Supplemental Figure Legends

Supplemental Fig. 1. Genome-wide method for DNA methylation analysis using customdesign microarray in combination with methylated CpG island amplification (MCAM).

(A) Schematic of MCAM design. Agilent microarrays spotted with 244K oligonucleotide probes were designed to cover >80% of predicted Smal/Xmal intervals up to 1.5 kb in size. These intervals (highlighted in orange) were annotated for their distances to known genes, CpG islands (CGIs) and repetitive sequences. Gene annotations were based on NCBI RefSeq (Jul 2008). CGIs were defined as at least 500bp long with GC content above 55% and CpG ratio above 0.65. Repetitive regions were masked in the genome downloaded from UCSC genome database using RepeatMasker (versions: RepBase Update 9.11). (B) Distributions of MCAM coverage across the gene body. Based on the genomic interval location relative to transcription start site (TSS) and transcription end site (TES), regions analyzed by MCAM were grouped into four categories: promoters; intragenic; 3' end and intergenic. Promoter refers to genomic interval located within 1kb upstream of TSS to 300bp downstream of TSS; 3' end is located within 1kb upstream to 300bp downstream of TES; intragenic is defined as within the gene transcripts, but neither promoter nor 3' end; all others are intergenic. Numbers of regions analyzed in each category are indicated. (C) Experiments to validate the MCAM performance. The experimental procedures have been described in detail previously (1). A female-female comparison of MCA products generated from peripheral blood lymphocytes (PBL) showed little difference (the correlation between these two individuals was 0.98, panel 1), indicating the arrays are reproducible. Using MCA products generated from normal male and female PBL, the genes on the X chromosome in female PBL were significantly hypermethylated compared with the same regions on male X chromosome (panel 2). Thus, MCA performs well, even in a situation where only 50%

methylation is expected. We then compared microarray results with quantitative bisulfitepyrosequencing results for over 200 data points, and found a good correlation between these two independent methods (correlation was 0.87, panel 3).

Supplemental Fig. 2. Characterization of genomic regions undergoing methylation changes during differentiation of hESCs. (A) Genomic intervals are divided based on their association with CGIs as well as methylation changes during induced differentiation in hESCs. They are further subdivided based on their locations relative to genes. Within each bar, the relative proportions of regions enriched for H3K4me3/H3K27me3, H3K4me3 only, or H3K27me3 only are indicated. Relative to those in which methylation did not change, CGI-associated genomic intervals that gained methylation upon differentiation are enriched for the bivalent chromatin domain (H3K4me3/H3K27me3) (*P*<0.0001). (B) GO analysis of genes associated with CGIs that gained methylation during induced differentiation identifies a preponderance of developmental processes. For each significant GO term, the FDR adjusted *P*-value is indicated.

Supplemental Fig. 3. Methylation status of all CGIs located within the selected genes. DNA methylation was measured quantitatively at either 5' CGI (green) or 3' CGI (purple) for two classes of genes. Gene IDs are indicated on top of each graph. X-axis indicates differentiation status. Y-axis indicates methylation level. Values are given as means and standard deviations of results from more than two biological replicates.

Supplemental Fig. 4. Evolutionary conservation of *Hic1* gene locus. 6 kb of mouse and human *HIC1* sequences (from -670 bp, the start of *HIC1* transcription) were compared using

VISTA (<u>http://www-gsd.lbl.gov/vista</u>) (2) and a 100-bp window length. Human sequence is displayed on the x axis and percentage identity with mouse sequence is indicated on the y axis. Shaded areas represent regions with 75% or higher sequence identity.

Reference

- Shen, L., Kondo, Y., Guo, Y., Zhang, J., Zhang, L., Ahmed, S., Shu, J., Chen, X., Waterland, R. A., and Issa, J. P. (2007) Genome-wide profiling of DNA methylation reveals a class of normally methylated CpG island promoters, *PLoS Genet 3*, 2023-2036.
- Mayor, C., Brudno, M., Schwartz, J. R., Poliakov, A., Rubin, E. M., Frazer, K. A., Pachter, L. S., and Dubchak, I. (2000) VISTA : visualizing global DNA sequence alignments of arbitrary length, *Bioinformatics 16*, 1046-1047.

