Supporting Information

Synthesis of triazine dendrimers based on a divergent strategy using a trimethylene-dipiperidine linker to improve dendrimer solubility and increase reactivity towards monomer units

Meredith A. Mintzer and Eric E. Simanek*

Dept. of Chemistry, Texas A&M University, College Station TX 77842-3012

Table of Contents

Compound S1 : ¹ H NMR and ¹³ C NMR	S2
Compound S1: Mass Spectrum	S3
Compound 1 : ¹ H NMR and ¹³ C NMR	S4
Compound 1: Mass Spectrum	S5
Compound 3 : ¹ H NMR and ¹³ C NMR	S6
Compound 3: Mass Spectrum	S 7
Compound 4: ¹ H NMR and ¹³ C NMR	S 8
Compound 4: Mass Spectrum	S9
Compound 5 : ¹ H NMR and ¹³ C NMR	S10
Compound 5: Mass Spectrum	S11
Compound 6: ¹ H NMR and ¹³ C NMR	S12
Compound 6: Mass Spectrum	S13
Compound 7: ¹ H NMR and ¹³ C NMR	S14
Compound 7: Mass Spectrum	S15
Compound 8: ¹ H NMR and ¹³ C NMR	S16
Compound 8: Mass Spectrum	S17
Compound 9 : ¹ H NMR and ¹³ C NMR	S18
Compound 9: Mass Spectrum	S19
Compound 10 : ¹ H NMR and ¹³ C NMR	S20
Compound 10 Mass Spectrum	S21
Experimental Procedures	S22
Gas phase simulations of diprotected dendrimers	S26

Figure S1. ¹H NMR spectrum of S1 (300 MHz, CDCl₃).

Figure S2. ¹³C NMR spectrum of **S1** (75 MHz, CDCl₃).

Figure S3. ESI-TOF mass spectrum of S1.

Figure S4. ¹H NMR spectrum of monochlorotriazine 1 (300 MHz, CDCl₃).

Figure S5. ¹³C NMR spectrum of monochlorotriazine 1 (75 MHz, CDCl₃).

Figure S6. MALDI mass spectrum of monochlorotriazine 1.

Figure S7. ¹H NMR spectrum of **3** (300 MHz, CDCl₃).

Figure S8. ¹³C NMR spectrum of 3 (75 MHz, CDCl₃).

Figure S9. MALDI mass spectrum of 3.

Figure S10. ¹H NMR spectrum of 4 (300 MHz, CDCl₃).

Figure S11. ¹³C NMR spectrum of 4 (75 MHz, CDCl₃).

Figure S12. MALDI mass spectrum of 4.

Figure S13. ¹H NMR spectrum of dendrimer 5 (300 MHz, CDCl₃).

Figure S14. ¹³C NMR spectrum of dendrimer **5** (75 MHz, CDCl₃).

Figure S15. MALDI mass spectrum of dendrimer 5.

Figure S16. ¹H NMR spectrum of dendrimer 6 (300 MHz, CDCl₃).

Figure S17. ¹³C NMR spectrum of dendrimer **6** (75 MHz, CDCl₃).

Figure S18. MALDI mass spectrum of dendrimer 6.

Figure S19. ¹H NMR spectrum of dendrimer **7** (300 MHz, CDCl₃).

Figure S20. ¹³C NMR spectrum of dendrimer 7 (75 MHz, CDCl₃).

S14

Figure S21. MALDI mass spectrum of dendrimer 7.

Figure S22. ¹H NMR spectrum of dendrimer 8 (300 MHz, CDCl₃).

Figure S23. ¹³C NMR spectrum of dendrimer 8 (75 MHz, CDCl₃).

Figure S24. MALDI mass spectrum of dendrimer 8.

Figure S25. ¹H NMR spectrum of dendrimer 9 (300 MHz, CDCl₃).

Figure S26. ¹³C NMR spectrum of dendrimer 9 (75 MHz, CDCl₃).

Figure S27. MALDI mass spectrum of dendrimer 9.

Figure S28. ¹H NMR spectrum of dendrimer 10 (300 MHz, CDCl₃).

Figure S29. ¹³C NMR spectrum of dendrimer 10 (75 MHz, CDCl₃).

Figure S30. MALDI mass spectrum of dendrimer 10.

