Deciphering molecular circuits from genetic variation underlying transcriptional responsiveness to stimuli

Irit Gat-Viks^{1,2,¶}, Nicolas Chevrier^{1,3,4}, Roni Wilentzik², Thomas Eisenhaure^{1,5}, Raktima Raychowdhury¹, Yael Steuerman², Alex Shalek⁶, Nir Hacohen^{1,7}, Ido Amit^{1,8,q} and Aviv $\text{Regev}^{1,9,\text{N}}$

¹Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA. ²Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel. ³Graduate Program in Immunology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA. ⁴FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA. ⁵Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, MA 02129, USA. ⁶Departments of Chemistry and Chemical Biology and of Physics, Harvard University, Cambridge, MA 02138, USA. ⁷Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, MA 02129, USA, and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA. ⁸Department of Immunology, Weizmann Institute of Science, Rehovot, 76100, Israel. ⁹ Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02140, USA. ¶ To whom correspondence should be addressed: iritgv@post.tau.ac.il (IGV), ido.amit@weizmann.ac.il (IA), aregev@broad.mit.edu (AR).

Supplementary Figures

Supplementary Figures 1-13 Legends (p.2-9)

Supplementary Figures 1-13 (p.10-22)

Supplementary Note

Supplementary Note 1,2,3 (p.23-30)

Supplementary Tables

Supplementary Tables 1-6 (p.31-46)

Supplementary Figure legends

Supplementary Figure 1. The variation signature genes. (**a**) Distribution of all and signature genes in InSignature classes. Shown is the fraction of classes (y axis) that include a certain number of genes (x axis) based on the number of all genes included in a class (blue) or the number of variation signature genes included in a class (red). (**b-d**) Dissection of results for the 424 signature genes based on the criterion by which they were selected (x axis, detailed in **Methods** and **Supplementary Note 2)**: I - heritability, by InSignature; II – biological relevance; III- positive responsiveness controls; IV- negative controls. Within the heritability (criterion I) group, genes are further partitioned by top InSignature score in class (I-a); biological relevance (I-b); responsiveness (I-c) and randomly selected from class (I-d). (**b**) Heritability in responsiveness to LPS (y axis). As expected, negative controls (group IV) have a significantly lower heritability compared to genes selected by InSignature (group I) (*P*-value $\lt 10^{-9}$), and top scoring genes (group I-a) outperform those randomly selected from the class (group I-d) (*P*<0.03). (**c**) *cis*-associations. For each group (x axis), the red-boundary bars show the fraction of *cis*-associated genes in the class (in at least one of stimulus) out of all associated genes (y axis). The black-boundary bars show the fraction of genes in this class among all 424 signature genes. *cis*-associated genes are enriched in the top-scoring group (I-a; P -value $< 10^{-4}$, hypergeometric test) and are depleted from negative control genes (group IV) ($P < 10^{-3}$). (**d**) LR scores. Shown are the median LR scores for all traits in each group, except those that attain their best LR score in *cis* (up to 10Mbp from the gene). Selection criteria that are based on InSignature are marked with a + sign at the bottom. Comparing matching 'pairs' of groups, the results highlight the utility of InSignature. For biologically relevant genes, selection based on InSignature (group I-b) outperforms selection based on biological relevance only (group II) (*P*-value < 0.02); for responding genes, selection based on InSignature (group I-c) is slightly better than based on responsiveness only (group III) (*P*-value < 0.09). (**e**) Sensitivity and specificity of InSignature in selecting *cis*-associated genes. Shown is the number of genes that are predicted as *cis*-associated (left column) and the remaining genes (non *cis*-associated, middle column) by InSignature (from array data), separated by whether they were subsequently found in the nCounter dataset as *cis*-associated (top row) or not (middle row) using a relatively permissive cutoff (LR score > 10). Thus, columns are based on analysis of the microarray dataset (6 BXD strains) whereas rows are based on the nCounter dataset (44 BXD strains). Hence, there is a high specificity (91%), moderate sensitivity (45%) and a moderate false negative rate (54%).

Supplementary Figure 2. **Consistency and reproducibility of nCounter assay.** (**a**) Shown are the expression levels for a pilot set of 16 genes with significant scores for inter-individual variation (>5.5, **Methods**, rows) measured in the same samples with both technologies across individual mice (columns; two individuals per strain consecutively). Intensity corresponds to inter-strain fold changes relative to the average level in B6 (Red (blue) - higher (lower) than B6). The bar chart (left) shows the correlation between the microarray and nCounter profiles for each gene. The four genes with lower correlations (1190002H23Rik, Il1a, Tnf and Ccl4) show higher heritability based on the nCounter measurements than with microarrays (data not shown), suggesting that the nCounter assay is more sensitive, consistent with previous studies (Amit et al, 2009). (**b**) Shown is the distribution of nCounter-microarray correlation of gene profiles from (a) (red) compared to the distribution of correlations when reshuffling the measurements of each gene separately (black). (**c**) Comparison of inter-strain fold changes (y-axis) across the mice individuals (x-axis) between microarray (red) and nanostring nCounter (blue) measurements. Top: Cxcl11, bottom: Lta. Between-strain variability is significantly higher than within-strain variability (**d**) A scatter plot of Nanostring nCounter measured responsiveness levels in two independently repeated experiments with DCs from a single mouse individual from strain BXD89 following LPS stimulation (6 hours).