S/S^m

 S/S^m

 $S/S^m - S/S^m$

S/S^m

S/S^m

Α DNA methylation custom array design

S/S^m

S/S^m

Genome Probes

CGIs Repeats

Known genes

Ratio by bisulfite-pyrosequencing

CGI-associated genomic intervals

Non CGI-associated genomic intervals

Loss of methylation N=85

Promoter Intragenic 3' Intergenic

В

Α

Number of genes in each category

Supplemental Table 1. Primer sequences, PCR conditions, and assays for quantitative DNA methylation analysis by bisulfite-pyrosequencing

			CpG island	PCR conditions	
ID	Description	Accession No.	location	Forward primer	Reverse primer
ALOX12	Arachidonate 12-lipoxygenase	NM_000697	Promoter	GGAGATTTYGGGAAGTGTTTTTATTTATG	CAAATCCCCRCCCCAAACTAACC
CMYA5	Cardiomyopathy associated 5	NM_153610	Promoter	GGTTAGAGTAGTYGGAGGGAGAATAT	CTAACTACCCTACAAACCCTAAAC
PBM38	RNA binding region containing protein	NM 017495	Promoter	TTTAGAGGTGGAGGGTGTGATT	AAACCCCTTATTCAAAAACTAAAAATT
KDW130	KivA-binding region containing protein	14141_017475	3' end	GTGTAGTTTAGAGTGGTGATTTTAG	AACCCCCCTCACTACATCCTATCAAA
REC8L	Meiotic recombination protein REC8-like 1	NM_001048205	Promoter	GTTTTTTATTGGTTGTTAGGGTAA	CRATATCAAACCCCTAAACCTTAC
TCL1A	T-cell lymphoma-1	NM_001098725	Promoter	GTGGGTTTTGGTTTTGGGTATT	AAACCCRACCCAACTAACC
MAP7D1	MAP7 domain containing 1	NM_018067	Intragenic	GTGTTTGYGTGGGTGTGTTGA	AAAACCCCCTCAATCCCC
PCDH8	Protocadherin 8 isoform 1 precursor	NM_002590	Intragenic	GGAGTTAAYGGGGAGTTGG	CCCRCCCCCTACTATTACC
TBX2	T-box 2	NM_005994	Intragenic	GGGTTGGTTTTTTGTTGAGTTAT	TAATCCAAAACCCCAAATTTACA
BCL11B	B-cell CLL/lymphoma 11B isoform 2	NM_022898	3' end	ATTAAGGTGGAGAAGGATTTGGA	AAACCCAAAAAAAAATCCTTCAT
HIC1	Hypermethylated in cancer 1	NM 006497	Promoter	GGGTAGGGTGGGTTTTTTT	CTTTCCCCACACTCTTATCTAAAAC
mer	Hypermethylated in cancer 1	14141_000477	3' end	TAGAGGGGGGGGGGGGGTGTTA	TCCCCACTCCCCAACTCTA
HOVC5	Homeobox C5	ND 003084	Promoter	ATGGATAGGTTTTAGAGGTGTAGGTATTTA	TAATCTCCCCACTACTCTTAACTC
HOACS	Homeobox C5	NK_005084	3' end	GGTATTYGGGGTTTAGGGTAAGTT	CAAACTCTCRCCAACCTTTAACT
LASS1	Longevity assurance gene 1 isoform 1	NM_001492	3' end	AGGGGTTTAGGTTTTGGTTTATG	CCCRACCTACCCATAAAATCTC
NOS3	Nitric oxide synthase 3	NM_000603	3' end	GGTTGTGATTGGGAGGAGAGTTAT	CAAAAACCCTACACAACCCTAATT
PCDHGC5	Protocadherin gamma subfamily C	NM_032407	3' end	GGAYGGTAGTGATTTTATTTTTTAAGAT	AAAATAAATACAAATTCAATCCCTTATAA
PPP15	Proline rich 15	NM 175887	Promoter	GGGAGGTGTTAGTAGGGAAGAG	CCCAACTAAATCAAATACTACTACTAATCT
I KK15	r tollice field 15	11111_175007	3' end	GGGAAGGGGTGGAGTGAA	CCCCCACTACCACTTCCTTACTTTT
SEMA6C	Semaphorin Y	NM_030913	3' end	GGGAGGTTTTTTAGGTATT	CTCCCTTTAAAAATTAAAAC
TMEM190	Transmembrane protein 190	NM_139172	3' end	GTGAGGGTTTTTGGTTTTAGGT	CCAAAACAAACAAATACTACAACTCAA
CNTFR	Ciliary neurotrophic factor receptor	NM_147164	Intergenic	GGGGTAGGGGTAAGTTTTGTTTT	CCCACACAAAATATCCTCTCC
LY6E	Lymphocyte antigen 6 complex, locus E	NM_002346	Intergenic	GTGTTTTGGGTTTGGAGTAGAGA	ACRAAAAAAAAAAAACCCAATTC
ALX3	Aristaless-like homeobox 3	NM_006492	Intragenic	GGGTTAGGTAAAGGTTAGTGTG	TCCTTCCCAAATCCAACTACTT
GGN	Gametogenetin	NM_152657	Intragenic	AGTTGTGTTGGGGGATATGGGTAAG	CRACTACAAATTCCCCATTTCTAA

