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Tissue factor is the cellular receptor and cofactor for plasma factor VIIa which initiates the coagulation
protease cascade on cell surfaces. Although normally absent from all intravascular cell types, tissue factor can
be induced to appear on circulating monocytes and vascular endothelial cells by specific inflammatory or
immunological mediators. In this study, we have examined the regulation of endotoxin-induced tissue factor

gene expression in peripheral blood monocytes.

Formation of a complex between plasma factor VIla and
the glycoprotein tissue factor (TF) on cell surfaces initiates
proteolytic activation of factors IX and X, leading ultimately
to the generation of thrombin and fibrin (8). Although TF is
necessarily absent from the surfaces of cells in contact with
the plasma under normal circumstances, T-cell-derived lym-
phokines (12, 23) and a variety of inflammatory stimuli,
including bacterial lipopolysaccharide (LPS) (20), can induce
monocyte expression of TF. In addition to its probable role
in cellular immune responses (12, 15, 22, 23), pathologic
expression of TF in circulating monocytes may play a pivotal
role in the generation of microvascular thrombi observed in
endotoxin-induced shock, disseminated intravascular coag-
ulation, and local Shwartzman-like reactions (23).

The potential of circulating monocytes to initiate and
amplify thrombogenic events in blood vessels demands
precise regulation of TF gene expression. Isolation and
characterization of cDNA (6, 18, 24, 27) and genomic clones
(15a) encoding human TF have recently been accomplished
and now provide specific molecular probes for TF studies.
TF expression has previously been studied only by measure-
ments of procoagulant activity or factor VII binding. In these
studies, we have examined the regulation of TF gene expres-
sion in human peripheral blood monocytes in response to
bacterial LPS, a potent inflammatory agent and mediator of
septic shock.

Nuclear runoff analysis of TF gene transcription. Nuclei
were isolated from 8 x 107 gelatin fibronectin-adherent
monocytes (7) before and at various times after stimulation
with Escherichia coli-derived LPS (1 pg/ml, final). Isolated
nuclei were used to prepare *?P-labeled runoff transcripts
(10). Linearized plasmids (5 wg each) containing TF, inter-
leukin-18 (IL-1B), tumor necrosis factor a (TNF-a), and
B-actin specific cDNAs were denatured and immobilized on
nitrocellulose (Schleicher & Schuell, Inc., Keene, N.H.).
After hybridization of labeled RNA to each blot for 72 h at
42°C, filters were washed according to the directions of the
manufacturer, treated with RNase A at 28°C for 15 min,
washed for 10 min each at 28°C in 1x SSPE (0.18 M sodium
chloride, 10 mM sodium phosphate [pH 7.7], 1 mM EDTA)-
0.1% sodium dodecy! sulfate and 0.1 x SSPE, air dried, and
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exposed to X-ray film (X-Omat AR; Eastman Kodak Co.,
Rochester, N.Y.) for 7 days at —80°C with intensifying
screens. The human TF probe was a 641-base-pair (bp)
EcoRI fragment from clone AcTF 2 (18) subcloned into the
Pstl site of pUCS. The human IL-18 probe, a generous gift
from Philip Auron, Tufts University School of Medicine,
Boston, Mass., was a 920-bp cDNA inserted at the Pstl-
Pvull site in the Okayama-Berg expression vector II (2). The
human TNF-a probe, a generous gift from H. Michael
Shephard, Genentech, Inc., San Francisco, Calif., was an
800-bp fragment from clone A42-4 subcloned into the EcoRI
site of pSP64 (21). The human B-actin probe, a generous gift
from Elaine Fuchs, University of Chicago, Chicago, Ill., was
an 819-bp cDNA inserted at the PstI site of pBR322 (13).

Nuclei isolated from resting monocytes demonstrated no
detectable transcription of the TF, IL-1B8, or TNF-a genes
(Fig. 1). Transcription of all three genes was coordinately
initiated within 15 min after treatment with LPS and reached
a maximum level after 1 h. Although transcription of the
TNF-a and IL-1B genes diminished rapidly thereafter, TF
gene transcription was observed at a near maximal level for
up to 6 h postinduction. The expression of the TF, IL-1B,
and TNF-a genes induced by LPS was greatly diminished by
18 h after induction by LPS. Transcription of the B-actin
gene was evident in freshly isolated monocytes, diminishing
only slightly during the first hour of culture with LPS and
then returning to basal levels or slightly higher levels for the
rest of the culture period.