Supplementary Figure 3. Association of responsiveness traits in *cis***.** (**a**) Significant interactions effect between *cis*-acting reQTLs and stimuli. Shown is the distribution of reQTLstimuli interactions (-log p-value, X axis, **Methods**) in the dataset (black) and in reshuffled data (gray). (**b)** High responsiveness is required but not sufficient for high LR scores. Shown is a scatter plot of LR scores (x axis) and absolute responsiveness (y axis) across all traits presented in **Fig. 3a**. Absolute responsiveness values are normalized by the maximum absolute log ratio attained for that gene under any of the stimulations and strains. (**c-e**) The relation of LR score and responsiveness in the Mina (**c**), Ube2m (**d**) and St3Gal5 (**e**) genes. Left: Shown are the time courses of gene expression levels (X axis) in three stimuli (PAM (left), poly IC (middle), LPS (right)) in strains with a B6 (black) or D2 (grey) genotype in *cis*. Right: Shown are the responsiveness levels for BXD strains that inherited the genotype in *cis* from B6 (columns 1,3,5) and D2 (columns 2,4,6) following stimulation of PAM (columns 1,2), Poly IC (columns 3,4) and LPS (columns 5,6). For example, the gene Ube2m (**d**) is highly responsive in LPS and PAM but *cis*-associated only in LPS. (**f**) Stimulus-specific *cis*-reQTLs have smaller effects. Shown are the LR scores for stimulus-specific *cis*-reQTLs (left) and stimulus non-specific *cis*-reQTLs (right). In each box, the central mark is the median; edges are the 25th and 75th percentiles; whiskers extend to the most extreme data points not considered outliers; and outliers are plotted individually. (**g**) Higher LR scores for *cis*-associations than for *trans*. Shown is the distribution of LR scores in *cis* (black) and *trans* (red).

Supplementary Fig. 4. Examples of merge steps in InVamod. Detailing the steps shown in Fig. 4a. In **(a)** trait t1 forms a single-trait seed module (exceeds c1 in position A), but trait t2 does not. The traits are merged to a legal module of size 2 that remains associated at A, the best association for both traits. The new association score of the module equals its optimum (2+5=7, loss fraction $\varepsilon = 0 \le$ maximum permitted loss of 0.1), and both traits exceed the double-trait cutoff c2 in position A, thus forming a legal module. **(b)** Traits t3 and t4 each form a single-trait seed modules (each exceed c1) at positions C and D, respectively. They are merged into a new legal module, associated at position F, which maximizes the association score when considering both traits. Both traits exceed c2 at position F, and the module's association score is 11 (5.5+5.5), the optimal score is 12 (6+6) and the loss fraction is $\varepsilon = (12-11)/12 \le 0.1$. (c) Each of traits t1 and t6 form single-trait seed modules (exceed c1 in positions A, E, respectively). They cannot form a legal module since when merged their loss fraction ε is higher than 0.1. In particular, the maximal joint association score (in B) is 10 (5+5) resulting in a loss fraction ε = $(13-10)/13 > 0.1$.

Supplementary Figure 5. **Association of responsiveness traits in** *trans***.** (**a**) Module sizes. Shown is a scatter-plot of module sizes (x-axis) and the degree of stimulus specificity of the traits in the module (y-axis), defined as minus Shannon entropy measure applied on the distribution of module traits in each of the stimuli. The score is low for a non-specific module, (consisting of the same number of traits in each stimulus) and higher when the traits are unevenly distributed across stimuli. Shown are all InVamod modules generated from our dataset (orange) and on permuted data (black), generated only by independently reshuffling each gene's measurements. Module with at least 14 traits are highly unlikely to be generated at random (P<0.001; vertical grey line). The six modules that cross this threshold (modules #1-#6) are

stimulus-dependent. (**b**,**c**) High heritability and high % explained heritability in Modules #1-#6. Shown are the average heritability (H^2, \mathbf{b}) and average percentage of heritability explained by the module's reQTL (**c**) for each module. In each box, the central mark is the median; edges are the 25th and 75th percentiles; whiskers extend to the most extreme data points not considered outliers; and outliers are plotted individually. (**d**) Gene members of each module. Shown are the association profiles (left, orange: associated) of the member genes (rows) and their responsiveness profiles (right, grey: responsive, as in **Fig. 3a**). Distinct RPs are marked (right). Genes related to more than one module (in different conditions), or associated only under a stimulus in which the reQTL is predicted to be inactive, are excluded for simplicity. The full module membership is reported in **Supplementary Table 5**.