*: Universal Primer: GGGACACCGCTGATCGTTTA (Ref 9)

Continued Supplemental Table 1.							
	CpG island						Pyrosequencing Assay 1
ID	location	Biotin *	Anneal (°C)	w DMSO	Amplicon (bp)	Sequencing primer	Sequence to analyze
ALOX12	Promoter	Regular	55	no	239	GGGGGTTTAGGTTTAT	TTYGATTTYGTTTTTTYGGGAGGTTTA
CMYA5	Promoter	Regular	60/57/54/51	no	276	GTAGTYGGAGGGAGAATATTAG	G <mark>Y</mark> GYGGYGYGGGYGGTTTYGGTTT
DBM38	Promoter	Regular	55	no	148	GGGGTTTGTGTAGTTAT	A Y GGTTTTTTTT Y GTTTAGGAAAGTT Y GGGG
KDW136	3' end	Regular	55	no	278	GTTGTTTTAGTTTTATATTGA	GTATAYGTYGGTTAGTTYGGTTTAYGTTTAGTATTTATYG
REC8L	Promoter	Regular	60/57/54/51	yes	162	YGATTTAGTTTTGTAGTAGG	YGGTTYGGGGTTATATYGYGGTYGTT
TCL1A	Promoter	Universal	55	no	234	TTTTAGTAGAGGTTTAGAGT	TTYGGTTYGGTAGTYGAGGGAAGYGGG
MAP7D1	Intragenic	Universal	60/57/54/51	yes	275	GATTTTTAGTAAATTAATGG	TYGGTATTATAGATYGAGAAGAAGTTATTYGGT
PCDH8	Intragenic	Universal	60/57/54/51	yes	236	GAGTTGTAGTAGTAGGA	GT <mark>Y</mark> GYGAAGTTTT <mark>Y</mark> GTTATYGGT
TBX2	Intragenic	Universal	55	no	253	GAAAGGTTAGGAAGGAAA	YGTYGGYGAGTGTTTGGGAT
BCL11B	3' end	Regular	60	no	125	GTAGTGGTTGGTGGG	TTA <mark>Y</mark> GYGGYGTYGYGGTATTTTA
HIC1	Promoter	Regular	55	no	170	AGTATTTGTGAGTTTTTAGTTTAGG	TGYGYGGGAGGAAGGTAGYGGTTTGTYGYGTAG
mer	3' end	Regular	60/57/54/51	yes	126	CAATAAAAATAAATATAATC	R CAAAAACCRAAAATAAAACTAAAAATACCCCRAC
HOVC5	Promoter	Regular	55	no	276	GGGTAGATATGGTTGTTAAT	TTTYGGGTTTATTTYGATYGTTTYGTTTGTAGYGT
HOACS	3' end	Universal	55	no	256	GAATTTTGGTTTGGGT	YGTATTTTYGGTTTTTA
LASS1	3' end	Universal	55	no	259	GTTTTATATTTTTTTTTATAG	AYGGTGYGTTTYGAGTTTTAGYGTTTA
NOS3	3' end	Universal	50	no	216	GGGTATGGAATTTTGAG	TT <mark>Y</mark> GAAGT <mark>Y</mark> GYGTATTTTAG <mark>Y</mark> GTAGTTT
PCDHGC5	3' end	Regular	55	no	206	AGTTAGGTGAGGGGT	TYGGYGTYGTTTYGGGYGATTTTTGGGGGG
DDD15	Promoter	Regular	55	no	218	GGAAAGTAGTTTTGGATTTTTTAT	TYGGGTAGYGAGTTTGGYGGTTTTTYGTYGTYGTTT