Experimental Procedures

Compound 1. Cyanuric chloride (0.27 g, 1.49 mmol) and compound **S1** (1.02 g, 3.29 mmol) were each dissolved in 25 mL CH₂Cl₂. Diisopropylethylamine (2.9 mL, 16.5 mmol) was added to the solution of **S1**. The solution of **S1** and DIPEA was added dropwise to cyanuric chloride at 0 °C, and the reaction mixture was allowed to warm to room temperature. After 12 hr, the reaction was washed with distilled water, dried, and purified by column chromatography (30:1 CH₂Cl₂:EtOAc \rightarrow 10:1 CH₂Cl₂:EtOAc) to afford **1** (1.44 g, 93%). ¹H NMR (300 MHz, CDCl₃) δ : 4.63 (d, 4H, equatorial CHN-triazine), 4.03 (b, 4H, equatorial CHNBoc), 2.75-2.64 (m, 8H, axial CHNBoc, axial CHN-triazine), 1.68-1.63 (d, 8H, equatorial CH₂CH₂CH₂N), 1.43 (s, 18H, C(CH₃)), 1.29 (m, 8H, CH₂CH₂CH₂CH₂), 1.20 (m, 8H, CH₂CH₂CH₂, CHtrimethylene), 1.05 (m, 8H, axial CHCH₂Ntriazine, axial CHCH₂NBoc). ¹³C NMR (75 MHz, CDCl₃) δ : 169.6 (N₃C₃), 164.2 (N₃C₃), 155.0 (CO), 79.3 (C(CH₃)₃), 44.2 (CH₂NBoc), 44.0 (CH₂N-triazine), 36.8 (CH₂CH₂CH₂CH₂CH₂), 36.3-36.1 (CHtrimethylene), 32.3 (CH₂CH₂CH₂N), 28.6 (C(CH₃)₃), 23.7 (CH₂CH₂CH₂). MS (ESI): calcd 731.5 (M⁺); found 732.6 (M + H⁺).

Compound 3. Cyanuric chloride (0.25 g, 1.37 mmol) and compound **1** (1.41 g, 4.53 mmol) with diisopropylethylamine (4.0 mL, 23 mmol) were each dissolved in 20 mL THF at room temperature and heated to reflux. After 24 hr, the reaction mixture was dried, dissolved in chloroform, and washed three times with distilled water. The organic layer was dried and purified by column chromatography (30:1 CH₂Cl₂:EtOAc \rightarrow 5:1 CH₂Cl₂:EtOAc) to afford **3** (0.78 g, 57%). ¹H NMR (300 MHz, CDCl₃) δ : 4.68 (d, 6H, equatorial CHN-triazine), 4.05 (b, 6H, equatorial CHNBoc), 2.68 (m, 12H, axial CHNBoc, axial CHN-triazine), 1.64 (d, 12H, equatorial CH₂CH₂CH₂), 1.44 (s, 27H, C(CH₃)), 1.30 (m, 12H, CH₂CH₂CH₂), 1.21 (m, 12H, CH₂CH₂CH₂, CHtrimethylene,), 1.06 (m, 12H, axial CHCH₂Ntriazine, axial CHCH₂NBoc). ¹³C NMR (75 MHz, CDCl₃) δ : 165.4 (N₃C₃), 155.0 (CO), 79.2 (C(CH₃)), 44.3 (CH₂NBoc), 43.5 (CH₂N-triazine), 36.9 (CH₂CH₂CH₂), 36.7 (CH₂CH₂CH₂). MS (MALDI): calcd 1005.8 (M⁺); found 1007.1 (M + H⁺).

Compound 4. Compound **3** (0.52 g, 0.52 mmol) was dissolved in 10 mL CH₃OH. Concentrated HCl (10 mL) was added to the reaction mixture. After 18 hr, the reaction mixture was dried, basified with 5 M NaOH, and extracted into chloroform. The organic layer was dried to afford **4** (0.39 g, quantitative). ¹H NMR (300 MHz, CDCl₃) δ : 4.67 (d, 6H, equatorial C**H**N-triazine), 3.02 (d, 6H, equatorial C**H**NH), 2.67 (t, 6H, axial C**H**Ntriazine), 2.54 (t, 6H, axial C**H**NH), 1.60 (t, 12H, equatorial C**H**₂CH₂N), 1.29 (m, 12H, C**H**₂CH₂C**H**₂), 1.19 (m, 12H, CH₂C**H**₂CH₂, C**H**trimethylene), 1.02 (m, 12H, axial C**H**CH₂N). ¹³C NMR (75 MHz, CDCl₃) δ : 165.5 (**C**₃N₃), 47.0 (CH₂NH), 43.6 (CH₂N-triazine), 37.6 (CH₂CH₂CH₂), 37.0 (CH₂CH₂CH₂), 36.6-36.4 (CHtrimethylene), 33.9 (CH₂CH₂NH), 32.5 (CH₂CH₂N-triazine), 23.7 (CH₂CH₂CH₂). MS (ESI): calcd 705.6 (M⁺); found 706.8 (M + H⁺).

