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1 Version information of aligners tested

Last 193

BWA 0.6.1

Bowtie 2.0.0-beta5

GSNAP 2012-06-20

Novoalign V2.07.18

SOAP 2.21

Stampy 1.0.16

2 Simulation workflow

2.1 Simulating a genome

We used the fasta-polymorphprogram from the DNemulator package (www.cbrc.jp/dnemulator) to simulate

a diploid human genome by incorporating polymorphisms from snp132Common.txt into the UCSC human

genome hg19 as follows:

fasta-polymorph -a simulated_genomeVSreference.seg snp132Common.txt \

hg19.fa hg19.fa > simulated_genome.fa

The -a switch in the command above records the alignments between the new simulated reference and hg19

in the file simulated genomeVSreference.seg. This is required since snp132Common.txt also contains

indel polymoprhisms. The “seg” format is used by Seg-suite (www.cbrc.jp/seg-suite), a package we used for

evaluating mapping results. Using hg19.fa twice simulates a diploid genome.

2.2 Simulating a set of paired-end reads

Next from the simulated genome, we randomly sampled 1 million random fragments with size normally dis-

tributed with mean FRAGMENT SIZE MEAN and standard deviation FRAGMENT SIZE SD; and from each fragment,

we obtained a pair of reads READ LENGTH long:

fasta-paired-chunks -n 1000000 -l READ_LENGTH -f FRAGMENT_SIZE_MEAN -s FRAGMENT_SIZE_SD \

simulated_genome.fa simulated_reads1.fa simulated_reads2.fa

Using the fastq-sim program in DNemulator, we simulated sequencer errors by using the per-base error

probability values from fastq files of real datasets:

fastq-sim simulated_reads1.fa real_reads_1 > simulated_reads1.fastq

fastq-sim simulated_reads2.fa real_reads_2 > simulated_reads2.fastq
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The following four datasets were constructed using this method, all of which are publicly available at

www.cbrc.jp/~anish/paired-end-benchmark.

Simulated Dataset READ LENGTH FRAGMENT SIZE MEAN FRAGMENT SIZE SD Error profile from:

1 100bp 288 27 ERR037752

2 100bp 288 27 SRR067577

3 76bp 200 40 ERR007826

4 35bp 160 30 ERR000408

2.3 Evaluating mapping results

In order to decide the correctness of mappings reported by each aligner, we used the Seg-suite package. First

we computed the true alignment of each simulated read to the reference. For example, to compute this for

the reads in simulated reads1.fa, we executed the following:

awk ’/>/ {print $3, $4, $5, $2, $6 == "+" ? 0 : -$3}’ simulated_reads1.fa | \

seg-sort > simulated_reads1VSsimulated_genome.seg

seg-swap simulated_genomeVSreference.seg | seg-sort > refgenomeVSsimulated_genome.seg

seg-join refgenomeVSsimulated_genome.seg simulated_reads1VSsimulated_genome.seg |cut -f1,4-7 | \

seg-sort > true_alignments1.seg

The first command computes the alignments between the simulated reads and the simulated genome by using

the read header information in the fasta file generated by fasta-paired-chunks. The second command

prepares the alignments recorded in simulated genomeVSreference.seg for the next command. The third

command compares the alignments in the two seg files to obtain the true alignments between the reads and

the reference.

Next the alignments predicted by the aligners were converted to seg format. The following example is for

the sam format, which is the format used by most of the aligners

seg-import sam predicted_alignments.sam | seg-sort > predicted_alignments.seg

Finally, we counted the reads that were mapped correctly. A mapping was considered correct if the predicted

alignment and the true alignment matched at, at least one position. To compute the number of reads in

simulated reads1.fastq that were correctly aligned, we executed the following:

seg-join -w true_alignments1.seg predicted_alignments.seg |cut -f4 |sort -u| wc -l

3 Aligner settings corresponding to the figures in the main article

With Last, we used the following commands for all of the tests. These are the recommended parameters in

the Last documentation.

lastdb -m1111110 index reference_genome

lastal -Q1 -d108 -e120 -i1 index reads1 > out1.maf

lastal -Q1 -d108 -e120 -i1 index reads2 > out2.maf

last-pair-probs.py -m 0.1 out1.maf out2.maf > result.maf

Execution commands corresponding to Figures 1, 3(a), 4, and 5 of the main article are shown below. For

aligners that require the user to input fragment length information, we used 288 ± 135, which is equivalent

2



to 5 standard deviations about the mean fragment length used in the generation of our simulated 100bp

dataset.