I KKIJ	3' end	Regular	60/57/54/51	yes	186	TGTYGGGAGTTTTTAGGTTT	TT <mark>Y</mark> GGTTATGGTYGATAGYGGYGAT
SEMA6C	3' end	Universal	55	no	213	GAAGTATTTTTTGTATTTGG	GTYGGTTYGAGGGTTATYGGGGGT
TMEM190	3' end	Regular	60	yes	169	GTTTTAGGTTTTTGGGG	YGTGGGTTTG GYGGTYGGGAGTTTYGGGTT
CNTFR	Intergenic	Universal	60	no	165	GGTAYGGGAAGTAGGAGGT	Y GG Y GGTTTAGAGAGTT Y GGGG
LY6E	Intergenic	Universal	55	no	224	GAGGGAGAGGAAGAGAGT	TT <mark>Y</mark> GTTT <mark>Y</mark> GTTT <mark>Y</mark> GGGGTTTT
ALX3	Intragenic	Universal	55	no	164	AAAGGTTAGTGTGGGG	YGGGAGGGTGAATTATYGTTTTTYGGYGGYGGG
GGN	Intragenic	Universal	55	no	253	GGGGATATGGGTAAGAAG	GYGTGAGTGTYGAAGGTYGGGG

Continued Supplemental Table 1.

	Pyrosequencing Assay 2					
ID	Sequencing primer	Sequence to analyze				
ALOX12	GGAGGTTTAGGAAGGT	TTYGTYGTATTTATTTYGTTGGTTTTATTTTGGTTYGGGT				
CMYA5						
RBM38	GGTTATTTATGATTAGTATTTATA	YGTYGTITYGTTTGTTAYGGTTGTTAGTTTYGTGGGT				
REC8L	AGTYGTTATTTAATGAGGAG	YGAGGTG <mark>Y</mark> GGTGTTT <mark>Y</mark> GAAG <mark>Y</mark> GTTYGTTTT				
TCL1A	TTTTTAGTAGTAGTAGAGG	GYGGYGGTYGGTGTYGTTGTTGGTYGGGGGTTT				
MAP7D1	GGTTTTTGGTTGAGAAG	YGGYGTTAGGTTYGGGAGTAG				
PCDH8	GGGGGAGATATTGTTT	ATYGGYGATTTTTYGTAGGAGTTA				
TBX2	GTTTGGGATGGGGTT	TTYGTTTYGGGATTTTTTAYGAG				
BCL11B	GGAGAAGGATTTGGAGTT	GTYGTTYGTYGYGTTTATTTYGTT				
HIC1						
HOXC5	TGAATTTAGGGATGTATAGTTAGAA GAGTTAAGGTGGGTT	GGYGGTTYGTTYGGYGTTGGAGGAGYGAGT <mark>Y</mark> GGTT <mark>Y</mark> GYGTTATAGGATTT				
LASS1 NOS3						
PCDHGC5	GTTTAGTAGTTTATAGTTTT	GG <mark>Y</mark> GTTGGAGTTTGA <mark>Y</mark> GTTATTYGGTTTYGTTTTAA				
PRR15	AAGGGGTGGAGTGAA	YGGTYGGAGATTAYGTGGAGAAAGGGGTYGTT				
SEMA6C	TTTTGAAAAGGGTGGA	YGTYGAGAAGTTTTAGTTGTTTTTGA				
TMEM190	TTAATTTTGTTTTTTTTTTGTTTAGAA	AA <mark>Y</mark> GTG <mark>Y</mark> GGAGGAAGTATATGTGGG <mark>Y</mark> GTTG				
CNTFR	GTTTTGTTTTTTTTAAGATT	TYGTYGTAAYGTTTT				
LY6E						
ALX3	AGGGAAGGTGTAGTGG	YGAYGGTTYGGAGTTTAG				
GGN	TTTTGGAGAATAGGGG	YGGGGTYGGTGYGGAYGTATTAGATT				