Supplementary Figure 6. The InCircuit procedure for positioning reQTLs in a wiring diagram. (a) InCircuit takes as input the responsiveness profiles of module genes (RPs, top left), the linked traits of the module (top right) (depicted as in **Fig. 4c**, **Supplementary Fig. 5d**), and a regulatory wiring diagram (bottom left), consisting of three stimuli (S1, S2, S3) and 3 RPs (RP1, RP2, RP3). In step 1, leading responsiveness profiles (RPs) are marked on the diagram (RP1 and RP2, orange). In step 2, the stimuli under which the reQTL is active are marked (S1, orange). In step 3, InCircuit searches a branch coupling the upstream active stimulations and the downstream leading RPs. If such a branch is found, an reQTL is positioned on it (colored orange circle). **(b)** Examples of reQTL positioning by InCircuit. Shown are combinations of leading responsiveness profiles (column 1), reQTL activity profiles (column 2), and the reQTL predicted position (orange circle) on the wiring diagram (column 3). (**1**): reQTL positioned on branch 3, the only branch downstream of S1, which is upstream to both RP1 and RP2. (**2**) reQTL positioned on branch 2, the only branch downstream of both S1 and S2 and upstream of only RP1. (**3**) No known branch exists downstream of S3 and upstream to RP1; InCircuit refines the model by adding this branch (dashed line). (**4**) Both branch 1 and 3 (orange) are downstream of S1 and upstream of RP1, as required. InCircuit positions the reQTL on the branch (Branch 1) consisting of a smaller number of downstream RPs, and hence higher specificity.

Supplementary Figure 7. Positioning *cis***-reQTLs in a wiring diagram.** (**a**) Responsiveness and association profiles for genes in each of groups I-IV (as in **Fig. 3a**). (**b**) Shown are *cis*reQTLs (black circles) associated with genes in each of these groups (I-IV) and their predicted positioning in relevant wiring diagram (LPS, poly IC, PAM: stimuli; Horizonal grey ovals: inflammatory response; vertical grey ovals: antiviral response). In each case, the *cis*-reQTL is positioned proximally to its *cis*-linked gene, and is downstream of the stimuli in which the association is observed (e.g. LPS and PAM in Group II). The linked target gene may be connected to additional signal based on its responsiveness profile (e.g. poly IC in Group II).

Supplementary Figure 8. The positioning of responsiveness profiles in the wiring diagram is supported by TF binding. Genes in modules #1-#6 were grouped into responsiveness profiles based on their responsiveness to LPS-PAM, LPS-Poly IC and PAM-LPS-Poly IC (**Supplementary Fig. 5d**). For each group of genes that have the same responsiveness profiles (x axis), shown is their hyper-geometric enrichment score (–log P-value) with NFkB targets (white), and Stat1 or Irf3 targets (black) (y-axis), as determined by ChIP-Seq or genetic perturbation in DCs (Amit et al, 2009; Garber et al, 2012). As expected, LPS-PAM and PAM-LPS-Poly IC RPs are enriched with NFκB targets, whereas LPS-Poly IC and PAM-LPS-Poly IC are enriched with Irf3/Stat1 targets. These strongly support their differential positioning in our circuit.

Supplementary Figure 9. **Module #2.** (**a**) **LR scores for expression traits of eight target genes of module #2.** Shown are the LR scores (Y axis) at each genomic position (X axis) for the expression traits of eight target genes (color code, side legend) measured at 6 hours following poly IC stimulation. (**b**) **Rgs16 effect on gene transcript levels in module #2.** Shown is a distribution of the effect of knockdown of Rgs16 on transcripts levels. Shown as in **Fig. 6c**, except that the results are presented for another shRGS16 (here, shRGS16(2)) whose knockdown efficiency is lower (**Fig. 6b**). *P<0.1 ; **P<0.001.

Supplementary Figure 10. Responsiveness versus transcript abundance: comparison of genetic associations and gene-environment interaction. Shown is a distribution of the association scores (-log p-value; **a**) and QTL-stimulus interactions (-log p-value; **b)**, calculated based on a full ANOVA model (**Methods**), based on either expression traits (eQTLs, abundance, red) or responsiveness traits (reQTLs, black). Each plot presents data for all variation signature genes that were measured on the Nanostring nCounter. Compared to abundance traits, association of responsiveness tends to be lower (a, KS test $P<10^{-5}$), but OTL-stimuli interactions tend to be higher (b, KS test $P<10^{-4}$), suggesting the importance of gene-environment interactions in the context of responsiveness traits.