Compound 5. Monochlorotriazine **1** (0.37 g, 0.50 mmol) and compound **4** (0.11 g, 0.15 mmol) were each dissolved in 5 mL THF. Diisopropylethylamine (0.9 mL, 5 mmol) was added to the solution of **4**. The monochlorotriazine solution was added to the solution of **4**, and the reaction mixture was heated to reflux. After 24 hr, the reaction mixture was dried, dissolved in chloroform, and washed three times with distilled water. The organic layer was dried, and the solid was purified by column chromatography (30:1 CH₂Cl₂:EtOAc \rightarrow 5:1 CH₂Cl₂:EtOAc) to afford **5** (0.25 g, 80% yield). ¹H NMR (300 MHz, CDCl₃) δ : 4.68 (d, 24H, equatorial CHN-triazine), 4.05 (b, 12H, equatorial CHNBoc), 2.68 (m, 36H, axial CHNBoc, axial CHN-triazine), 1.64 (d, 36H, equatorial CH₂CH₂CH₂N), 1.44 (s, 54H, C(CH₃)), 1.32 (m, 36H, CH₂CH₂CH₂), 1.21 (m, 36H, CH₂CH₂NBoc). ¹³C NMR (75 MHz, CDCl₃) δ : 165.5 (N₃C₃), 155.1 (CO), 79.3 (C(CH₃)₃), 44.1 (CH₂NBoc), 43.6 (CH₂N-triazine), 37.0 (CH₂CH₂CH₂), 36.9 (CH₂CH₂CH₂), 36.6-36.1 (CHtrimethylene), 32.5 (CH₂CH₂N), 28.7 (C(CH₃)₃), 23.8 (CH₂CH₂CH₂). MS (MALDI): calcd 2792.1 (M⁺); found 2792.0 (M + H⁺).

Compound 6. Compound **5** (0.20 g, 0.07 mmol) was dissolved in 5 mL CH₃OH. Concentrated HCl (5 mL) was added, and the reaction mixture was stirred at room temperature. After 12 hr, the reaction mixture was dried and precipitated with 5 M NaOH. The precipitate was filtered and dried to afford **6** (0.16 g, quantitative). ¹H NMR (300 MHz, CDCl₃) δ : 4.67 (d, 24H, equatorial CHN-triazine), 3.03 (d, 12H, equatorial CHNH), 2.67 (t, 24H, axial CHNtriazine), 2.54 (t, 12H, axial CHNH), 1.64 (m, 36H, equatorial CH₂CH₂N), 1.29 (m, 36H, CH₂CH₂CH₂), 1.19 (m, 36H, CH₂CH₂CH₂, CHtrimethylene), 1.02 (m, 36H, axial CHCH₂N). ¹³C NMR (75 MHz, CDCl₃) δ : 165.5 (C₃N₃), 47.0 (CH₂NH), 43.6 (CH₂N-triazine), 37.6 (CH₂CH₂CH₂), 37.1 (CH₂CH₂CH₂), 36.6-36.4 (CHtrimethylene), 33.8 (CH₂CH₂CH₂NH), 32.5 (CH₂CH₂N-triazine), 23.6 (CH₂CH₂CH₂). MS (MALDI): calcd 2191.8 (M⁺); found 2191.6 (M + H⁺).

Compound 7. Monochlorotriazine **1** (0.60 g, 0.81 mmol) and dendrimer **6** (0.19 g, 0.09 mmol) were each dissolved in 1.5 mL THF. Diisopropylethylamine (1.4 mL, 8.0 mmol) was added to the solution of **6**. The monochlorotriazine solution was added to the solution of **6**, and the reaction mixture was heated to reflux. After 48 hr, the reaction mixture was dried, dissolved in chloroform, and washed three times with distilled water. The organic layer was dried, and the solid was purified by column chromatography (30:1