Time course of TF activity and mRNA accumulation in
monocytes stimulated with LPS. Total cellular RNA (16) was
isolated from 2 X 107 to 4 x 107 gelatin fibronectin-adherent
monocytes before and at various times after stimulation with
LPS. RNA (20 pg per lane) was fractionated in an agarose
gel containing formaldehyde, transferred to a GeneScreen
(New England Nuclear Research Products, Boston, Mass.)
membrane and hybridized to the 641-bp TF cDNA probe at
42°C for 24 h as previously described (18). The TF cDNA
probe was radiolabeled, using the random-priming method
(Boehringer Mannheim Biochemicals, Indianapolis, Ind.).
Monocytes from parallel cultures were harvested at the time
of RNA extraction (7) and then analyzed for cell surface
(viable, intact cells) or total (frozen-thawed and detergent-
solubilized cells) TF activity in a single-stage clotting assay
(12). Clotting times were converted to milliunits of TF
activity by reference to a rabbit brain thromboplastin stan-
dard (Difco Laboratories, Detroit, Mich.). For reference, a
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FIG. 1. Nuclear runoff analysis of gene transcription in mono-
cytes stimulated with LPS. (A) Time course of transcription of the
TF, IL-18, and TNF-a genes in nuclei isolated from 8 x 10’
monocytes at various times after the addition of 1 pg of LPS per ml.
Hybridization to vector DNA (pUC8, pBR322, or pSP64) was not
detected nor was hybridization to control IL-2 or gamma interferon
cDNAs (data not shown). Hybridization intensities of labeled RNA
to TF cDNA were normalized to signals obtained from unstimulated
RNA-*?P-labeled TF ¢cDNA hybrids (indicated as 1X. which were
equivalent to background). (B) Simultaneous runoff analysis of
B-actin gene transcription in LPS-stimulated monocytes.

clotting time of S0 s corresponded to 1,000 mU of TF
activity.

Northern (RNA) analysis of total monocyte RNA demon-
strated transient accumulation of 2.3- and 3.1-kilobase (kb)
TF RNA species in monocytes (Fig. 2). We have detected
only the 2.3-kb TF mRNAs in the human fibroblast cell line
GM1381 (18), but the human monocytic leukemia cell line
THP-1 (11) also produces a major 2.3-kb and one or more
other larger (2.7- to 3.2-kb) TF RNAs. The significance of
these larger TF RNA species is not presently understood.
Several TF cDNA clones recovered from placental libraries
have been found to contain unprocessed introns (24). how-
ever, suggesting that incomplete processing may result in
larger TF RNA species. In LPS-stimulated monocytes. both
TF transcripts were detectable by 0.5 h postinduction and
accumulated to maximum levels within 4 h. The levels of
both TF mRNAs diminished rapidly after reaching their peak
accumulation, and by 8 h postinduction only 10 to 20% of the
maximum levels was detectable on the basis of densitometry
(data not shown). Total cellular TF activity (measured in
lysed cells) diminished rapidly over approximately the same
period, but TF activity of intact cells persisted at a lower
level for at least several hours. Recent studies in our
laboratory (T. A. Drake, W. Ruf, J. H. Morrissey, and T. S.
Edgington, J. Cell Biol., in press) have demonstrated that
prior blocking of surface TF on viable, LPS-stimulated
monocytes with anti-TF monoclonal antibodies abolished
more than 90% of TF activity of intact as well as lysed cells.
demonstrating that nearly all of the biologically active TF is
found on the cell surface. In addition, immunoelectron
microscopy detected TF antigen only in the surface mem-
branes of monocytes. TF activity is consistently increased
when monocytes are disrupted by freeze-thawing, sonica-
tion, or partial detergent solubilization (15, 22, 29), and this
phenomenon has been documented in other cell types as well
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FIG. 2. Time course of TF activity and mRNA levels in mono-
cytes stimulated with LPS. (Top) Northern analysis of total cellular
RNA isolated at various times during a 36-h culture of monocytes
with 1 ug of LPS per ml and hybridized with the 3*P-labeled 641-bp
TF cDNA probe. Rehybridization of blots to a *?P-labeled B-actin
c¢DNA probe confirmed the presence of equivalent amounts of RNA
in each lane (data not shown). (Bottom) TF activity expressed on the
surface (Intact Mo) and total monocyte (Lysed Mo) TF activity
expressed in parallel monocyte cultures. Data are reported as the
mean milliunits of TF activity per 10° monocytes * the standard
error from triplicate test samples.

(5). Exposure of intact cells to proteolytic enzymes (17) or to
sublethal peroxide injury (25) has also been shown to in-
crease apparent TF activity. In synthetic vesicles (19).
TF-VlIla catalytic activity has been shown to depend on the
qualitative composition of surrounding phospholipids. e.g..
the presence of phosphatidyl serine is associated with
greater TF-VIla catalytic activity. Therefore. it is possible
that modulation of TF catalytic activity by changes in the
surface membrane could represent an additional level of
control of cell surface procoagulant activity.