Supplementary Figure 11. The InSignature method. InSignature takes as input genome-wide profiles from different strains and conditions. In step 1 (top) it predicts, for each gene, an underlying 'InSignature pattern' based on a maximum likelihood ratio fitting of two (or three) Gaussians. The maximum likelihood ratio is referred to as 'InSignature score'. In step 2 (middle), genes are grouped based on their InSignature patterns. Each such group is referred to as 'InSignature class' or, in short, 'class'. In step 3 (bottom), InSignature selects the best-scoring genes within each class; these form the 'variation signature' genes.

Supplementary Figure 12. InSignature scores in microarray data. Shown is a distribution of the InSignature scores (X axis, **Methods**) calculated from the microarray data (**Supplementary Table 1**; red) and in a randomized dataset (black) generated only by reshuffling the measurements of each gene independently, thus disrupting only the matching between pairs of individuals of the same genetic background. The InSignature score threshold corresponding to an FDR of 0.05 is 5.5, indicated in gray vertical line.

Supplementary Figure 13. A visualization of confounders such as population stratification. Shown are P-P plots for the association of Nf_Kb (left) and Tnf (right) responsiveness following poly IC stimulation (6 hours). Observed -log10 P values (y axis) for all SNPs are plotted against the expected null distribution (x axis). To calculate P-values, LR scores were transformed to fit an F distribution (scheffe, 1959). The observed distribution matches the expected distribution closely, with a modest genome-wide inflation (genomic control $\lambda = 1.0005$ and 0.9995) and an excess only at the tail.

(BXD89 experimental repeat 1)

Genomic location A BE

1

RP1 RP2 RP3

rule applied

a

Supplementary Note

Supplementary Note 1. Genome-wide heritable variation in the transcriptional response to pathogenic components

We measured 30 genome-wide transcription profiles in resting and stimulated DCs from two parental strains (B6 and D2) and six BXD strains (**Supplementary Table 1**). For the parental strains, we profiled a pool of two individuals from each strain pre-stimulation and at 2 and 6 hours after treatment with LPS, poly IC, or PAM3CSK ('PAM') (TLR4, 3, and 2 agonists, respectively). For the six BXD strains, we measured expression profiles in two individuals from each strain stimulated with LPS, the stimulus with the broadest effect on gene expression.

We used the 30 genome-wide profiles to identify loci with inherited expression variation, by testing whether the parental strains have major gene expression differences following stimulation, and whether these parental differences are inherited. First, we calculated the fold change difference among B6 and D2 *(B6/D2 fold change)* to evaluate for each gene the extent to which its expression in the parental strains differs under the same stimulation and time point (**Methods**). There are substantial D2/B6 fold changes, with 11% of the genes exceeding a 2-fold change in at least one stimulus. In particular, 162, 132, and 97 genes have an absolute log B6/D2 fold change that is higher than 2 at 6 hours after exposure to LPS, poly IC and PAM, respectively. The overall distribution of D2/B6 fold-changes is similar in baseline profiles and under stimulations (**SN Fig. 1a**), although the fold changes of individual genes may substantially differ in the baseline versus stimulated state (**SN Fig. 1b**).

D2/B6 fold change, baseline state DCs

SN Figure 1. **D2/B6 fold changes.** (**a**) Shown is the distribution of D2/B6 fold changes (X axis) before activation (red) and at 6 hours following LPS stimulation (black). (**b**) Shown are the D2/B6 fold changes before activation (X axis) and at 6 hours following LPS stimulation (Y axis).

Next, we tested which of the D2/B6 fold changes under stimulation are inherited, by calculating for each gene its broad-sense heritability (H^2) , as the percentage of between-strain variation out of the total amount of expression variation. Higher heritability indicates a more significant difference between the mean gene expression values of the BXD strains, compared to the withinstrain variation (**Methods**). The observed heritability values are significantly higher than expected by chance (t-test $P < 10^{-200}$, **SN Fig. 2**). Although no information from the parental strains was used to infer heritability, the D2/B6 fold changes are significantly correlated to H^2 at

the same condition (LPS at 6 hours, Pearsons's $r = 0.43$, $P \ll 10^{-200}$, SN Fig. 2), suggesting that the differences among parental strains are inherited.

SN Figure 2. **Heritability of variation in gene expression.** Shown is the heritability of gene expression in BXD RI strains (Y axis) vs. the fold change in expression between the parental inbred strains (X axis) for data collected at 6h post LPS stimulation (black) and for reshuffling measurements of each gene (gray). The plots were generated by using a moving average of a window of 100 genes.

Supplementary Note 2. The variation signature selection pipeline.

In this study, we used a signature of 424 genes – the maximal number of genes that could be reliably assayed using the meso-scale nCounter technology at the time, given the expression levels and cell numbers used in our system.