_	Distance fro	m TSS (bp)		
Primer Sets	CpG_start	CpG_end	Forward primer	Reverse primer
1	-359	-26	GGTAAATAGYGGATTTGTTAATTA	CCACCCTCCAAAAAAAAAAATTA
2	-214	64	ATGGGGTTAAGGGATAGTTGTTG	AACCAAAACCCTAAAACAACTAAA
3	149	381	GGAGTGAATAGTTAGGGTTTTATT	TAATCTCCTCTAACACCTCCAATT
4	358	621	AATTGGAGGTGTTAGAGGAGATT	ACCCCCRAAACCAAACTCTAT
5	622	914	TATTTTGGGGTGTTGTTTGGTAT	ATCCCATTCCCTCCTACTTTACAA
6	899	1125	TAGGAGGGAATGGGATGTTTGTA	CCRCCAAAAAAAAAAAATCTAATC
7	1120	1394	TGGYGGTTTYGGGAGGAGAATT	AAACTTCTAAAACCCCCCCTCTAC
8	1366	1643	GTTTTGTAGAGGGGGGGGTTTTA	TTACTCCCCAAAACCCAATCTTAC
9	1834	2188	YGATGGGGGTAAATTTTGGAG	TTCCAAAACACCATCACCTAATC
10	2171	2318	GGTGATGGTGTTTTGGAAGATATT	CAATCCCCTTTCCTCCCTTATACT
11	2487	2690	TTGGGTGTYGGGAGTTTTTAGG	CCCRAAAACTACTAATCCAATCC
12	2469	2720	YGTTTTYGAGGAGATTGGGGTGTT	CCRCTTTAACCCTTCCATCTAAAT
13	2729	2900	TGTTTTYGTGGGGGTTATTAGGAA	CCCCCCAAACCAAACAAATT
14	3696	4122	AGGAAGGGAGAGAGGGTATTAATT	AATCTCCTTCAAATACCCAAACT

Supplemental Table 2. Primer sequences for bisulfite cloning and sequencing at *PRR15* gene locus