Novoalign novoindex index reference_genome

novoalign -Q 6 --Q2off -i PE 288,27 -d index -f reads1 reads2 > result

Stampy

stampy.py -G index reference_genome

stampy.py -g index -H index

stampy.py --minposterior=6 -g index -h index -M reads1 reads2 > result

BWA

bwa index -a bwtsw -p index reference_genome

bwa aln index reads1 > out1.sai

bwa aln index reads2 > out2.sai

bwa sampe index out1.sai out2.sai reads1 reads2 > result

Bowtie bowtie2-build reference_genome index

bowtie2 -x index -1 reads1 -2 reads2 -I 153 -X 423 --local --very-sensitive-local -S result

GSNAP gmap_build -D index reference_genome

gsnap -D index_dir -d index reads1 reads2 --pairexpect=288 --pairdev=135 -A sam > result

SOAP 2bwt-builder reference_genome

soap -a reads1 -b reads2 -D index -o result-paired -2 result-unpaired -m 153 -x 423 -r 0

Execution commands corresponding to Figure 3(b) of main article are shown below. For aligners that

require the user to input fragment length information, we used 200 ± 160, which is equivalent to 4 standard

deviations about the mean fragment length used in the generation of our simulated 76bp dataset.

Novoalign
novoalign -Q 6 --Q2off -i PE 200, 40 -d index -f reads1 reads2 > result

Stampy
stampy.py --minposterior=6 -g index -h index -M reads1 reads2 > result

BWA

bwa aln index reads1 > out1.sai

bwa aln index reads2 > out2.saiq

bwa sampe index out1.sai out2.sai reads1 reads2 > result
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Bowtie
bowtie2 -x index -1 reads1 -2 reads2 -I 40 -X 360 --very-sensitive -S result

GSNAP
gsnap -D index_dir -d index reads1 reads2 --pairexpect=200 --pairdev=160 -A sam > result

SOAP
soap -a reads1 -b reads2 -D index -o result-paired -2 result-unpaired -m 40 -x 360 -r 0

Execution commands corresponding to Figure 3(c) are shown below. For aligners that require the user

to input fragment length information, we used 160 ± 150 which is equivalent to 5 standard deviations about

the mean fragment length used in the generation of our 35bp dataset. The same settings were also used in

the experiment in Section 3.6/ Figure 6 of the main article.

Novoalign
novoalign -Q 6 --Q2off -i PE 160,30 -d index -f reads1 reads2 > result

Stampy
stampy.py --minposterior=6 -g index -h index -M reads1 reads2 > result

BWA

bwa aln index reads1 > out1.sai

bwa aln index reads2 > out2.saiq

bwa sampe index out1.sai out2.sai reads1 reads2 > result

Bowtie
bowtie2 -x index -1 reads1 -2 reads2 -I 10 -X 310 --very-sensitive -S result

GSNAP
gsnap -D index_dir -d index reads1 reads2 --pairexpect=160 --pairdev=150 -A sam > result

SOAP
soap -a reads1 -b reads2 -D index -o result-paired -2 result-unpaired -m 10 -x 310 -r 0

4 Parameter testing for select aligners

For some of the aligners, we arrived at the above settings by trying out several combinations of parameters

and choosing the ones that provided a good combination of speed and accuracy. We describe below our trials

for Bowtie, BWA, and SOAP.

4.1 Bowtie

Bowtie can do an end-to-end (align the whole of the read to a region of the reference) or a local alignment.