We used the following selection pipeline. First, we selected genes based on heritable variation in responsiveness, as determined by InSignature analysis of the global profiles across a small number of strains (criterion I). This analysis is designed to represent the different underlying genetic factors and their associated genes in an unbiased manner (**Methods**). To these, we added, in order, genes based on prior knowledge on their biological relevance in this sytem (criterion II), positive control genes based on responsiveness to the relevant stimuli (criterion III), and negative control genes (criterion IV). **Supplementary Table 3** summarizes the number of genes that were added in each step of this pipeline. **Supplementary Table 2** provides a full list of all signature genes, organized by the particular pipeline criteria. Below we describe each step.

Criterion I: An heritability-based (genetic-based) selection: selecting genes that represent different underlying genetic factors in an unbiased manner. A naïve 'systems genetic' approach can select the genes with the highest heritability or highest association to any of the genome-wide genetic variants under one or a few of the stimuli. However, there are two drawbacks to this approach. First, due to the complexity of the genetic landscape, it is impossible to assume that the same genetic variant is functional under all stimuli. As the selection of signature genes is based on only a few genetic backgrounds, it is impossible to apply a standard association test on each of the stimuli. Second, choosing signature genes based on the association or heritability score alone might lead to an imbalanced selection of many genes that are significantly associated with only a few (pleiotropic) genetic variants.

InSignature addresses these challenges as follows. First, InSignature associates each expression trait with the most likely genotype in each of the strains and stimulations. The most likely genotype is called a 'InSignature pattern' and its score is called an 'InSignature score'. The prediction and scoring scheme is designed to fit the special case of a different (or no) genetic variant under each stimulus, and as few as one or two profiled strains in some of the stimuli. Genes whose InSignature pattern exactly matches the genotype in their proximity are termed *cis* predictions, and the rest are termed *trans* predictions. Note that the *cis* predictions at this stage are not necessarily controlled in *cis*, since using only a few genetic backgrounds, a large fraction of the genome share the same genotype (*e.g.*, for 6 BXD strains, a fraction of 1:32 of the genome have exactly the same genetic information). Second, InSignature groups responsiveness traits based on their InSignature pattern. Such a group, referred to as an 'InSignature class' (**Methods**), consists of all genes that have a certain InSignature pattern: Two genes within the same class have an identical InSignature pattern, whereas two genes at different classes have a distinct InSignature pattern.

The partition into classes allows selection of genes that are associated with a variety of genetic factors in an unbiased manner. To this end, InSignature first randomly selects a class and then selecting a gene (if available) within that class. Four alternative criteria have been used to select a gene within a sampled class:

I-a: 'Top in class' (232 genes). Selecting the gene with the highest InSignature score within a class.

I-b. Biological relevance (20 genes). Selecting a gene in the class that is a key immunerelated or disease-related gene based on prior knowledge. In this study, we used the annotation in the Ingenuity knowledge base (Ingenuity Systems, Mountain View, CA, USA).

I-c. Responsiveness (35 genes). Selecting genes in the class with high responsiveness levels under (one or a few) of the stimuli in an unbiased manner. In this study, we used a dataset of DCs responsiveness under LPS, PAM or polyIC measured at nine time points (Amit et al. 2009).

I-d. **Random (35 genes)**. Randomly selecting one of the class genes.

The researcher needs to decide in advance how many genes are selected based on each of the criteria. Here, the distribution of number of genes that were selected using each of these categories is detailed in **Supplementary Table 3**, and noted next to each criterion above. The analysis in **Supplementary Fig. 1** highlight the eventual relative utility of these different options, and can guide future users to prefer for example high scoring genes over random ones in the class.

Supplementary Fig. 1a summarizes the distribution of number of genes that were from each InSignature class. Each of the 20 genes selected based on biological relevance resides in a different class. In the case of responsiveness-based and random-based selection, two and three classes (respectively) include two selected genes whereas the remaining includes exactly one selected gene.

Criterion II: Selection based on biological relevance (knowledge-based selection). In this step, we added genes that have a known key role in immune response or relevant diseases, although they have no significant InSignature score. This serves two purposes. First, previous studies reported an enrichment of genetically-linked genes among such genes (Barreiro et al, 2012). Second, such genes are of broad interest to biologists studying the system. In our experience in this and other studies, a biologist researcher knowledgeable in a system would opt to include such "biological relevance" genes in a signature. In this study, we selected 61 genes manually based on their annotation in the Ingenuity Knowledge based (Ingenuity Systems, Mountain View, CA, USA). Analysis of our eventual signature data (**Supplementary Fig. 1**) indicate that such a knowledge-based selection was indeed valuable for identifying additional associations.