	Distance fro	om TSS (bp		
Primer Sets	CpG_start	CpG_end	Forward primer	Reverse primer
1	-674	-637	GGTGGATTTTATAATTTTTGAGTTTTAGG	AAACATCAAAAACACCCTTACTTA
2	-540	-490	GGTAGGGTTTTTAGTTGTATTAGTGAGA	CAAAAATACCAAAATACCTCTTCACTT
3	-359	-247	GGGGTTTAGAGTTATTATGGTAATTAATGA	CCCAAAACCTTAATATCTCACTAATACAA
4	-25	152	GAGTTTTTTATTGGAAATAGTTGGATAGAG	ATTTAAAAAAACCCCCCCTATAAC
5	329	408	ATTATTTATTTGGATTTAGTGGAGAGAGA	ACAAACTAAAATCCCTCAAAACTACT
6	553	573	TGGAAGTAAGAGGATTAGGAGTTTAAG	ATCTCTCCCACTAAATCCAAATAAATA
7	813	847	GAGGTTTGTAGATGAGGAGTTGAGTAGATT	ACCTTAAACTCCTAATCCTCTTACTT
8	1040	1074	AGGATTTATTTGGGGGGGTATG	CTACTCAACTCCCCATCTACAAACCTCTT
9	1342	1366	GTGTTAGGGTAGAGTTTTTGTTAGTT	CATACCCCCCAAATAAATCCT
10	1548	1703	TGGTGGTAGTGGGGGATTTATATTA	ACAAAAACCCTACCCTAACACAACTC
11	1797	1993	GGGGAGTTAAGTAGTTTTTAGGGG	CCACTACCACCAAACTACTAAAATT
12	2145	2168	ATAAGGAAGAAGGGAGTAAGATGTTTAT	CCCACCTACTTCCTACCT
13	2261	2284	TGGGAATTTTTAGGGAGAAATTTGT	CATCTTACTCCCCTCTTCCTTATCACTT
14	2730	2763	TTTTGGTGAGTTGATTGTTGAGTTGTA	TCAAACCCTAATACTCCATACCCCTAATC
15	2851	2881	GGTTTAGGTTTAGTAGGTTGTTATGTAT	CAACAATCAACCCACCAAAAACTTCTTA
16	2946	2957	GTAGGTAGTTGGTAGTAGTTAGTATAG	ACAACCCCTACCTCAAATCCCTAATAAT
17	3285	3319	TTGTTGGGTTAGGGTTTGAAGTATA	ACTAACTACTACCAACTACCTACA
18	3364	3502	GTTTTTTTAGTTTTTGGAAGGGTAAAG	ACACCCACTACCCTAAACTATATACTTCAA
19	4394	4421	TTGATGAGGTTGAGTTGAGTAAAT	AACCACTTAAAACCTAAAACCCTTTAC
20	4525	4603	AGTTGTGAGGAGGGTTATAGTAAAGA	TCAACAACCCAACCTCATCAACCATATAAA
21	4821	4859	GTGTAGAAAGGTGGGGTTATTAT	AACCTCTACCCCCTAACTAAATTCACT
22	4919	4947	TGAGGTTAGGTGAGGTGTAGA	CCCCCTCACAACTAAACAACTAAATCT
23	5171	5206	AGTAGGGAGATTTATAGTGAGAATG	CCTACCTCTCCCTATAACTCATT
24	5288	5327	AGGAAGAGGAGGGGATATTT	CACCCATTCTCACTATAAATCTCCCTACTA

Supplemental Table 3. Primer sequences for bisulfite pyrosequencing at mouse *Hic1* gene locus

Supplemental Table 4. Primer sequences for real-time CTCF ChIP assays

Region analyzed	Chr. Location	Forward primer	Reverse primer	Probe
PRR15_3' CpG island	chr7:29,606,201-29,606,259	CGCCGCAATTTGAAGATCTC	GCGCGCACTTTCCTCTTCT	CGGCCGCTTTAAG
HOXC5_3' CpG island	chr12:54,428,088-54,428,153	AGTTACACGCGCTACCAGACTCT	GCGAGTGAGGTAGCGGTTAAA	AACTCGAGAAAGAATTC
H19 DMR	chr11:2,021,040-2,021,101	GGGTCATCTGGGAATAGGACACT	GGATAATGCCCGACCTGAAG	ATGGGAGCCGCACCA
Ctr1_PRR15_promoter	chr7:29,603,474-29,603,528	TGCCCCAGGGTTCTGGTT	CTGCCCACCTGCTGGTTATT	CCCGAATCACTTGGC
Ctr2_HOXC5_outside of 3' CpG island	chr12:54,428,980-54,429,039	CACTGGACCCCAGCAAGTG	TTCGTGGCAGGGACTATGG	CTAGAGGCCCTTTGC

