutine;

# see more details below)

# datavacc : the observations from the vaccinees

# datacontr : the observations from the controls

# nvt : the non-vaccine strains as a list

# nvtnvt : the states of double colonisation with two non-vaccine strains as a list

#

# OUTPUT : the output is a table of vaccine efficacy and the lower and upper bounds of the 90\% CI

# Vaccinees: determine the total numbers of samples in the target

# and appropriate reference states of colonisation

nvacc_target = length(datavacc[datavacc \%in\% target_set]) # the total number of those colonised with a

# target strain (singly or with a non-vaccine strain)

nvaccNVT = length(datavacc[datavacc \%in\% nvt]) # the total number of those colonised with one

# non-vaccine strain only

nvaccNVTNVT = length(datavacc[datavacc \%in\% nvtnvt]) # the total number of those colonised with two

# non-vaccine strains

nvacc0 = length(datavacc[datavacc==0]) # the total number of non-colonised

nvaccTot = length(datavacc) # the total number of samples

# Controls: determine the total numbers of samples in the target



# and appropriate reference states of colonisation

ncontr_target = length(datacontr[datacontr \%in\% target_set]) # the total number of those colonised with a

# target strain (singly or with a non-vaccine strain)

ncontrNVT = length(datacontr[datacontr \%in\% nvt]) # the total number of those colonised with

# one non-vaccine strain only

ncontrNVTNVT = length(datacontr[datacontr \%in\% nvtnvt]) # the total number of those colonised with

# two non-vaccine strains

ncontr0 = length(datacontr[datacontr==0]) # the total number of non-colonised

ncontrTot = length(datacontr) # the total number of samples

if(estimand == "W|V" | estimand == "W|0"){

# For any non-vaccine strain(s), the reference set is the non-colonised

if(target_set[1] \%in\% nvt){

target_vacc = nvacc_target

reference_vacc = nvacc0

target_contr = ncontr_target

reference_contr = ncontr0

}

# For any of the vaccine strain(s), the reference set is the non-colonised + those colonised

# with one (only) or two non-vaccine strains

if(target_set[1] \%in\% vt){

target_vacc = nvacc_target

reference_vacc = nvacc0+nvaccNVT+nvaccNVTNVT

target_contr = ncontr_target

reference_contr = ncontr0+ncontrNVT+ncontrNVTNVT

}

}

if(estimand == "HRK"){

target_vacc = nvacc_target

reference_vacc = nvaccTot-nvacc_target

target_contr = ncontr_target

reference_contr = ncontrTot-ncontr_target

}

# Next, the odds ratio is calculated using logistic regression.

# Point estimates of the odds and odds ratio could be calculated also as follows:

# odds_target = target_vacc/target_contr # the odds of being vaccinated among those

# colonised with the target states

# odds_reference = reference_vacc/reference_contr # the odds of being vaccinated among those

# colonised with the reference states

# OR = odds_target/odds_reference

# Working matrix for logistic regression

tr = data.frame(matrix(0,ncol=2,nrow=target_vacc+target_contr+reference_vacc+reference_contr,

dimnames=list(seq(1:(target_vacc+target_contr+reference_vacc+reference_contr)),

c("Vacc","Targ"))))

if(target_vacc>0){

tr[(1:target_vacc),1]<-rep(1,target_vacc)

}

if(reference_vacc>0){

tr[(target_vacc+target_contr+1):(target_vacc+target_contr +reference_vacc),1]<-rep(1,reference_vacc)

}

if(target_vacc>0 | target_contr>0){

tr[1:(target_vacc+target_contr),2]<-rep(1,(target_vacc +target_contr))
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}

# Logistic regression

glm.fit = glm(tr\$Vacc~tr\$Targ, family=binomial(link="logit"))

logOR = coef(glm.fit)[2]

OR = exp(coef(glm.fit)[2])[[1]]

# Vaccine efficacy

VE = 1-OR

# Standard error, 90\% confidence interval

SE_logOR = summary(glm.fit)\$coef[2,2]

LowerCI_logOR = logOR+1.645*SE_logOR

HigherCI_logOR = logOR-1.645*SE_logOR

LowerCI_VE = 1-exp(LowerCI_logOR)

HigherCI_VE = 1-exp(HigherCI_logOR)

# Output

VE_estimate = data.frame(VE = VE, LowerCI_VE = LowerCI_VE, HigherCI_VE = HigherCI_VE)

}



14 Biometrics, 000 0000

WEB APPENDIX C

Here we provide more detailed results to some simulation analyses in Sections 5 and 6.

The slightly negative bias in the point estimates in Table 3 is due to bias in odds-ratio

estimates from finite samples. A general reference supporting this claim is Nelson (1972). We

further investigated this by simulating two scenarios: (i) a sample of the same size (N=1000

per group, as in Table 3) but taking the sample at day 730, i.e., very long after vaccination to

ensure that the samples would be drawn from the equilibrium distribution; (ii) a very large

sample (N=10,000 per group), taking the sample of colonisation from each individual at the

same time (183 days) after vaccination as in the example of Table 3. Under (i), we found

that there was larger bias for the rare strains. By contrast, under (ii), when the sample size

was very large, the bias disappeared also for the rare strains. The results from scenario (ii)

are presented in Table C1.

[Table 1 about here.]

[Table 2 about here.]

[Table 3 about here.]

The theoretical results of Section 5 mean that the only assumption required for cross-

sectional estimation of overall and strain-specific efficacies is (B5). Table C2 shows results

from a simulation study in which vaccination enhances or decelerates clearance of the

vaccine strains, thus violating condition (B5). Under enhanced clearance, the combined

efficacy against acquisition and clearance can be estimated from a cross-sectional sample.

The combined efficacy cannot be estimated equally well under decelerated clearance.

The theoretical results of Section 5 also mean that cross-sectional estimators for overall

and strain-specific efficacy are applicable with any difference in the clearance rates of the

target strain and those in the class “rest”, at least under symmetric competition. We verified

this by a simulation study in which the ratio of the clearance rates for the target and the
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rest was as large (small) as 2 (0.5) (Table C3).

Additional reference:

Nelson W. Statistical methods for the ratio of two multinomial proportions. The American

Statistician 1972;26(3):22-27.
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