Criterion III: Selection of positive responsiveness controls. In this step, we added 20 genes based on their high responsiveness levels to the relevant stimuli, despite having no significant InSignature score. Such genes serve two purposes. First, previous studies have reported the enrichment of reQTLs underlying highly responding genes (Barreiro et al, 2012). Second, they are positive controls for the overall success of the stimulation experiment. In this study, we used a dataset of DCs responsiveness under LPS, PAM or poly IC across nine different time points (Amit et al, 2009). Analysis of our eventual signature data (**Supplementary Fig. 1**) indicate that a selection based on responsiveness criteria was indeed valuable for identifying *cis*- and *trans*associations.

Criterion IV: Selection of negative control genes. The negative controls are genes with low observed variation among time points, strains and individuals. These are used to evaluate false positive and true negative genes in our association study. Since variation depends on the intensity of gene expression, we chose those genes with lowest variance-to-average ratio. To cover various different levels of intensity, genes were grouped into four bins based on their level of gene expression, and five (or six) genes with lowest variance-to-average ratio were selected from each such bin.

Supplementary Note 3. The vast majority of *cis***-linked genes are detected at both 2 and 6 hours.**

To test whether 6-hour data recapitulates *cis* signals acting during the early response, we measured the expression of the signature genes in DCs from the same 96 mice at 2 hours following stimulation with LPS, and defined their 2-hours responsiveness traits. We find a high agreement between *cis*-linked responsiveness traits at 2- and 6-hours: each of the 31 *cis*-linked genes at 6 hours (**Fig. 3a**) is also *cis*-linked at 2-hours. 31 of 32 (96%) of the cis-linked genes at 2-hours are also *cis-*linked at 6 hours. The only exception is *Vcan*, which is *cis*-linked only at 2h, consistent with its early response in B6 but not in D2 genetic background (**SN Figure 3**).

SN Figure 3. **Expression of the Vcan gene**. Shown are the log2 expression levels (Y axis) of Vcan gene at 0, 2 and 6 hours following LPS (X axis) for parental and BXD strains carrying the B6 (black) and D2 (grey) allele at the proximity of the gene.

References:

- Amit I, Garber M, Chevrier N, Leite AP, Donner Y, Eisenhaure T et al. (2009) Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses. *Science* **326:** 257-263
- Barreiro LB, Tailleux L, Pai AA, Gicquel B, Marioni JC, Gilad Y (2012) Deciphering the genetic architecture of variation in the immune response to Mycobacterium tuberculosis infection. *Proc Natl Acad Sci U S A* **109:** 1204-1209

Supplementary Tables

Supplementary Table 1. Experimental design of microarray study. Shown are mice strains (column 1) and the experiment for each strain (stimulation and time point in columns 2 and 3, respectively). Column 4 provides the number of individuals in each array. Column 5 provides the number of biological replicates. For each strain, we have measured one or two individuals; each is a biological replicate and has been monitored in a *separate* array.