CH₂Cl₂:EtOAc → 5:1 CH₂Cl₂:EtOAc) to afford **7** (0.37 g, 73% yield). ¹H NMR (300 MHz, CDCl₃) δ : 4.69 (d, 60H, equatorial CHN-triazine), 3.06 (b, 24H, equatorial CHNBoc), 2.69 (m, 84H, axial CHNBoc, axial CHN-triazine), 1.65 (m, 84H, equatorial CH₂CH₂N), 1.44 (s, 108H, C(CH₃)), 1.32 (m, 84H, CH₂CH₂CH₂), 1.21 (m, 84H, CH₂CH₂CH₂, CHtrimethylene,), 1.06 (m, 84H, axial CHCH₂Ntriazine, axial CHCH₂NBoc). ¹³C NMR (75 MHz, CDCl₃) δ : 165.5 (N₃C₃), 155.1 (CO), 79.3 (C(CH₃)₃), 44.3 (CH₂NBoc), 43.7 (CH₂N-triazine), 37.1 (CH₂CH₂CH₂), 36.9 (CH₂CH₂CH₂), 36.6-36.1 (CHtrimethylene), 32.5 (CH₂CH₂N), 28.7 (C(CH₃)₃), 23.8 (CH₂CH₂CH₂). MS (MALDI): calcd 6364.9 (M⁺); found 6376.0 (M + H⁺).

Compound 8. Dendrimer **7** (0.37 g, 0.06 mmol) was dissolved in 5 mL CH₃OH. Concentrated HCl (5 mL) was added, and the reaction mixture was stirred at room temperature. After 10 hr, the reaction mixture was dried and precipitated with 5 M NaOH. The precipitate was filtered and dried to afford **8** (0.29 g, 98%). ¹H NMR (300 MHz, CDCl₃) δ : 4.70 (d, 60H, equatorial CHN-triazine), 3.12 (d, 24H, equatorial CHNH), 2.68 (t, 60H, axial CHNtriazine), 2.60 (t, 24H, axial CHNH), 1.67 (m, 84H, equatorial CH₂CH₂N), 1.31 (m, 84H, CH₂CH₂CH₂), 1.21 (m, 84H, CH₂CH₂CH₂, CHtrimethylene), 1.10 (m, 84H, axial CHCH₂N). ¹³C NMR (75 MHz, CDCl₃) δ : 165.5 (C₃N₃), 46.5 (CH₂NH), 43.7 (CH₂N-triazine), 37.4 (CH₂CH₂CH₂), 37.0 (CH₂CH₂CH₂), 36.6-36.0 (CHtrimethylene), 33.1 (CH₂CH₂NH), 32.5 (CH₂CH₂N-triazine), 23.6 (CH₂CH₂CH₂). MS (MALDI): calcd 5164.3 (M⁺); found 5165.7 (M + H⁺).

Compound 10. Dendrimer **9** (0.06 g, 4.3 µmol) was dissolved in 2.5 mL CH₃OH. Concentrated HCl (2.5 mL) was added, and the reaction mixture was stirred at room temperature. After 16 hr, the reaction mixture was dried and precipitated with 5 M NaOH. The precipitate was filtered and dried to afford **10** (0.04 g, 75%). ¹H NMR (300 MHz, CDCl₃) δ : 4.70 (d, 132H, equatorial CHN-triazine), 3.07 (d, 48H, equatorial CHNH), 2.68 (t, 132H, axial CHNtriazine), 2.60 (t, 48H, axial CHNH), 1.66 (d, 180H, equatorial CH₂CH₂N), 1.31 (m, 180H, CH₂CH₂CH₂), 1.21 (m, 180H, CH₂CH₂CH₂, CHtrimethylene), 1.10 (m, 180H, axial CHCH₂N). ¹³C NMR (75 MHz, CDCl₃) δ : 165.5 (C_3N_3), 46.5 (CH_2NH), 43.7 (CH_2N -triazine), 37.4 ($CH_2CH_2CH_2$), 37.0 ($CH_2CH_2CH_2$), 36.6-36.0 (CHtrimethylene), 33.1 (CH_2CH_2NH), 32.5 (CH_2CH_2N -triazine), 23.6 ($CH_2CH_2CH_2$). MS (MALDI): calcd 11109.1 (M^+); found 11120.4 ($M + H^+$).

Gas Phase Computational Models of Deprotected Dendrimers

Protected dendrimers (not shown here):

- **3** Rg = 8.56 Angstroms (Diameter = 17.12 Angstroms)
- **5** Rg = 11.12 Angstroms (Diameter = 22.24 Angstroms)
- 7 Rg = 14.13 Angstroms (Diameter = 28.23 Angstroms)

Derotected dendrimers: pink - core, green – surface piperdine, peripheral layer (blue); interior layer (raspberry) (shown here)

4 = 8.83 Angstroms (Diameter = 17.66 Angstroms)
6 Rg = 10.51 Angstroms (Diameter = 21.02 Angstroms)
8 Rg = 13.60 Angstroms (Diameter = 27.20 Angstroms)