For both modes, Bowtie2 provides a very handy set of parameter presets to control sensitivity/speed. For
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Figure 1: Testing Bowtie parameters
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Figure 2: Testing (a) BWA and (b) SOAP parameters. In (b), the points for SOAP-default and SOAP-v8

coincide.

our datasets, we tried both modes and various presets. We show results for some settings in Figure 1. We

chose --local --verySensitive-local for 100bp reads and --verySensitive in the end-to-end mode

for 76bp and 35bp reads.

4.2 BWA

With BWA, we tried varying the following parameters: (1) n which controls the maximum edit distance (2)

l which controls the length of initial portion of the read which to be taken as seed (3) k which controls the

maximum differences allowed in the seed, and (4) o which controls the maximum number of gap openings

allowed. We show some of the results in Figure 2(a). We observed that increasing n improves the sensitivity,

but this comes at an enormous speed cost. Changing the other parameters did not bring about any significant

performance boost, therefore we settled for default settings throughout all our tests.

4.3 SOAP

With SOAP, we tried varying the following parameters: (1) v that controls the maximum edit distance (2) l

which controls the length of the initial portion of the read which is to be used as seed. Suprisingly, varying
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Figure 3: The error profiles of our two datasets of 100bp-long reads: (a) the dataset generated from

ERR037752 used in the main article and (b) the second dataset generated from SRR067577.
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Figure 4: (a) Mapping to the hg19 (solid) and hg19 with missing chr5 (dashed). (b) Mapping to the rhesus

genome.

v had no effect. Varying l slightly improves sensitivity, but drastically reduces speed. Therefore, we settled

with default values in all our tests.

5 Effect of error profile: a different dataset

To understand the effect of error profile on aligner performance and to make our results more robust, we

repeated the experiments in Section 3.2 through Section 3.5 on our second 100bp-read dataset, which was

generated using the same random fragments but simulating the sequencing error based on error probabilities

from SRR067577. We can see from Figure 3 that the new dataset has significantly more low-quality reads.

The results of mapping this new set of reads to the human reference hg19 (with and without Chromosome

5) and to the rhesus genome rheMac2 are shown in Figure 4. The result of mapping the reads after shuffling

the same 40% of the read pairs as in the chromosomal translocations experiment in the main article is shown

in Figure 5. Results similar to the ones in the main article were observed.

6



10-5 10-4 10-3 10-2 10-1

#wrongly mapped / #total reads

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

#
co

rr
ec

tly
 m

ap
pe

d 
/ #

to
ta

l r
ea

ds

LAST-no-shuffling
LAST-40%shuffled
NOVOALIGN-no-shuffling
NOVOALIGN-40%Shuffled
STAMPY-no-shuffling
STAMPY-40%Shuffled
BWA-no-shuffling
BWA-40%Shuffled
BOWTIE-unshuffled
BOWTIE-40%
GSNAP-no-shuffling
GSNAP-40%Shuffled
SOAP-no-shuffling
SOAP-40%Shuffled

Figure 5: Mapping shuffled read pairs.
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Figure 6: Comparing the performance with and without read trimming (dashed and solid lines, respectively).

6 Effect of trimming

To deal with low quality positions towards the 3’ end of a read, which is typical of some of the widely-used

sequencing platforms, some aligners provide an option to trim the reads. None of them use trimmming in

their default settings. Last uses sequence quality information during alignment and has no mismatch limit,

and therefore it does not require explicit trimming of reads. To understand the effect of trimming, we applied

BWA-style trimming (using DynamicTrim of the SolexaQA package with a threshold of p = 0.05) to our

two 100bp datasets – the error profiles of which can be seen in Figure 3 – and compared the results of

mapping trimmed and untrimmed reads (Figure 6). As can be seen from Figure 3, the dataset generated

using quality values from SRR067577 has a higher number of reads with low quality scores, especially towards

the 3’ position; and it is not surprising that trimming this dataset vastly improves the accuracy of aligners

like BWA. Last and Stampy are not affected much by trimming. On the contrary, their performance drops

slightly with trimming, likely due to loss of information that comes from trimming.