Induction of TF mRNA by various agonists. TF gene
expression was not a general consequence of monocyte
stimulation. Culture of monocytes with recombinant gamma
interferon (150 U/ml) for 18 h failed to induce detectable TF
activity or mRNA (Fig. 3). although in parallel experiments
we established that gamma interferon was able to prime the

~monocytes in 48-h cultures for LPS-triggered TNF-a pro-

duction (data not shown) (14). Recombinant IL-3 (300 CFU/
ml) was also unable to induce TF mRNA or activity in 4-h
culture with monocytes. Addition of the protein synthesis
inhibitor cycloheximide (10 pg/ml) to monocytes resulted in
the accumulation of TF mRNA at levels 5 to 10 times greater
than that induced by LPS. This induction of TF mRNA by
cycloheximide occurred in the absence of any other exoge-
nous agonists. Cycloheximide treatment did not. however.
result in the expression of TF procoagulant activity, and the
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FIG. 3. Northern analysis of TF mRNA accumulation in mono-
cytes stimulated with various agonists. Total cellular RNA was
isolated from 2 x 107 to 4 X 107 monocytes after 4 h of culture with
culture medium alone, 1 pg of LPS per ml, 300 CFU of human IL-3
per ml, 10 pg of cycloheximide (CY) per ml. or after 18 h of culture
with 150 U of gamma interferon per ml. TF RNA was detected by
hybridization with the **P-labeled 631-bp TF ¢cDNA probe. Rehy-
bridization of the blot with a **P-labeled B-actin ¢cDNA probe
confirmed the presence of equivalent amounts of RNA in each lane
(data not shown). Monocytes harvested from parallel cultures were
analyzed for total cellular TF activity. Data are reported as mean
milliunits of TF activity per 10° monocytes * the standard error
from triplicate test samples.

uptake of [*H]leucine in parallel monocyte cultures was
inhibited by greater than 90% (data not shown). Superinduc-
tion of TF RNAs by cycloheximide alone suggested that
regulation of the TF gene may involve a short-lived repres-
sor protein. We are currently examining the effects of
cycloheximide on both the rate of TF gene transcription and
the rate of TF RNA degradation.

Stability of TF mRNAs in monocytes stimulated with LPS.
Monocytes were stimulated with LPS (1 pg/ml) for 3 h and
were subsequently treated with dactinomycin (10 pg/ml) to
arrest transcription (Fig. 4). Addition of dactinomycin inhib-
ited incorporation of [*H]uridine into RNA by greater than
90% within 30 min (data not shown). Both the 2.3- and 3.1-kb
TF mRNA species decayed rapidly after dactinomycin treat-
ment, and each transcript was found to have an apparent
half-life of about 1.5 h. The rapid decay of TF mRNAs did
not reflect a general decrease in message stability in the
cells, however, as evidenced by the slow decay of B-actin
mRNA. The short half-life of TF mRNA is consistent with
the rapid decrease in TF mRNA levels that we observed
after the cessation of TF gene transcription. The 3’ untrans-
lated region of the TF gene contains an adenosine (A) and
thymidine (T)-rich sequence (18), including four copies of
the ATTTA motif that has been identified in the genes
encoding several other inflammatory mediators and cyto-
kines (4). This sequence motif may target the mRNA tran-
script for rapid degradation (26).

In previous studies, we have shown that resting human
monocytes contain no detectable TF protein and that LPS-
stimulated monocytes express approximately 17.000 TF
molecules on their surfaces (1). The results presented here
demonstrate that TF gene expression in monocytes is regu-
lated primarily at the level of gene transcription. Resting
monocytes transcribe little or no TF mRNA, whereas selec-
tive exogenous stimuli such as LPS induce a rapid and
transient transcription of the TF gene concomitant with
transcription of the IL-18 and TNF-a genes. A major 2.3-
and a minor 3.1-kb TF mRNA species accumulate in LPS-
stimulated monocytes, and both transcripts are rapidly de-
pleted once transcription is halted. due at least in part to the
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FIG. 4. Northern analysis of TF RNA stability in monocytes

stimulated with LPS. Monocytes were cultured for 3 h with 1 pg of
LPS per ml: dactinomycin (ACT D) was then added to each culture
to a final concentration of 10 pg/ml. Total cellular RNA was isolated
from 2 X 107 to 4 x 107 monocytes at 0, 1, 2. 4, and 8 h after
dactinomycin treatment. TF RNA was determined by hybridization
to the **P-labeled 641-bp cDNA probe. Rehybridization with a
*2P-labeled B-actin cDNA probe confirmed the presence of equiva-
lent amounts of RNA in each lane (data not shown). Relative
intensities of the hybridization signals were measured by densitom-
etry.

short half-life of TF mRNA. TF functions as the initiator of
an inflammatory protease cascade on cell surfaces. Expres-
sion of TF may allow cells to modulate or remodel their
extracellular environment by assembling an active protease
complex on the cell surfaces. Whether the coagulation
cascade proceeds completely to the proteolytic cleavage of
fibrinogen, induction of TF on the monocyte surface can lead
to the production of intermediate. biologically active prote-
ases, such as factor Xa and thrombin. LPS (5, 25), IL-1 (3,
28), TNF-a (9). and thrombin (28) have, in turn, been shown
to induce TF expression in cultured endothelial cells. A clear
understanding of the role of monocyte/macrophage- and
endothelial cell-produced TF in inflammation and immuno-
pathology awaits a comprehensive analysis of TF gene
expression in situ as well as purification of the T-cell-derived
lymphokine(s) (12, 23) which induce TF expression during
cell-mediated immune responses.
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