							Selection
Symbol	Entrez ID	Chr	Strand	Start	End	Selection criteria	criterion
Cd70	21948	17		57285419		57289200 Biological relevance	criterion II
Cd80	12519	16	$\overline{+}$	38459012		38487014 Biological relevance	criterion II
Csf1	12977	3	\blacksquare	107543965		107563387 Biological relevance	criterion II
Cxcl1	14825	5	$\overline{+}$	91320270		91322139 Biological relevance	criterion II
Daxx	13163	17	$\overline{+}$	34046442		34052534 Biological relevance	criterion II
Dnmt3a	13435	12	$\ddot{}$	3806979		3914443 Biological relevance	criterion II
Egr1	13653	18	$^{+}$	35020860		35024610 Biological relevance	criterion II
Etv6	14011	6	$\ddot{}$	133985724		134220165 Biological relevance	criterion II
Fos	14281	12	$^{+}$	86814850		86818219 Biological relevance	criterion II
Hhex	15242	19	$^{+}$	37509330		37515221 Biological relevance	criterion II
Hmga1	15361	17	$^{+}$	27693518		27700617 Biological relevance	criterion II
Ifit2	15958	19	$^{+}$	34625183		34651024 Biological relevance	criterion II
Ifit ₃	15959	19	$\ddot{}$	34658018		34663472 Biological relevance	criterion II
lfna2	15965	4		88329110		88329683 Biological relevance	criterion II
Ifnar2	15976	16	$\overline{+}$	91373027		91394288 Biological relevance	criterion II
lfngr2	15980	16	$\ddot{}$	91547338		91564252 Biological relevance	criterion II
lgf1	16000	10	$\ddot{}$	87323855		87399792 Biological relevance	criterion II
ligp1	60440	18	$\overline{+}$	60535682		60552281 Biological relevance	criterion II
ligp2	54396	11	$^{+}$	58028478		58036282 Biological relevance	criterion II
II12a	16159	3	$^{+}$	68495345		68502469 Biological relevance	criterion II
II15ra	16169	\overline{c}	$^{+}$	11627474		11654876 Biological relevance	criterion II
II1rI1	17082	$\mathbf{1}$	$\overline{+}$	40497472		40522259 Biological relevance	criterion II
II23a	83430	10	\blacksquare	127733195		127735140 Biological relevance	criterion II
Irf ₂	16363	8	$^{+}$	47825098		47932812 Biological relevance	criterion II
Irf4	16364	13	$\ddot{}$	30841126		30858796 Biological relevance	criterion II
Irf7	54123	$\overline{7}$	$\overline{}$	148449087		148452300 Biological relevance	criterion II
Irf8	15900	8	$\overline{+}$	123260275		123280592 Biological relevance	criterion II
Isg20	57444	$\overline{7}$	$\ddot{}$	86059120		86065282 Biological relevance	criterion II
Jhdm1d	338523	6		39086618		39156772 Biological relevance	criterion II
Jun	16476	$\overline{4}$		94715726		94718913 Biological relevance	criterion II
Mbnl1	56758	3	$\pmb{+}$	60305173		60433670 Biological relevance	criterion II
Myd116	17872	$\overline{7}$		52778289		52781638 Biological relevance	criterion II
Myd88	17874	9	$\overline{}$	119245105		119249158 Biological relevance	criterion II
Nfkb1	18033	3	$\overline{}$	135247618		135354511 Biological relevance	criterion II
Nfkb ₂	18034	19	$^{+}$	46380107		46386580 Biological relevance	criterion II
Nfkbiz	80859	16		55811490		55838754 Biological relevance	criterion II
Rb ₁	19650	\overline{c}	\blacksquare	157000732		157030270 Biological relevance	criterion II
Rel	19696	11		23641728		23670970 Biological relevance	criterion II
Relb	19698	$\overline{7}$		20191570		20214787 Biological relevance	criterion II
Stat2	20847	10	$^{+}$	127707631		127729905 Biological relevance	criterion II
Stat4	20849	$\mathbf{1}$	$\overline{+}$	52065087		52164028 Biological relevance	criterion II
Timeless	21853	10	$\ddot{}$	127669118		127689988 Biological relevance	criterion II
Tlr2	24088	3		83640193		83645530 Biological relevance	criterion II
Tlr4	21898	$\overline{\mathbf{4}}$	$^{+}$	66488844		66503830 Biological relevance	criterion II
Tnfsf8	21949	$\overline{\mathbf{4}}$		63493857		63522318 Biological relevance	criterion II
Tsc22d1	21807	14	$^{+}$	76904371		76907568 Biological relevance	criterion II
Trim21	20821	$\overline{7}$		109706435		109713983 Biological relevance	criterion II
Usp9x	22284	20	$^{+}$	12648623		12750453 Biological relevance	criterion II
Zc3h12a	230738	4		124795657		124805125 Biological relevance	criterion II

Supplementary Table 2. Nanostring nCounter design (cont)