These datasets are especially conducive to trimming because they have few medium-quality bases. The

edit-distance-centric aligners do well when there are very few errors, which includes the case where a read

ends with uninformative very-low quality bases that are removed by trimming. Last would presumably be
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Figure 7: (a) No loss in accuracy was observed for gapless alignments of 3 sets of 1 million pairs of human

reads with varying lengths to the human reference. (b) Time taken for execution on a single core of a machine

with Xeon X5680(3.3GHz/6core) processor and 60GB RAM (please note that this machine is different from

the one used to measure the running times shown in Fig. 3(d) of the main article).

favored when there are many medium-quality bases, which boost the error rate, but convey information that

would be lost by trimming. It should also be pointed out that there exist datasets in which low quality bases

are not confined to the ends. Trimming is not a solution for such cases, but for Last they pose no particular

problems.

7 Last speed-up

7.1 Gapless alignment

Last performs gapless alignments significantly faster than gapped alignments. Mapping our 3 datasets of

varying read lengths to the human reference in both gapped and gapless mode, we observed that gapless

alignment results in no loss in sensitivity while the running time, not including the pairing phase, drops by

more than 50% for longer reads (Figure 7).

7.2 Using a smaller file format

Since our paired-end module is written in Python, file I/O can be time consuming. By changing the ouptut

format of the alignment phase to a leaner file format, we can reduce the running time of the pairing phase

by almost 30 % (see Figure 8).

8 Memory usage

Memory usage is dominated by the index of the reference genome which is loaded into memory. With easy

availability of ever-increasing memory, none of the aligners pose any serious problems.

Aligner Index type Size

Last suffix array + auxiliary table 15.0GB

Novoalign hash table 7.7GB
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Stampy hash table 2.8 GB

BWA BWT 5.0GB

Bowtie BWT 3.8GB

GMAP hash table 5.0GB

SOAP BWT 5.9 GB

9 Effect of prior probability

Last allows the user to set the value of the prior probability that a read pair is disjoint. It is possible to

estimate this probability from the set of reads that map uniquely (However, we have not implemented this

feature yet). Depending on the input, estimating this value rather than using the default of 0.01 can improve

mapping accuracy. To test this, we reran Last on our shuffled dataset (used in the experiment simulating

chromosomal translocations), with the disjoint probability set to exactly the ratio of shuffled reads (0.4). The

results are shown in Figure 9. A similar trial with Stampy, in which we changed a similar setting provided

by Stampy proved ineffective.

10 The “mapping percentage” metric

Many papers use the percentage of reads mapped to evaluate and compare the performance of mapping

tools. While it can be a helpful metric, we do not explicitly compare this figure for various reasons. First, if

necessary this information can be easily worked out from the curves in Figure 3 of the main text. Secondly,

even for a single run of an aligner, the percentage of reads mapped varies depending on the what mapping

quality threshold is set. For example, the table below shows for a run of Last the percentage of reads

mapped for various mismap probability values. As we relax the threshold stringency, we get greater mapping

percentage because we are allowing more lower-quality mappings. For this reason, comparison based on

mapped percentage can be misleading. Finally, it is a trivial task to build an aligner that always maps a 100

percent of the reads. Therefore it should be the correctness of the mappings we should be concerned about.

mismap probability less than percentage of reads mapped

0.1 97.85

0.2 97.90

0.3 97.95

0.4 97.99

0.5 98.05

0.6 98.94

0.7 99.23

0.8 99.38

0.9 99.56
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Figure 8: Comparing running times of pairing phase when using the maf and tabular format, on a single core

of a machine with Xeon X5680(3.3GHz/6core) processor and 60GB RAM (please note that this machine is

different from the one used to measure the running times shown in Fig. 3(d) of the main article).
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Figure 9: Mapping accuracy improves by changing the prior disjoint probability.
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