Supplemental Table 5.	Primer sequences	s used to generate	plasmids for luc	iferase reporter assays

Constructs	Primer sets	Primer seq	size(bp)	NCBI36/hg18 location
Promoter or Enhancer Assays				
PRR15-Pro: promoter assay positive control	Prr15-pro-F(NheI)	CTAGCTAGCATGCCCTGTGCCAATATC	1091	chr7:29568861-29569951
	Prr15-pro-R(XhoI)	CAACTCGAGAGGTGCAGGTAGGAACTT		
Pro-Luc: enhancer assay negative control	En-F(SacI)	ATAATAGAGCTCAGTTATTAATAGTAATCAATTAC	GG	
	En-R (NheI)	TATTATGCTAGCCAAAACAAACTCCCATTG		
CMV-Enh: enhancer assay positive control	CMV-PRO-F(XhoI)	ATAATACTCGAGGCACCAAAATCAACGG		
	CMV-PRO-R(HindIII)	TATTATAAGCTTCGCTAGCGGATCTGAC		
PRR15-3'CGI-forward	bl-920-F (NheI)	ATAATA GCTAGC GTCCTTCTCTCCTACTGG	920	chr7:29571718-29572637
	bl-920-R (XhoI)	TATTATCTCGAG GAGCTGCTGGTCCAGTC		
PRR15-3'CGI-reverse	bl-920R-F (XhoI)	ATAATA CTCGAG GTCCTTCTCTCCTACTGG	920	chr7:29605193-29606112
	bl-920R-R (SacI)	TATTAT GAGCTC GAGCTGCTGGTCCAGTC		
mHic1-3'CGI-forward	Hic1-F(SacI)	ATAATA GAGCTC AGCTACCTGCAGATCCCTGA	2155	chr11:74978530-74980684
	Hic1-R(XhoI)	TATTAT CTCGAG CACAGTGAGAATGGGTGTGG		
mHic1-3'CGI-reverse	Hic1R-2k-F(XhoI)	ATAATA CTCGAG AGCTACCTGCAGATCCCTGA	2155	chr11:74978530-74980684
	Hic1R-2k-R(SacI)	TATTAT GAGCTC CACAGTGAGAATGGGTGTGG		
Enhancer-Blocker Assays				
PRR15-3'CGI-forward	bl-920-F(BamHI)	ATAATA GGATCC GTCCTTCTCTCCTACTGGGATA	920	chr7:29571718-29572637
	bl-920-R(HindIII)	TATTAT AAGCTT GAGCTGCTGGTCCAGTC		
PRR15-3'CGI-reverse	bl-920R-F(HindIII)	TATTAT AAGCTT GTCCTTCTCTCCTACTGGGATA	920	chr7:29605193-29606112
	bl-920R-R(BamHI)	ATAATA GGATCC GAGCTGCTGGTCCAGTC		
mHic1-3'CGI-forward	bl-Hic1-F(BglII)	ATAATA AGATCT AGCTACCTGCAGATCCCTGA	2155	chr11:74978530-74980684
	bl-Hic1-R(HindIII)	TATTAT AAGCTT CACAGTGAGAATGGGTGTGG		
mHic1-3'CGI-reverse	bl-Hic1R-F(HindIII)	ATAATA AAGCTT AGCTACCTGCAGATCCCTGA	2155	chr11:74978530-74980684
	bl-Hic1R-R(BglII)	TATTAT AGATCT CACAGTGAGAATGGGTGTGG		

	Regions analyzed	Gain of methylation	Loss of methylation
Total	83927	2187 (2.6%)	1660 (2.0%)
CpG island associated	32301	1124 (3.5%)	201 (0.6%)
Non-CpG island associated	51626	1063 (2.1%)	1459 (2.8%)

Supplemental Table 6. Differential methylation identified in hESCs after random differentiation

Based on genome-wide methylation analysis in both H1 and H13 cell lines.

Significant methylation changes were identified in four biological replicates at either day 21 or day 90.