							Selection
Symbol	Entrez ID	Chr	Strand	Start	End	Selection criteria	criterion
Tnfsf9	21950	17	$^{+}$	57244807		57247180 Biological relevance	criterion II
U90926	57425	5	\overline{a}	92638960		92644434 Biological relevance	criterion II
Zfp36	22695	7	\overline{a}	29161802		29164247 Biological relevance	criterion II
Zfp36l1	12192	12	Ĭ.	81208746		81214000 Biological relevance	criterion II
Tmcc3	319880	10	$\pmb{+}$	93977601		94053699 responsiveness	criterion III
Ms4a7	109225	19		11395902		11410606 responsiveness	criterion III
Znhit3	448850	11		84724456		84729858 responsiveness	criterion III
Adcy6	11512	15	\overline{a}	98420420		98438064 responsiveness	criterion III
Al451617	209387	$\overline{7}$	÷,	111618530		111656363 responsiveness	criterion III
Areg	11839	5	$\ddot{}$	91568641		91577458 responsiveness	criterion III
D6Mm5e	110958	6	$\ddot{}$	82896915		82980303 responsiveness	criterion III
Dusp1	19252	17		26642536		26645417 responsiveness	criterion III
Gadd45a	13197	6	$\overline{}$	66985089		66987401 responsiveness	criterion III
Hmgcr	15357	13	$\overline{}$	97418918		97440891 responsiveness	criterion III
Lox	16948	18	\star	52679571		52689357 responsiveness	criterion III
Net1	56349	13	$\overline{}$	3881808		3892824 responsiveness	criterion III
Ngp	18054	9	$\ddot{}$	110322311		110325516 responsiveness	criterion III
Pfkfb3	170768	\overline{c}	÷,	11393061		11423694 responsiveness	criterion III
Rrp15	67223	1	\overline{a}	188544857		188573237 responsiveness	criterion III
S100a9	20202	3	\overline{a}	90496554		90499613 responsiveness	criterion III
Slamf7	18173	$\mathbf{1}$	$\ddot{}$	74421776		74432625 responsiveness	criterion III
Spry1	24063	\overline{c}	$^{+}$	116947110		117008015 responsiveness	criterion III
Zbtb46	72147	\overline{c}	\overline{a}	181122467		181194131 responsiveness	criterion III
Shfm1	20422	6	\overline{a}	:6508283		6528652 responsiveness	criterion III
Arcn1	213827	$\overline{9}$	÷,	44550227		44575891 negative control	criterion IV
Arfgap1	228998	\overline{c}	$\pmb{+}$	180701930		180717231 negative control	criterion IV
Bat3	224727	17	$\ddot{}$	35272187		35284181 negative control	criterion IV
Capg	12332	1	$\ddot{}$	72499442		72512974 negative control	criterion IV
Eif4h	22384	5	\overline{a}	135095746		135115198 negative control	criterion IV
Hnrnpa2b1	53379	6	$\overline{}$	51410433		51419893 negative control	criterion IV
Ireb ₂	64602	9	$\ddot{}$	54711561		54760341 negative control	criterion IV
Mea1	17256	17	$\ddot{}$	46818085		46820054 negative control	criterion IV
Metap2	56307	10		93321234		93353947 negative control	criterion IV
Mkln1	27418	6	$^{+}$	31348827		31459477 negative control	criterion IV
Ppig	228005	\overline{c}	$\begin{array}{c} + \end{array}$	69561144		69592116 negative control	criterion IV
Ppp1r7	66385	1	$\ddot{}$	95240221		95264195 negative control	criterion IV
Psmd4	19185	3		94836626		94846467 negative control	criterion IV
Saps3	52036	19		3454927		3575749 negative control	criterion IV
Sf3b4	107701	3	$\pmb{+}$	95976472		95981487 negative control	criterion IV
Sla	20491	15		66612438		66663391 negative control	criterion IV
Tbca	21371	13	$\ddot{}$	95558897		95612854 negative control	criterion IV
Tomm7	66169	5	$\overline{}$	23344761		23349963 negative control	criterion IV
Trappc10	216131	10	\overline{a}	77649470		77707387 negative control	criterion IV
Ube2i	22196	17	$\overline{}$	25397456		25410336 negative control	criterion IV
Ubl5	66177	9	$\ddot{}$	20447322		20451584 negative control	criterion IV

Supplementary Table 2. Nanostring nCounter design (cont)

Supplementary Table 2 - Experimental design - nCounter genes. Shown are gene symbols (column 1),

entrez ID (column 2), and their genomic position (columns 3-6).

Columns 7-8 provide information about the selection criteria for these genes.

Supplementary Table 3. **The variation signature genes.** Shown are the four main selection criteria I-IV (column 1). Genes selected based on a genetic criterion (I, using InSignature) are subdivided based on the criteria that was applied to choose genes within the InSignature classes (Ia-Id; column 1). For each criterion, shown are its name (column 2), the number of genes in the variation signature that were selected based on this criterion (column 3) and their fraction of the signature (column 4). For genes selected by criterion I, InSignature also predicts *cis*- and *trans*association, as detailed in column 5.

Supplementary Table 4. Mouse strains for nCounter assays. Shown are the mouse strains (column 1), number of individuals from each strain (column 2) and their litter (column 3). Column 4 provides additional information when available.

Supplementary Table 5

Supplementary Table 5 – cont.

Supplementary Table 5– cont.

Supplementary Table 5. **Co-variation modules.** Shown are module identifier (column 1), module's traits – gene (column 2) and condition (column 3) – the genomic position of the reQTL (columns 4 and 5) and the best-scoring marker for each trait independently (columns 6 and 7).

Supplementary Table 6. *Cis*-associated genes that lie in the genetic intervals associated with the co-variation modules from **Fig. 4b** in *trans*. For each module (column 1), the table provides *cis*associated genes based on previously published data in bone marrow derived myeloid cells (Gerrits et al. 2009) (column 2), progenitor cells (Gerrites et al. 2009) (column 3), and our own DC data (column 4). In module #2, only *cis*-associated genes at the peak of the linkage interval (chr1: 140-157Mb) are presented. In column 4 (DCs), the prediction is based on both results of our meso-scale profiling (using only the relevant stimulation for a module), as well as the InSignature predictions using our microarray genome-wide dataset (marked with *). Presented are genes whose best-scored linked variant lies in *cis*, regardless the LR score. For example, the genes Pla2g4a is best associated in *cis*, although with an insignificant LR score (and thus is not included in **Fig. 3a**). Predictions using InSignature (Myof, Glul and Frmd4b) for modules #1, #2, and #4 are using the genome-wide profiling of a limited number of strains in LPS only. InSignature's predictions, therefore, are not at the relevant conditions for the module (#1 – PAM; #2, #4 - Poly IC).